This following generally relates to dynamic merchandising and, more particularly, relates to a system and method for directing a customer to additional purchasing opportunities.
There are an increasing number of business to customer (“B2C”) websites that allow customers to purchase products online. In using these systems, and at various times during the purchasing process, the website may offer recommendations of other products that the customer may also be interested in purchasing. These recommendations can serve not only to increase sales, but also to drive awareness that the merchant carries a particular product or brand.
By way of example, U.S. Pat. No. 6,317,722 discloses a system for recommending products to customers based upon the collective interests of a community of customers. For providing recommendations, a similar product table is created, using an off-line process, that functions to map a known product to a set of products that are identified as being similar to the known product. In this regard, similarity is measured by a weighted score value that is indicative of the number of customers that have an interest in two products relative to the number of customers that have an interest in either product. The numbers utilized to establish similarity in this manner are typically derived by examining invoices to determine when the two products appear together and when one product appears exclusive of the other product. The weighting value may be indicative of user ratings provided to products and/or a time duration since a product pair was last purchased.
In addition, many of the B2C websites sell products that are demographically sensitive. That is, it is assumed that any given product may appeal to customers only if the customer falls within a certain demographic category. These demographic categories might include an age range, an income range, a particular sex or sexual orientation, a particular marital status, a particular political view, a particular health status, etc. Thus, certain websites attempt to deduce demographic categories for customers based upon prior purchase histories of that customer and/or expressed product preferences provided by that customer. One such website is described in U.S. Pat. No. 6,064,980 which provides product recommendations by correlating product ratings provided by a customer with product ratings provided by other customers within a purchasing community.
While these website product recommendation techniques may be useful in the B2C environment, what is needed is an improved system and method for providing product recommendations, especially in the business to business (“B2B”) environment where products may have less customer-demographic sensitivity and where products do not have fads, trends, and/or fashions.
To address this need, the following describes a system and method for recommending products which utilizes product relationships that are considered independently of customer demographics. The system and method generally creates for each of a plurality of products in a plurality of purchase orders a list of purchased-with products, i.e., products that were purchased with each of the plurality of products in each of the plurality of purchase orders. At the same time that the purchased-with product lists are created, or in another step, the same plurality of purchase orders are examined and, using the concept of “self organizing lists,” the lists of purchased-with products are ordered in a meaningful manner. The ordering of the products in a purchased-with list may then be considered when recommending products. The subject system and method may also be used to help identify significant customer behaviors that warrant additional processing or attention.
Yet further, the dynamic merchandising system may create for each of a plurality of products in a plurality of purchase orders a list of products purchased together. This information may then be used to create ordered lists reflecting relationships between various attributes of the products, e.g., the relationships between different brand names purchased together, different product categories purchased together, different catalog pages of products purchased together, etc. From these ordered relationship lists information may be selected and presented to the customer for the purpose of directing the customer to additional purchasing opportunities.
A better understanding of the objects, advantages, features, properties and relationships of the system and method for providing product recommendations will be obtained from the following detailed description and accompanying drawing that set forth illustrative embodiments that are indicative of the various ways in which the principles expressed hereinafter may be employed.
For a better understanding of the system and method for directing a customer to additional purchasing opportunities, reference may be had to preferred embodiments shown in the following drawings in which:
With reference to the figures, a system and method for recommending products is hereinafter described. To this end, the system and method examines product relationships and utilizes a data structure in which information indicative of these product relationships is maintained, e.g., product category, product brand name, product keyword, product catalog page, and/or product SKU commonly purchased-with a consumer specified (directly or indirectly) product category, product brand name, product keyword, product catalog page, and/or product SKU. The product relationships reflected in the data structure may then be used to recommend products, either in a web-based system or, for example, to prepare product merchandizing literature.
To create a data structure useful in discerning product relationships, a collection of customer purchase orders is preferably assembled. This collection of purchase orders may be assembled from any source such as, but not limited to, purchase orders related to on-line purchases, phoned-in purchases, faxed-in purchases, and over-the-counter purchases. An assemblage of purchase order data stored in a first data structure is illustrated by way of example in
To populate a purchased-with data structure that may then be used to discern product relationships, the assemblage of purchase order data is further processed. In this regard, the assemblage of purchase order data is processed to populate two data fields in the purchased-with data structure. While not required, processing of the assemblage of purchase order data may be facilitated by sorting the assemblage of purchase order data by the purchase order number data field 10.
More particularly, as illustrated by way of example in
As particularly illustrated in
To then populate and order the data 13c in the second data field 16 of the purchased-with data structure, all the records in the assemblage of purchase order history data are again examined this time examining product groupings that correspond to a purchase order number. As illustrated in
This manner of processing the data is illustrated in
It is to be understood that ordering the data in the second data field 16 in such a manner may be performed concurrently with the populating of the second data field 16 or at a later time. It is to be further understood that the steps of ordering the data in the second data field 16 may be performed over multiple iterations to further ensure that products that are purchased concurrently with the product represented in the first data field 14 of a record are moved towards a predetermined location within the second data field 16. In this case, the number of iterations may be a number selected so as to generally assure that the ordering attains some degree of stability each time the process is repeated or the ordering itself can be examined after each pass to determine if the ordering has attained a desired level of stability after which time the repetitions of the process may be halted.
From the foregoing, it will be understood that, after all the purchase order product collections are processed in this manner, the purchased-with data structure will have ‘n’ records that correspond to ‘n’ unique items that are contained in the aggregation of purchase order data and each purchased-with field 16 in the purchased-with data structure will contain a list of unique products reference numbers that were purchased with the product reference number in the first field 14 of that record. If a product referenced in the first field 14 of the purchased-with data structure was not purchased with another product, the second data field 16 for the record for that product will be empty. It will also be understood that the method for ordering the data in the second data field 16 functions to move the products that are generally the most frequently purchased with each product referenced by the data in the first field 14 towards a predetermined location within the second data field 16, e.g., towards the front of the purchased-with string. This general ordering of the data in the second data field 16 will be sufficient to allow a B2B (or B2C) vendor to merchandise numerous products a customer may be interested in purchasing without requiring the vendor to consider the exact ranking or frequency of each of the purchased-with events. It will also allow marketing of products without requiring customer product rankings.
In particular, for identifying those products that may be of interest to a customer, the system and method considers the location of the product data within the second data field 16. For example, when a customer identifies a product as being of interest, the first data field 14 of the purchased-with data structure may be examined to find the record corresponding to that product. The second data field 16 of that record can then be examined to extract the data in the second data field 16 that is located within the predetermined location within the second data field 16. The products recommended would preferably be the products represented by the data in the predetermined location, i.e., this data would be representative of the products likely to be most often purchased with the identified product. While not intended to be limiting, the predetermined location may be the front of the purchased-with data string or the first X data entries in the front of the purchased-with data string.
The recommended products can be displayed to the customer in writing or images or be verbally expressed to the customer. Product recommendations may also include other data associated with the products recommended such as descriptions, prices, images, etc. It is to be understood that product identification used in the recommendation process may be by the customer searching for products using a website search engine, by being placed into a shopping cart, by being mentioned by customers in a conversation over the phone or in person, etc. Still further, the purchased-with data structure may be examined to discern products that are likely to be purchased together for the purpose of associating those products within a catalog or other sales literature, for providing directed marketing mailings, etc. The purchased-with data structure utilized in the recommendation process may be made accessible by being located on one or more servers within a network, may be distributed by being placed onto a CD or DVD ROM, may be downloadable, etc. In this manner, the purchased-with data structure may be accessible by being directly readable by a hand-held device (such as a PDA) or, for example, by providing the hand-held device with network access, preferably wireless, whereby the PDA may access the network server(s) on which the purchased-with data structure is stored.
It is additionally contemplated that system and method described herein may also function to direct the consumer to other purchasing opportunities, e.g., to direct the consumer to products sold under other brand names, appearing on other catalog pages, of other product categories, etc. Generally, the additional purchasing opportunities that are presented to the consumer are those that have been determined to be relevant to a product attribute that is identified as being of interest to a consumer. In this regard, product attributes may include, but need not be limited to, product SKUs, product categories, catalog pages, vocations with which products are utilized (e.g., plumber, facilities management, etc.), geographic locations in which products are utilized or typically sold (zip code, state, country, regions, etc.), or any other attribute that may be used to define a product or which may be used to search for a product within an electronic database. As such, to facilitate this form of purchasing opportunity recommendation, the various products preferably have a corresponding record in an electronic database, i.e., electronic catalog, where the product records would each include fields in which are maintained the various attributes or parameters that are used to define the product, e.g., a stock number (“SKU”) for a product, brand name for a product, category for a product (e.g., noun descriptors), catalog page on which the product appears, etc. An example of such an electronic catalog is illustrated and described in commonly assigned, U.S. published application 2003/0105680 which U.S. published application for patent is incorporated herein by reference in its entirety.
In a first illustrated example, for presenting to a consumer purchasing opportunities which would lead a consumer to products sold under brand names determined to be relevant to, for example, a brand name of a product of interest to a consumer, a brand name affinity look-up matrix is preferably used which generally reflects how often products of two different brand names are purchased together. To create the brand name affinity look-up matrix, i.e., purchased-with brand name lists, purchase histories, i.e., purchase orders, of consumers are obtain and examined as illustrated in
Once the Matrix is created, each of the transactions within the purchase histories may then be examined to determine if the transaction includes two or more products that were purchased together. When a transaction includes two or more products that were purchased together, e.g., a 1A123 “Ranco” brand name barricade, a 3K015 “Dayton” brand name motor, and a 5X808 “3M” brand name hard hat, a list of product pairs within the transaction may be generated. Specifically, if there are n products that were purchased together within a transaction, there will be C(n,2) possible product pairs, e.g., 1A123 with 3K015, 1A123 with 5X808, and 3K015 with 5X808. For each product pair discerned, the system may determine the corresponding brand name pairs, e.g., “Ranco” with “Dayton,” “Ranco” with “3M,” and “Dayton” with “3M”. In this regard, the system and method is particularly interested in pairings that include products of differing brand names and, as such, pairing of the same brand name may be simply ignored during the method steps which follow. Using the brand name pairings identified, the system functions to update the brand name look-up matrix by incrementing a count maintained within each cell that corresponds to an identified brand name pairing, e.g., the count within each of the “Ranco”/“Dayton,” “Dayton”/“Ranco,” “Ranco”/“3M,” “3M”/“Ranco,” “Dayton”/“3M,” and “3M”/“Dayton” cells would be incremented by one. An example of a look-up matrix after these steps have been performed is illustrated in
The data within the look-up matrix list may then be sorted to create ordered purchased-with brand name lists. For example, for each brand name listed in a first dimension (e.g., along the Y axis) the brand names in the second dimension (e.g., along the X axis) may be sorted using the count maintained within the cells (e.g., in an order of descending magnitude). Thus, in keeping with the illustrated example, the ordered purchased-with brand name listing for the brand name “Dayton” would be “3M” followed by “Ranco,” the ordered purchased-with brand name listing for the brand name “3M” would be “Dayton” followed by “Ranco,” and the ordered purchased-with brand name listing for “Ranco” would be “3M” followed by “Dayton.”
Once the ordered purchased-with brand name list for the various brand names have been created, using the above-described or any other suitable methodology, the consumer may be presented with one or more brand names in response to the customer indicating a product brand name (or other product attribute) as being of interest, the brand names being presented as leads to additional purchasing opportunities. As noted previously, the interest of the consumer in a particular brand name may be indicated to the system by the consumer searching for a product by SKU, brand name, etc. (by clicking on a hyperlink, entering the information into a free form search engine, etc.), by placing a product within a shopping cart, etc. Using the brand name associated with product(s) specified as being of interest (which may include using the electronic catalog as a cross referencing source to discern a brand name associated with product(s) specified as discussed above), the system may access the sorted purchased-with brand name list(s) corresponding to the brand name(s) associated with the product(s) specified as being of interest and then select one or more of the purchased-with brand names from the corresponding sorted list(s) as a function of the location of the one or more purchased-with brand names within the list for presentation to the consumer. For example, the first N product brand names within the sorted purchased-with brand name list may be selected for presentation to the consumer. In keeping with the illustrated example, if only the first product brand name within the sorted purchased-with brand-name list is to be selected for presentation to the consumer as an additional purchasing opportunity, the following would occur: in response to the consumer selecting the brand name “Dayton” (or a “Dayton” product for example) as being of interest the consumer would be presented with a hyperlink to allow the consumer to access information for “3M” products; in response to the consumer selecting the brand name “3M” (or a “3M” product for example) as being of interest the consumer would be presented with a hyperlink whereby the consumer may access information for “Dayton” products; or in response to the user selecting the brand name “Ranco” (or a “Ranco” product for example) as being of interest the consumer would be presented with a hyperlink whereby the user may access information for “3M” products.
An example Web page showing hyperlinks for directing a user to additional products sold under other brand names 1100 determined to be relevant to “Rubbermaid,” which in this example has been selected by a consumer as being of interest, is illustrated in
In a manner similar to that described above, purchased-with lists may also be created using other product attributes maintained within the electronic catalog. By way of further example, purchased-with lists may be created using product attributes such as product categories, i.e., noun descriptors that are associated with products available for purchase. In keeping with this still further example, for presenting to a consumer the opportunity to purchase products sold within one or more product categories determined to be relevant to a product category of interest to a consumer, a category affinity look-up matrix is preferably used which generally reflects how often products of two different product categories are purchased together. To create the product category affinity look-up matrix, i.e., purchased-with product category lists, purchase histories, i.e., purchase orders, of consumers are obtain and examined as illustrated in
Once the Matrix is created, each of the transactions within the purchase histories may then be examined to determine if the transaction includes two or more products that were purchased together. When a transaction includes two or more products that were purchased together, e.g., a 1A123 “Ranco” brand name barricade, a 3K015 “Dayton” brand name motor, and a 5X808 “3M” brand name hard hat, a list of product pairings within the transaction may be generated. Specifically, if there are n products that were purchased together within a transaction, there will be C(n,2) possible product pairs, e.g., 1A123 with 3K015, 1A123 with 5X808, and 3K015 with 5X808. For each product pair discerned, the system determines the corresponding noun or category pairings (of which there may be more than one as noted above depending upon the descriptors selected as being of interest to the process), e.g., barricade with motor, barricade with hard hat, and motor with hard hat. In this regard, the system and method is particularly interested in pairings that include items of differing categories and, as such, product pairings of the same category may be simply ignored during the method steps which follow. Using the category pairings identified, the system functions to update the category look-up matrix by incrementing a count maintained within each cell that corresponds to an identified category pair, e.g., the count within each of the barricade/motor, motor/barricade, barricade/hard hat, hard hat/barricade, motor/hard hat, and hard hat/motor cells would be incremented by one. An example of a look-up matrix after these steps have been performed is illustrated in
The data within the look-up matrix list may then be sorted to create purchased-with category lists. For example, for each product category listed in a first dimension (e.g., along the Y axis) the product categories in the second dimension (e.g., along the X axis) may be sorted using the count maintained within the cells (e.g., in an order of descending magnitude). Thus, in keeping with the illustrated example, the ordered purchased-with category listing for motor would be hard hat followed by barricade, the ordered purchased-with category listing for hard hat would be motor followed by barricade, and the ordered purchased-with category listing for barricade would be hard hat followed by motor.
Once the ordered purchased-with category list for the various product categories have been created, using the above-described or any other suitable methodology, the consumer may be presented one or more product categories in response to the customer indicating a product category (or other product attribute) as being of interest, the product categories being presented as leads to additional purchasing opportunities. Using the product category (or other product attribute) specified as being of interest (which may include using the electronic catalog as a cross referencing source to discern a product category associated with a product(s) so specified as discussed above), the system may access the sorted purchased-with product category list(s) corresponding to the consumer specified category or categories (or other product attributes) and then select for presentation to the consumer one or more of the purchased-with categories from the corresponding sorted purchased-with list(s) as a function of the location of the one or more purchased-with categories within the list. For example, the first N product categories within the sorted purchased-with product category list may be selected as recommendations to the consumer. In keeping with the illustrated example, if only the first product category within the sorted purchased-with product category list is to be used as a recommendation, the following would occur: in response to the consumer selecting the product category motor (or a motor product for example) as being of interest the consumer would be presented with a hyperlink whereby the consumer may access information for hard hat products; in response to the consumer selecting the product category hard hat (or a hard hat product for example) as being of interest a hyperlink would be presented to the consumer whereby the consumer may access information for motor products; or in response to the user selecting the product category barricade (or a barricade product for example) as being of interest a hyperlink would be presented to the consumer whereby the consumer may access information for hard hat products.
An example Web page showing hyperlinks for directing the consumer to products sold under product categories 1500 which hyperlinks, in this example, are presented to the consumer in response to the consumer selecting the product category “toilet paper” as being of interest is illustrated in
Still further, the methodology described above may be utilized to direct a consumer to page(s) within a catalog (electronic or paper) on which purchased-with products appear. For example, if product 1A123 is found on catalog page 2729, product 3K015 is found on catalog page 20, and product 5X808 is found on catalog page 2517, the catalog page information may be used to create sorted purchased-with catalog page lists such that, in response to a consumer specifying product 1A123, in keeping with the above set forth examples (or a product of the “Ranco” brand name or a product within the barricade category), the consumer may be provided with a link to catalog page 2517 on which appears the 5X808 “3M” brand name hard hat (and possibly other products) which has been discerned to have been purchased-with the product feature specified by the consumer.
From the foregoing it will additionally be appreciated that the subject system and method will allow for the creation of multiple types of purchased-with lists that function to map various product attributes to various other product attributes of products that have been purchased in pairs. In this manner, the system and method will allow for directing consumers to products beyond the familiar item to item recommendations seen in the prior art. Thus, the described methodology may provide for the creation of purchased-with lists that define relationships between product attributes such as product categories, product brand names, catalog pages, vocations using products, geographies in which products are used, product SKUs, and/or any other product attribute deemed to be of interest. This is illustrated generally in
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangement disclosed is meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any equivalents thereof.
This application claims the benefit of and is a divisional of U.S. application Ser. No. 11/244,965, filed on Oct. 6, 2005, which application is a continuation-in-part of U.S. application Ser. No. 11/089,380, filed on Mar. 24, 2005, which application is a divisional of U.S. application Ser. No. 10/452,868, filed on Jun. 2, 2003, the disclosures of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6032145 | Beall | Feb 2000 | A |
6412012 | Bieganski et al. | Jun 2002 | B1 |
6631365 | Neal | Oct 2003 | B1 |
7254582 | Song et al. | Aug 2007 | B2 |
7437344 | Peyrelevade | Oct 2008 | B2 |
20040230494 | Lotvin | Nov 2004 | A1 |
Entry |
---|
Gerald L. Lohse et al. “Electronic Shopping”, Communications of the ACM, Jul. 1998 / vol. 41, No. 7, pp. 81-88. (Year: 1998). |
Greg Linden et al. “Amazon.com Recommendations Item-to-Item Collaborative Filtering”, IEEE Internet Computing, Jan./Feb. 2003, pp. 76-80. (Year: 2003). |
United States Patent and Trademark Office, Office Action cited in U.S. Appl. No. 13/681,042, dated Jun. 25, 2013, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20100299204 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11244965 | Oct 2005 | US |
Child | 12850149 | US | |
Parent | 10452868 | Jun 2003 | US |
Child | 11089380 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11089380 | Mar 2005 | US |
Child | 11244965 | US |