System and method for digital signal processing in deep diving environment

Information

  • Patent Grant
  • 9564146
  • Patent Number
    9,564,146
  • Date Filed
    Friday, August 1, 2014
    10 years ago
  • Date Issued
    Tuesday, February 7, 2017
    7 years ago
Abstract
The present invention relates to a system for processing of an audio signal relating to a diver in a deep diving environment. The system comprises an input device structured to receive the signal, a pitch changing module configured to change the pitch of the received signal, a plurality of processing modules collectively configured to process the pitch changed signal and produce a processed signal. The present invention is further directed to a method for processing of an audio signal relating to a diver in a deep diving environment.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention provides for systems and methods relating to processing of a digital signal, including an audio signal, relating to a diver in a deep diving environment.


Description of the Related Art


Divers who operate in deep diving environments face numerous challenges and hazardous conditions inherent in the environment. Included among them are the risks associated with nitrogen narcosis, decompression sickness, oxygen toxicity, and equipment failure. Accordingly, many divers venturing into deep diving environments choose to do so equipped with some form of communication equipment facilitating communication with other divers and/or the surface to help mitigate the dangers associated with the activity. These divers may come to depend heavily on the reliability of their communications device both for routine diving operations and in the event of an emergency situation. Therefore, the audio quality is a chief concern for a diver, as garbled and distorted audio signals can have grave impact on a diver's ability to communicate in a deep diving environment.


Various aspects of diving in a deep diving environment complicate the use of traditional communication devices. For example, divers in a deep diving environment often use specially adapted gaseous mixtures, which affect transmission of sound waves in ways that ordinary communication devices accustomed for use in typical atmosphere or at sea level are rendered ineffective. Examples of gaseous mixtures a diver may be breathing include heliox, a gaseous mixture of helium and oxygen, trimix, a mixture of oxygen, helium and nitrogen, and various other potential mixtures depending on the conditions of the environment and/or skill of the diver. Furthermore, the gaseous mixture may not be at a standard atmospheric pressure. Because the gaseous mixture is a medium for the propagation of sounds produced by the diver, the composition of the gaseous mixture affects propagation of the sound waves therethrough. These differences in sound propagation accordingly affect the properties of the signal and the communications contained therein. It therefore follows that traditional signal processing methods and devices are unsuitable for operation in the deep diving environment.


Accordingly, what is needed in the art is a system and method for processing of audio signals relating to a diver in a deep diving environment. It would be further beneficial for such processing to take into account various aspects of the diver and/or the environment, including the particular gaseous mixture the diver is breathing. In addition, the benefits of processing the audio signal include yielding a clearer signal that can be more efficiently amplified, processed, and/or transmitted, which enhances the safety of the diver.


SUMMARY OF THE INVENTION

The present invention relates to the processing of a digital signal, such as an audio signal, relating to a diver in deep diving environment. Processing of the digital signal yields a clearer digital signal, which may facilitate operational safety of the diver in the diving environment. For example, a clearer digital signal facilitates communications capabilities of the diver, allowing the diver's voice to be more accurately reproduced and heard by e.g. other divers and/or surface operations. This further enhances the safety of the diver by enabling the diver to notify others of any present conditions or emergency situations. Additionally, processing of a digital signal in accordance with the present invention compensates for any inherent deficiencies in the communications equipment the diver may be using.


However, as previously discussed, processing a digital signal in a deep diving environment requires compensating for various aspects of the deep diving environment that are absent from normal, surface conditions. These aspects may include different gaseous mixtures the diver is breathing, for example, which distort the sounds the diver produces and therefore the clarity of the digital signal. The gas the diver is breathing may also be administered at a different pressure than standard atmospheric pressure. In particular, divers breathing gaseous mixtures containing helium speak with a drastically higher pitched voice as a result, which negatively impacts communication abilities. Accordingly, the present invention addresses these and other challenges posed by communicating in a deep diving environment.


As explained in further detail herein, a preferred embodiment of the present invention facilitates digital processing of an audio signal to so as to produce higher-quality sound. Further, digital processing of the audio signal may be accomplished in a manner particularly tuned for processing of the vocal range, thereby improving the audio quality of an audio signal that primarily comprises voice communications.


Accordingly, the present invention is directed to a system and method for processing the digital signal produced by a diver in a deep diving environment.


An illustrative embodiment of a system of the present invention comprises an input device structured to receive the signal. Examples of input devices include a microphone. The system comprises a plurality of processing modules collectively configured to process the received signal. Processing of the pitch changed signal may be achieved according to various desired signal processing processes, as discussed further below. The processed signal is output by an output module, which in various embodiments comprises speakers, a transmitter, and/or any other suitable means of outputting.


A pitch changing module changes the pitch of the received signal.


In a preferred embodiment, at least one of the processing modules comprises a first low shelf filter module configured to filter the pitch changed signal. Furthermore, at least one of the plurality of processing modules comprises a first high shelf filter module configured to filter the signal received from the first low shelf filter.


Additionally, at least one of the processing modules may comprise an automatic gain control module configured to adjust a gain of the filtered signal received from said first high shelf filter module. In various embodiments, the automatic gain control module may comprise a compressor and/or a limiter.


Accordingly, at least one of the processing modules comprises a second low shelf filter module configured to filter the gain adjusted signal. Furthermore, at least one of the processing modules comprises a second high shelf filter module configured to filter the signal received from said second low shelf filter module.


The first shelf filters preferably collectively comprise a first center frequency and a first gain value. Similarly, the second shelf filters collectively comprise a second center frequency and a second gain value. Accordingly, the first center frequency and second center frequency are equal in at least one embodiment, and the first gain value and second gain value are the inverse of one another.


In a preferred embodiment, at least one of the processing modules comprises an equalization module configured to equalize the signal received from said second shelf filters. In at least one embodiment, the equalization module comprises a bell filter. The equalization module may be configured to equalize the signal in accordance with at least one predetermined parameter of the signal. In short, predetermined parameters affects the audio properties of the signal, and equalization that accounts for such parameters when equalizing the signal in at least one embodiment produces a better quality signal. Examples of predetermined parameters of the signal include, but are not limited to, the gender of the diver, an age of the diver, a tonality of the diver's voice, a depth at which the diver is diving, and a type of gas the diver is breathing.


In at least one embodiment, the signal is further processed by a static gain control module configured to adjust the gain of the signal. Such processing by the static gain control may facilitate headroom and/or signal-to-noise ratio. Further, the static gain control module in a preferred embodiment is configured to account for further processing, control, transmission, and/or amplification device or devices that may additionally alter the signal.


As is described above, audio communication plays a role in the safety of divers, particularly in a deep diving environment. Accordingly, the present invention relates to a system for processing of an audio signal, such as one comprising voice communications produced by the diver. In various embodiments, these voice communications are relayed and/or transmitted to others, such as other divers, including divers at various depths, or operators at other locations such as the surface.


Other embodiments of the present invention are directed to a method of signal processing, as is further described herein.


These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.





BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:



FIG. 1 is a schematic representation of an illustrative embodiment of the present invention.



FIG. 2 is a schematic representation of an illustrative embodiment of the present invention.



FIG. 3 is a schematic representation of an illustrative embodiment of the present invention.



FIG. 4 is a schematic representation of an illustrative embodiment of the present invention.



FIG. 5 is a schematic representation of an illustrative embodiment of a method in accordance with the present invention.





Like reference numerals refer to like parts throughout the several views of the drawings.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As is illustrated by the accompanying drawings, the present invention is directed to systems and methods for processing of a digital signal, including an audio signal, relating to a diver in a deep diving environment.


A preferred embodiment of the present invention comprises a system, generally indicated as 1 in FIG. 1. The system comprises an input device 10, a plurality of modules 200, and an output device 100, each of which will be discussed more fully below.


The input device 10 is at least partially structured and/or configured to receive a signal. The signal is a digital signal, and in various embodiments comprises an audio signal, sounds within the audible range (generally defined as approximately 20 Hz to 20 kHz), and/or vocal communications produced by the diver.


The output device 100 is configured to output a signal processed by the plurality of modules 200. Accordingly, the output device 100 is configured to receive and output a signal from the plurality of modules 200. Examples of output devices include transmission devices, such as for wired and/or wireless transmission from a device worn by a diver as well as speakers or other auditory output devices.


With reference to FIG. 2, illustrative examples of modules 200 are indicated at 20, 30, 40, 50, 60, 70, 80, and 90. These modules will be discussed in turn. However, though the embodiment of FIG. 2 illustrates an order by which a digital signal is processed by the modules 200, it should be noted that the order is not to be interpreted as limiting. Accordingly, various other embodiments may implement alternative orders and/or combinations, including combinations of these and additional or fewer modules 200. As used herein, modules 200 may comprise a device or devices, circuits, circuitry, and/or other components suitable for processing of a digital signal in accordance with the present invention as described and claimed herein.


In the embodiment of FIG. 2, the pitch of the received signal 110 is changed, adjusted, etc. by a pitch change module 20. The pitch change module 20 changes the pitch of the received signal 110 by an amount within the range of an increase of one octave to a decrease of two octaves, inclusively. The pitch change module 20 is further configured to transmit a pitch changed signal 120, such as for further processing.


With further reference to FIG. 2, the pitch changed signal 120 transmitted by the pitch change module 20 is received by a first low shelf filter module 30. The first low shelf filter module 30 is configured to filter the pitch changed signal 120. The first low shelf filter module 30 is configured to pass all frequencies, but increases or decreases, i.e. boosts or attenuates, the amplitude of frequencies below a predetermined frequency by a specified amount.


A system 1 in accordance with that of FIG. 2 further comprises a first high shelf filter module 40. The first high shelf filter module 40 is configured to filter the signal 130 received from the first low shelf filter module 30. Additionally, the first high shelf filter module 40 is configured to increase or decrease the amplitude of frequencies above a predetermined frequency by a specified amount.


In the preferred embodiment, the first low shelf filter module 30 and the first high shelf filter module 40 are correspondingly configured such that the resultant first filtered signal 140 comprises a differential of 24 decibels between its high and low frequencies.


In at least one embodiment, the first low shelf filter module 30 and first high shelf filter module 40 collectively comprise a first center frequency and a first filter gain value.


With reference to FIG. 2, the system 1 further comprises an automatic gain control module 50 configured to adjust a gain of the first filtered signal 140 so as to produce and transmit a gain adjusted signal 150. The amount of adjustment of the gain of the first filtered signal 140 differs between embodiments of the system 1. For example, in at least one embodiment, the automatic gain control module 50 is configured to adjust the gain of the filtered signal by an amount within the range of 0 decibels and 20 decibels, inclusively. Additionally, in various embodiments, the automatic gain control module 50 may comprise a compressor and/or a limiter.


In the illustrative embodiment of FIG. 2, the gain adjusted signal 150 is then filtered by a second low shelf filter module 60. The second low shelf filter module 60 passes all frequencies, but increases or decreases the amplitude of frequencies below a predetermined frequency by a specified amount.


The system 1 further comprises a second high shelf filter module 70. The second high shelf filter module 70 is configured to filter the signal 160 received from the second low shelf filter module 60. Additionally, the second high shelf filter module 70 is configured to increase or decrease the amplitude of frequencies above a predetermined frequency by a specified amount.


In the preferred embodiment, the second low shelf filter module 60 and second high shelf filter module 70 collectively comprise a second center frequency and a second filter gain value. Additionally, the first shelf filter modules 30, 40 collectively comprise a first center frequency and a first filter gain value. Further still, the first and second center frequencies are equal, and the first and second filter gain values are the inverse of one another.


With further reference to FIG. 2, the second filtered signal 170 produced by the second shelf filter modules 60, 70 is transmitted to the output device 100. However, in various other embodiments, such as those of FIGS. 3 and 4 discussed below, the second filtered signal 170 is processed further.


With respect to FIG. 3, the second filtered signal 170 is transmitted to an equalization module 80 configured to equalize the second filtered signal 170. The equalization module 80 in at least one embodiment is configured to adjust the gain of the signal by an amount within a range of 0 to 25 decibels inclusively. The equalization module 80 may be additionally and/or alternatively configured to equalize frequencies of the signal below 200 Hertz. Furthermore, various embodiments of the equalization module 80 comprise at least one bell filter.


Additionally, in a preferred embodiment, the equalization module 80 is configured to equalize the second filtered signal 170 in accordance with at least one predetermined parameter. Generally speaking, a predetermined parameter should be understood to refer to a property of the digital signal that is to be processed by the system 1, and includes the factors and/or circumstances relating to its creation and/or propagation. Examples include but are not limited to: the diver's gender, the diver's age, the tonality of the diver's voice, a depth at which the diver is diving, and the type of gas the diver is breathing. In various embodiments, the equalization module 80 is configured to equalize the signal in accordance with at least one predetermined parameter. Furthermore, in a preferred embodiment the equalization module 80 is configured to equalize the signal in accordance with a plurality of predetermined parameters, including but not limited to the foregoing.


With further reference to FIG. 3, the equalized signal 180 is transmitted to the output device 100. However, in other embodiments, such as that depicted in FIG. 4, the equalized signal 180 is further processed.


As shown in the illustrative embodiment of FIG. 4, the equalized signal 180 is transmitted to a static gain control module 90. The static gain control module 90 is configured to adjust the gain of the received signal. Such gain adjustment by the static gain control module 90 may comprise adjustment of the signal-to-noise ratio of the signal and/or facilitation of a desired headroom in the resultant static gain adjusted signal 190. In any case, the static gain adjusted signal 190 is then transmitted by the static gain control module 90, such as to the output device 100.


With primary reference to FIG. 5, a preferred embodiment of a method 500 in accordance with the present invention is provided. It should further be understood that various embodiments of the method 500 may incorporate the components of the system 1 previously described. In addition, the steps of the method 500, discussed below, need not be completed in the illustrated order.


In the embodiment of FIG. 5, the method 500 comprises receiving the digital signal by an input device 510. The pitch of the received signal is then altered by a pitch changing module, as at 520. In at least one embodiment, the degree of the change of the pitch of the received signal is within the range of −2 to +1 octaves. In other words, the pitch of the signal and/or parts thereof may be decreased by as much as two octaves or increased by as much as one octave.


The method 500 of FIG. 5 further comprises filtering the pitch altered signal with a first low shelf filter module as at 530, and filtering the resultant signal with a first high shelf filter module, as at 540.


The resultant first filtered signal is then transmitted to an automatic gain control module, which adjusts the gain of the first filtered signal, as at 560.


The gain adjusted signal is transmitted to and filtered by a second low shelf filter, as at 560, and a second high shelf filter, as at 570. The resultant signal may then be output by an output device, as at 600, or further processed.


Additionally, the second filtered signal produced by the second high shelf filter is equalized by an equalization module, as at 580. The resultant equalized signal may then be output by an output device, as at 600′, or further processed.


Further, the equalized signal produced by the equalization module is transmitted to a static gain control module, which adjusts the gain of the signal, as at 590. The resultant static gain adjusted signal may then be output by an output device, as at 600″, or further processed.


Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.

Claims
  • 1. A system for processing of an audio signal relating to a diver in a deep diving environment, said system comprising: an input device structured to receive the audio signal,a pitch changing module configured to change the pitch of the received signal,a first low shelf filter module configured to filter the pitch changed signal,a first high shelf filter module configured to filter the signal received from the first low shelf filter module, thereby creating a first filtered signal,an automatic gain control module configured to adjust a gain of the first filtered signal,a second low shelf filter module configured to filter the gain adjusted signal, anda second high shelf filter module configured to filter the signal received from said second low shelf filter module, thereby creating a second filtered signalsaid first low shelf filter module and said first high shelf filter module collectively including a first center frequency and a first filter gain value,said second low shelf filter module and said second high shelf filter module collectively including a second center frequency and a second filter gain value,said first center frequency being equal to said second center frequency, andsaid first filter gain value being the inverse of said second filter gain value.
  • 2. A system as recited in claim 1, said pitch changing module being configured to change the pitch of the received signal by between −2 octaves to +1 octave.
  • 3. A system as recited in claim 1, said first low shelf filter module and said first high shelf filter module being correspondingly configured to create a 24-decibel differential between high frequencies of the filtered signal and low frequencies of the filtered signal.
  • 4. A system as recited in claim 1, wherein said automatic gain control module comprises a compressor.
  • 5. A system as recited in claim 1, wherein said automatic gain control module comprises a limiter.
  • 6. A system as recited in claim 1, said automatic gain control module being configured to adjust the gain of the filtered signal by between 0 decibels to 20 decibels.
  • 7. A system as recited in claim 1, further comprising an equalization module configured to equalize the second filtered signal.
  • 8. A system as recited in claim 7, further comprising an output device configured to output the equalized signal.
  • 9. A system as recited in claim 7, said equalization module being configured to adjust the gain of the signal by between 0 to 25 decibels.
  • 10. A system as recited in claim 7, wherein said equalization module is configured to equalize frequencies of the signal below 200 Hertz.
  • 11. A system as recited in claim 7, wherein said equalization module comprises at least one bell filter.
  • 12. A system as recited in claim 7, said equalization module being configured to equalize the signal in accordance with at least one predetermined parameter of the signal.
  • 13. A system as recited in claim 12, wherein said predetermined parameter of the signal is selected from a group consisting of a gender of the diver, an age of the diver's, a tonality of the diver's voice, a depth at which the diver is diving, and a type of gas the diver is breathing.
  • 14. A system as recited in claim 7, further comprising a static gain control module configured to adjust the gain of the equalized signal.
  • 15. A system as recited in claim 14, further comprising an output device configured to output the static gain adjusted signal.
  • 16. A system as recited in claim 1, further comprising an output device configured to output the second filtered signal.
  • 17. A method for processing of an audio signal relating to a diver in a deep diving environment, said method comprising: receiving the audio signal by an input device,altering the pitch of the received signal with a pitch changing module,filtering the pitch altered signal with a first low shelf filter module,filtering the signal received from the first low shelf filter module with a first high shelf filter module, thereby creating a first filtered signal, the first low shelf filter module and the first high shelf filter module collectively defining a first center frequency and a first filter gain value,adjusting, with an automatic gain control module, a gain of the first filtered signal,filtering the gain adjusted signal with a second low shelf filter module,filtering the signal received from the second low shelf filter module with a second high shelf filter module, the second low shelf filter module and the second high shelf filter module collectively defining a second center frequency equal to the first center frequency, and a second filter gain value inverse to the first filter gain value,thereby creating a second filtered signal.
  • 18. A method as recited in claim 17, wherein the pitch changing module is configured to change the pitch of the received signal by between −2 octaves to +1 octave.
  • 19. A method as recited in claim 17, wherein the first low shelf filter module and the first high shelf filter module are correspondingly configured to create a 24-decibel differential between high frequencies of the first filtered signal and low frequencies of the first filtered signal.
  • 20. A method as recited in claim 17, wherein the automatic gain control module comprises a compressor.
  • 21. A method as recited in claim 17, wherein the automatic gain control module comprises a limiter.
  • 22. A method as recited in claim 17, wherein the automatic gain control module is configured to adjust the first gain of the filtered signal by between 0 decibels to 20 decibels.
  • 23. A method as recited in claim 17, further comprising equalizing the second filtered signal with an equalization module.
  • 24. A method as recited in claim 23, further comprising outputting the equalized signal with an output device.
  • 25. A method as recited in claim 23, wherein the equalization module is configured to adjust the gain of the signal by between 0 to 25 decibels.
  • 26. A method as recited in claim 23, wherein the equalization module is configured to equalize frequencies of the signal below 200 Hertz.
  • 27. A method as recited in claim 23, wherein the equalization module comprises at least one bell filter.
  • 28. A method as recited in claim 23, wherein the equalization module is configured to equalize the signal according to at least one predetermined parameter of the signal.
  • 29. A method as recited in claim 28, wherein the predetermined parameter is selected from a group consisting of the diver's gender, the diver's age, a tonality of the diver's voice, a depth at which the diver is diving, and a type of gas the diver is breathing.
  • 30. A method as recited in claim 23, further comprising adjusting the gain of the equalized signal with a static gain control module.
  • 31. A method as recited in claim 30, further comprising outputting the static gain adjusted signal with an output device.
  • 32. A method as recited in claim 17, further comprising outputting the second filtered signal with an output device.
US Referenced Citations (214)
Number Name Date Kind
3795876 Takahashi et al. Mar 1974 A
3813687 Geil May 1974 A
4162462 Endoh et al. Jul 1979 A
4184047 Langford Jan 1980 A
4218950 Uetrecht Aug 1980 A
4226533 Snowman Oct 1980 A
4257325 Bertagni Mar 1981 A
4353035 Schröder Oct 1982 A
4356558 Owen et al. Oct 1982 A
4363007 Haramoto et al. Dec 1982 A
4412100 Orban Oct 1983 A
4517415 Laurence May 1985 A
4538297 Waller Aug 1985 A
4549289 Schwartz et al. Oct 1985 A
4584700 Scholz Apr 1986 A
4602381 Cugnini et al. Jul 1986 A
4612665 Inami et al. Sep 1986 A
4641361 Rosback Feb 1987 A
4677645 Kaniwa et al. Jun 1987 A
4696044 Waller, Jr. Sep 1987 A
4701953 White Oct 1987 A
4704726 Gibson Nov 1987 A
4715559 Fuller Dec 1987 A
4739514 Short et al. Apr 1988 A
4815142 Imreh Mar 1989 A
4856068 Quatieri, Jr. et al. Aug 1989 A
4887299 Cummins et al. Dec 1989 A
4997058 Bertagni Mar 1991 A
5007707 Bertagni Apr 1991 A
5073936 Gorike et al. Dec 1991 A
5133015 Scholz Jul 1992 A
5210806 Kihara et al. May 1993 A
5239997 Guarino Aug 1993 A
5355417 Burdisso et al. Oct 1994 A
5361381 Short Nov 1994 A
5425107 Bertagni et al. Jun 1995 A
5463695 Werrbach Oct 1995 A
5465421 McCormick et al. Nov 1995 A
5467775 Callahan et al. Nov 1995 A
5473214 Hildebrand Dec 1995 A
5515444 Burdisso et al. May 1996 A
5539835 Bertagni et al. Jul 1996 A
5541866 Sato et al. Jul 1996 A
5572443 Emoto et al. Nov 1996 A
5615275 Bertagni Mar 1997 A
5617480 Ballard et al. Apr 1997 A
5638456 Conley et al. Jun 1997 A
5640685 Komoda Jun 1997 A
5671287 Gerzon Sep 1997 A
5693917 Bertagni et al. Dec 1997 A
5699438 Smith et al. Dec 1997 A
5727074 Hildebrand Mar 1998 A
5737432 Werrbach Apr 1998 A
5828768 Eatwell et al. Oct 1998 A
5832097 Armstrong et al. Nov 1998 A
5838805 Warnaka et al. Nov 1998 A
5848164 Levine Dec 1998 A
5872852 Dougherty Feb 1999 A
5901231 Parrella et al. May 1999 A
5990955 Koz Nov 1999 A
6058196 Heron May 2000 A
6078670 Beyer Jun 2000 A
6093144 Jaeger et al. Jul 2000 A
6108431 Bachler Aug 2000 A
6201873 Dal Farra Mar 2001 B1
6208237 Saiki et al. Mar 2001 B1
6263354 Gandhi Jul 2001 B1
6285767 Klayman Sep 2001 B1
6292511 Goldston et al. Sep 2001 B1
6317117 Goff Nov 2001 B1
6318797 Böhm et al. Nov 2001 B1
6332029 Azima et al. Dec 2001 B1
6518852 Derrick Feb 2003 B1
6535846 Shashoua Mar 2003 B1
6570993 Fukuyama May 2003 B1
6618487 Azima et al. Sep 2003 B1
6661897 Smith Dec 2003 B2
6661900 Allred et al. Dec 2003 B1
6772114 Sluijter et al. Aug 2004 B1
6847258 Ishida et al. Jan 2005 B2
6871525 Withnall et al. Mar 2005 B2
6907391 Bellora et al. Jun 2005 B2
6999826 Zhou et al. Feb 2006 B1
7006653 Guenther Feb 2006 B2
7016746 Wiser et al. Mar 2006 B2
7024001 Nakada Apr 2006 B1
7058463 Ruha et al. Jun 2006 B1
7123728 King et al. Oct 2006 B2
7254243 Bongiovi Aug 2007 B2
7266205 Miller Sep 2007 B2
7274795 Bongiovi Sep 2007 B2
7519189 Bongiovi Apr 2009 B2
7577263 Tourwe Aug 2009 B2
7613314 Camp, Jr. Nov 2009 B2
7676048 Tsutsui Mar 2010 B2
7711442 Ryle et al. May 2010 B2
7778718 Janke et al. Aug 2010 B2
7916876 Helsloot Mar 2011 B1
1272765 Hicks et al. Sep 2011 A1
8068621 Okabayashi et al. Nov 2011 B2
8160274 Bongiovi Apr 2012 B2
8175287 Ueno et al. May 2012 B2
8229136 Bongiovi Jul 2012 B2
8284955 Bonglovi et al. Oct 2012 B2
8462963 Bongiovi Jun 2013 B2
8472642 Bongiovi Jun 2013 B2
8503701 Miles et al. Aug 2013 B2
8565449 Bongiovi Oct 2013 B2
8705765 Bongiovi Apr 2014 B2
8879743 Mitra Nov 2014 B1
9195433 Bongiovi et al. Nov 2015 B2
9264004 Bongiovi et al. Feb 2016 B2
9276542 Bongiovi et al. Mar 2016 B2
9281794 Bongiovi et al. Mar 2016 B1
9344828 Bongiovi et al. May 2016 B2
9348904 Bongiovi et al. May 2016 B2
9350309 Bongiovi et al. May 2016 B2
9397629 Bongiovi et al. Jul 2016 B2
9398394 Bongiovi et al. Jul 2016 B2
20010008535 Lanigan Jul 2001 A1
20010043704 Schwartz Nov 2001 A1
20020057808 Goldstein May 2002 A1
20020094096 Paritsky et al. Jul 2002 A1
20030016838 Paritsky et al. Jan 2003 A1
20030023429 Claesson Jan 2003 A1
20030035555 King et al. Feb 2003 A1
20030043940 Janky et al. Mar 2003 A1
20030112088 Bizjak Jun 2003 A1
20030138117 Goff Jul 2003 A1
20030142841 Wiegand Jul 2003 A1
20030164546 Giger Sep 2003 A1
20030179891 Rabinowitz et al. Sep 2003 A1
20030216907 Thomas Nov 2003 A1
20040022400 Magrath Feb 2004 A1
20040044804 Mac Farlane Mar 2004 A1
20040086144 Kallen May 2004 A1
20040138769 Akiho Jul 2004 A1
20040146170 Zint Jul 2004 A1
20050090295 Ali et al. Apr 2005 A1
20050117771 Vosburgh et al. Jun 2005 A1
20050129248 Kraemer et al. Jun 2005 A1
20050175185 Korner Aug 2005 A1
20050201572 Lindahl et al. Sep 2005 A1
20050249272 Kirkeby et al. Nov 2005 A1
20050254564 Tsutsui Nov 2005 A1
20060034467 Sleboda et al. Feb 2006 A1
20060064301 Aguilar et al. Mar 2006 A1
20060098827 Paddock et al. May 2006 A1
20060126851 Yuen et al. Jun 2006 A1
20060126865 Blamey et al. Jun 2006 A1
20060138285 Oleski et al. Jun 2006 A1
20060140319 Eldredge et al. Jun 2006 A1
20060189841 Pluvinage Aug 2006 A1
20060291670 King et al. Dec 2006 A1
20070010132 Nelson Jan 2007 A1
20070173990 Smith et al. Jul 2007 A1
20070177459 Behn Aug 2007 A1
20070206643 Egan Sep 2007 A1
20070223713 Gunness Sep 2007 A1
20070223717 Boersma Sep 2007 A1
20070253577 Yen et al. Nov 2007 A1
20080031462 Walsh et al. Feb 2008 A1
20080040116 Cronin Feb 2008 A1
20080069385 Revit Mar 2008 A1
20080112576 Bongiovi May 2008 A1
20080123870 Stark May 2008 A1
20080123873 Bjorn-Josefsen et al. May 2008 A1
20080137881 Bongiovi Jun 2008 A1
20080165989 Seil et al. Jul 2008 A1
20080181424 Schulein et al. Jul 2008 A1
20080219459 Bongiovi et al. Sep 2008 A1
20080255855 Lee et al. Oct 2008 A1
20090022328 Neugebauer et al. Jan 2009 A1
20090054109 Hunt Feb 2009 A1
20090062946 Bongiovi et al. Mar 2009 A1
20090086996 Bongiovi et al. Apr 2009 A1
20090290725 Huang Nov 2009 A1
20090296959 Bongiovi Dec 2009 A1
20100166222 Bongiovi Jul 2010 A1
20100256843 Bergstein et al. Oct 2010 A1
20100278364 Berg Nov 2010 A1
20100303278 Sahyoun Dec 2010 A1
20110013736 Tsukamoto et al. Jan 2011 A1
20110087346 Larsen et al. Apr 2011 A1
20110194712 Potard Aug 2011 A1
20110230137 Hicks et al. Sep 2011 A1
20110257833 Trush et al. Oct 2011 A1
20120014553 Bonanno Jan 2012 A1
20120099741 Gotoh et al. Apr 2012 A1
20120170759 Yuen et al. Jul 2012 A1
20120213034 Imran Aug 2012 A1
20120213375 Mahabub et al. Aug 2012 A1
20120302920 Bridger et al. Nov 2012 A1
20130121507 Bongiovi et al. May 2013 A1
20130162908 Son et al. Jun 2013 A1
20130163783 Burlingame Jun 2013 A1
20130169779 Pedersen Jul 2013 A1
20130227631 Sharma et al. Aug 2013 A1
20130242191 Leyendecker Sep 2013 A1
20130288596 Suzuki et al. Oct 2013 A1
20130338504 Demos et al. Dec 2013 A1
20140100682 Bongiovi Apr 2014 A1
20140112497 Bongiovi et al. Apr 2014 A1
20140153765 Gan et al. Jun 2014 A1
20140185829 Bongiovi Jul 2014 A1
20140369504 Bongiovi et al. Dec 2014 A1
20140379355 Hosokawsa Dec 2014 A1
20150215720 Carroll Jul 2015 A1
20150297169 Copt et al. Oct 2015 A1
20150297170 Copt et al. Oct 2015 A1
20160036402 Bongiovi et al. Feb 2016 A1
20160044436 Copt et al. Feb 2016 A1
20160240208 Bongiovi et al. Aug 2016 A1
20160258907 Butera, III et al. Sep 2016 A1
Foreign Referenced Citations (136)
Number Date Country
2005274099 Oct 2010 AU
20070325096 Apr 2012 AU
2012202127 Jul 2014 AU
96114177 Feb 1999 BR
96113723 Jul 1999 BR
2533221 Jun 1995 CA
2161412 Apr 2000 CA
2576829 Jul 2014 CA
101589429 Nov 2009 CN
102265641 Nov 2011 CN
102652337 Aug 2012 CN
0780050323X May 2013 CN
203057339 Jul 2013 CN
0206746 Aug 1992 EP
0541646 Jan 1995 EP
0580579 Jun 1998 EP
0698298 Feb 2000 EP
0932523 Jun 2000 EP
0666012 Nov 2002 EP
2218599 Oct 1998 ES
2249788 Oct 1998 ES
2219949 Aug 1999 ES
2003707 Mar 1979 GB
2320393 Dec 1996 GB
P0031074 Jun 2012 ID
260362 Apr 2014 IN
198914 Jul 2014 IS
3150910 Jun 1991 JP
2007106876 Apr 1995 JP
1020040022442 Mar 2004 JP
2005500768 Jan 2005 JP
1020090101209 Sep 2009 JP
4787255 Jul 2011 JP
5048782 Jul 2012 JP
201543561 Mar 2015 JP
1020040022442 Mar 2004 KR
1020090101209 Sep 2009 KR
101503541 Mar 2015 KR
J001182 Oct 2013 MO
274143 Aug 2005 MX
301172 Nov 2006 MX
315197 Nov 2013 MX
553744 Jan 2009 NZ
574141 Apr 2010 NZ
557201 May 2012 NZ
12009501073 Nov 2014 PH
2407142 Dec 2010 RU
2483363 May 2013 RU
152762 Dec 2011 SG
155213 Feb 2013 SG
1319288 Jun 1987 SU
WO 9219080 Oct 1992 WO
WO 9311637 Jun 1993 WO
WO 9321743 Oct 1993 WO
WO 9427331 Nov 1994 WO
WO 9514296 May 1995 WO
WO 9531805 Nov 1995 WO
WO 9535628 Dec 1995 WO
WO 9601547 Jan 1996 WO
WO 9611465 Apr 1996 WO
WO 9708847 Mar 1997 WO
WO 9709698 Mar 1997 WO
WO 9709840 Mar 1997 WO
WO 9709841 Mar 1997 WO
WO 9709842 Mar 1997 WO
WO 9709843 Mar 1997 WO
WO 9709844 Mar 1997 WO
WO 9709845 Mar 1997 WO
WO 9709846 Mar 1997 WO
WO 9709848 Mar 1997 WO
WO 9709849 Mar 1997 WO
WO 9709852 Mar 1997 WO
WO 9709853 Mar 1997 WO
WO 9709854 Mar 1997 WO
WO 9709855 Mar 1997 WO
WO 9709856 Mar 1997 WO
WO 9709857 Mar 1997 WO
WO 9709858 Mar 1997 WO
WO 9709859 Mar 1997 WO
WO 9709861 Mar 1997 WO
WO 9709862 Mar 1997 WO
WO 9717818 May 1997 WO
WO 9717820 May 1997 WO
WO 9813942 Apr 1998 WO
WO 9816409 Apr 1998 WO
WO 9828942 Jul 1998 WO
WO 9831188 Jul 1998 WO
WO 9834320 Aug 1998 WO
WO 9839947 Sep 1998 WO
WO 9842536 Oct 1998 WO
WO 9843464 Oct 1998 WO
WO 9852381 Nov 1998 WO
WO 9852383 Nov 1998 WO
WO 9853638 Nov 1998 WO
WO 9902012 Jan 1999 WO
WO 9908479 Feb 1999 WO
WO 9911490 Mar 1999 WO
WO 9912387 Mar 1999 WO
WO 9913684 Mar 1999 WO
WO 9921397 Apr 1999 WO
WO 9935636 Jul 1999 WO
WO 9935883 Jul 1999 WO
WO 9937121 Jul 1999 WO
WO 9938155 Jul 1999 WO
WO 9941939 Aug 1999 WO
WO 9952322 Oct 1999 WO
WO 9952324 Oct 1999 WO
WO 9956497 Nov 1999 WO
WO 9962294 Dec 1999 WO
WO 9965274 Dec 1999 WO
WO 0001264 Jan 2000 WO
WO 0002417 Jan 2000 WO
WO 0007408 Feb 2000 WO
WO 0007409 Feb 2000 WO
WO 0013464 Mar 2000 WO
WO 0015003 Mar 2000 WO
WO 0033612 Jun 2000 WO
WO 0033613 Jun 2000 WO
WO 03104924 Dec 2003 WO
WO 2006020427 Feb 2006 WO
WO 2007092420 Aug 2007 WO
WO 2008067454 Jun 2008 WO
WO 2009070797 Jun 2009 WO
WO 2009114746 Sep 2009 WO
WO 2009155057 Dec 2009 WO
WO 2010027705 Mar 2010 WO
WO 2010051354 May 2010 WO
WO 2011081965 Jul 2011 WO
WO 2013055394 Apr 2013 WO
WO 2013076223 May 2013 WO
WO 2014201103 Dec 2014 WO
WO 2015061393 Apr 2015 WO
WO 2015077681 May 2015 WO
WO 2015161034 Oct 2015 WO
WO 2016019263 Feb 2016 WO
WO 2016022422 Feb 2016 WO
Non-Patent Literature Citations (2)
Entry
U.S. Appl. No. 12/648,007, filed Jul. 1, 2010, Bongiovi.
NovaSound Int., http://www.novasoundint.com/new—page—t.htm, 2004.
Related Publications (1)
Number Date Country
20160036402 A1 Feb 2016 US