The present invention is directed generally to the dispensing of prescriptions of pharmaceuticals, and more specifically is directed to the automated dispensing of pharmaceuticals.
Pharmacy generally began with the compounding of medicines which entailed the actual mixing and preparing of medications. Heretofore, pharmacy has been, to a great extent, a profession of dispensing, that is, the pouring, counting, and labeling of a prescription, and subsequently transferring the dispensed medication to the patient. Because of the repetitiveness of many of the pharmacist's tasks, automation of these tasks has been desirable.
Some attempts have been made to automate all or portions of the pharmacy environment. Different exemplary approaches are shown in U.S. Pat. Nos. 6,006,946; 6,036,812 and 6,176,392 to Williams et al. and in U.S. Pat. No. 7,014,063 to Shows et al. The Williams system conveys a bin with tablets to a counter and a vial to the counter. The counter dispenses tablets to the vial. Once the tablets have been dispensed, the system returns the bin to its original location and conveys the vial to an output device. Tablets may be counted and dispensed with any number of counting devices. Shows et al. discloses a system that includes multiple drawers, each of which includes a plurality of dispensing devices that dispense tablets into a dispensing chute. The dispensing devices may be of the so-called “Baker Cell” configuration (see U.S. Pat. No. 3,368,713 to Hurst et al.), in which the tablets are mechanically singulated and counted prior to dispensing into the dispensing chute. The tablets are stored in the dispensing chute until such time as a pharmacist or technician dispenses the tablets from the chute into a pharmaceutical vial.
Although this particular system can provide automated pharmaceutical dispensing, certain of the operations may be improved or varied. For example, in order to save on pharmacy space, some pharmacies may prefer automated singulation and counting of the pills, but with manual labeling, dispensing of the pills into the vial, and capping. Additionally, a system that separates the functions of prescription dispensing and system replenishment can allow for improved efficiency in pharmacy operations by allowing these functions to be performed simultaneously. Thus, there may be a need for a system that can address these types of operations, particularly one that can do so in an efficient manner.
As a first aspect, embodiments of the present invention are directed to a pharmaceutical dispensing system, comprising: a frame having first and second opposed sides; a plurality of bins configured to house pharmaceutical tablets, each of the bins being accessible from the first side of the frame for replenishment of pharmaceutical tablets; and a plurality of chutes, each of the chutes connected to and associated with a respective one of the plurality of bins, each of the chutes being accessible from the second side of the frame for dispensing of pharmaceutical tablets. A system of this configuration can facilitate operation by physically separating replenishment tasks from dispensing tasks, thereby enabling these tasks to be performed simultaneously.
The present invention will now be described more fully hereinafter, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like numbers refer to like elements throughout. Thicknesses and dimensions of some components may be exaggerated for clarity.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein the expression “and/or” includes any and all combinations of one or more of the associated listed items.
In addition, spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Well-known functions or constructions may not be described in detail for brevity and/or clarity.
As described above, the invention relates generally to a system and process for dispensing pharmaceuticals. An exemplary process is described generally with reference to
A system that can carry out this process is illustrated in
In the illustrated embodiment, the bins 100 are configured to singulate, count and dispense pills through an air agitation technique. The air agitation technique is described in some detail in, for example, U.S. Pat. No. 6,971,541 to Williams et al., supra. and U.S. Pat. No. 7,344,049, and need not be described in detail herein. Those skilled in this art will appreciate that other pill dispensing apparatus, including those that rely on mechanical singulating action (see, e.g., U.S. Pat. No. 7,014,063), may also be employed.
Referring now to
In some embodiments, each of the bins 100 may have a locking system (such as that illustrated and described in U.S. patent application Ser. No. 11/760,016, filed Jun. 8, 2007, the disclosure of which is hereby incorporated herein in its entirety) that prevents the door 104 from being opened without the scanning of the technician's ID badge or the receipt of replenishment authorization in another form. Each bin 100 may also have a bar code or other identifier (not shown) that indicates the contents of the bin. Each of the bins 100 may also have a light or other indicator (not shown) that indicates a particular bin 100 that is to be replenished in order to direct the technician to the proper bin 100.
The replenishment process is controlled by the GUI 42 (
The operations performed on the side 45a of the frame 44 are illustrated in
Referring now to
In some embodiments, a bar code scanner or other identifying device may also be included on the side 45b of the frame 44. The bar code scanner can be configured to scan any or all of (a) a bar code on a vial to identify a specific prescription, (b) an ID badge or other identifier of a technician to verify that the technician has authorization to receive pills from a chute assembly 102, (c) a bar code on a chute assembly 102 to identify the type of pills that are dispensed into that chute assembly 102, or any other item of interest. In some embodiments, the bar code scanner may be replaced with an RFID tag detector and/or, in the case of identifying an authorized technician, a biometric scanner.
In some embodiments, the chute assemblies 102 may include a locking unit (not shown) that prevents the door from being opened without authorization (via a scan of an ID badge, and RFID tag, a biometric identifier, or the like) or without confirmation that it is the correct prescription (via a scan of the bar code on the vial, for example). An exemplary locking unit is shown in U.S. Provisional Patent Application No. 60/955,056, supra. Also, in some embodiments, the chute assemblies 102 may include a light (not shown) or other indicator (not shown) that indicates which chute assembly 102 contains a given prescription.
The process of dispensing pills from the chute assemblies 102 is controlled by the GUI 43. The GUI 43, which is located in the side 45b of the frame 44, can control all operations pertaining to dispensing, including the establishment of authorization to dispense pills into a vial, the locking/unlocking of the doors to chute assemblies 102, the indication of the proper chute assembly 102 for a particular prescription, and the like. The GUI 43 can also serve to control the dispensing of pills from the bins 100 into the chute assemblies 102, either automatically or manually. Dispensing can be the result of manual entry by a technician via the GUI 43, or can be directed by an external computer, such as an overall pharmacy host computer.
The operations that are performed on side 45b of the frame 44 are illustrated in
In addition to facilitating workflow, the system 40 can facilitate inventory flow from a bulk station (such as a stock room) to a shelf stock area (with stock bottles), a vial fill area, and a verification/customer interaction station. This can be seen in
It should also be noted that the system 40 can be provided as a stand-alone cabinet or as part of a group of similar cabinets. In the case of multiple cabinets, one system 400 would be the “master”, and the other(s) would be the “slave(s)”. In this arrangement, a “slave” may use the air system from the master as the source of air pressure for operations in order to conserve energy and cost.
Those skilled in this art will appreciate that, with respect to the operations illustrated in
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application claims priority from U.S. Provisional Patent Application No. 60/955,084, filed Aug. 10, 2007 for System and Method for Dispensing Prescriptions, and from U.S. Provisional Patent Application No. 61/018,978, filed Jan. 4, 2008, for System and Method for Dispensing Prescriptions, the disclosure of each of which is hereby incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4018358 | Johnson et al. | Apr 1977 | A |
4664289 | Shimizu et al. | May 1987 | A |
5295743 | Moulton et al. | Mar 1994 | A |
5348061 | Riley et al. | Sep 1994 | A |
5597995 | Williams et al. | Jan 1997 | A |
5671262 | Boyer et al. | Sep 1997 | A |
5720154 | Lasher et al. | Feb 1998 | A |
5736942 | Randolph | Apr 1998 | A |
5905653 | Higham et al. | May 1999 | A |
5907493 | Boyer et al. | May 1999 | A |
6426699 | Porter | Jul 2002 | B1 |
6892941 | Rosenblum | May 2005 | B2 |
7006893 | Hart et al. | Feb 2006 | B2 |
7080755 | Handfield et al. | Jul 2006 | B2 |
7123989 | Pinney et al. | Oct 2006 | B2 |
7170823 | Fabricius et al. | Jan 2007 | B2 |
RE40453 | Lasher et al. | Aug 2008 | E |
7630788 | Reese | Dec 2009 | B1 |
7693603 | Higham | Apr 2010 | B2 |
7805217 | Chudy et al. | Sep 2010 | B2 |
7840307 | Mauger et al. | Nov 2010 | B2 |
20030216831 | Hart et al. | Nov 2003 | A1 |
20040133705 | Broussard et al. | Jul 2004 | A1 |
20050183128 | Assayag et al. | Aug 2005 | A1 |
20060265102 | Bain | Nov 2006 | A1 |
20100042437 | Levy et al. | Feb 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090043421 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
60955084 | Aug 2007 | US | |
61018978 | Jan 2008 | US |