System and method for distributed management of shared computers

Information

  • Patent Grant
  • 7606898
  • Patent Number
    7,606,898
  • Date Filed
    Tuesday, October 24, 2000
    23 years ago
  • Date Issued
    Tuesday, October 20, 2009
    14 years ago
Abstract
A multi-tiered server management architecture is employed including an application development tier, an application operations tier, and a cluster operations tier. In the application development tier, applications are developed for execution on one or more server computers. In the application operations tier, execution of the applications is managed and sub-boundaries within a cluster of servers can be established. In the cluster operations tier, operation of the server computers is managed without concern for what applications are executing on the one or more server computers and boundaries between clusters of servers can be established. The multi-tiered server management architecture can also be employed in co-location facilities where clusters of servers are leased to tenants, with the tenants implementing the application operations tier and the facility owner (or operator) implementing the cluster operations tier.
Description
TECHNICAL FIELD

This invention relates to computer system management. More particularly, the invention relates to the distributed management of shared computers.


BACKGROUND OF THE INVENTION

The Internet and its use have expanded greatly in recent years, and this expansion is expected to continue. One significant way in which the Internet is used is the World Wide Web (also referred to as the “web”), which is a collection of documents (referred to as “web pages”) that users can view or otherwise render and which typically include links to one or more other pages that the user can access. Many businesses and individuals have created a presence on the web, typically consisting of one or more web pages describing themselves, describing their products or services, identifying other information of interest, allowing goods or services to be purchased, etc.


Web pages are typically made available on the web via one or more web servers, a process referred to as “hosting” the web pages. Sometimes these web pages are freely available to anyone that requests to view them (e.g., a company's advertisements) and other times access to the web pages is restricted (e.g., a password may be necessary to access the web pages). Given the large number of people that may be requesting to view the web pages (especially in light of the global accessibility to the web), a large number of servers may be necessary to adequately host the web pages (e.g., the same web page can be hosted on multiple servers to increase the number of people that can access the web page concurrently). Additionally, because the web is geographically distributed and has non-uniformity of access, it is often desirable to distribute servers to diverse remote locations in order to minimize access times for people in diverse locations of the world. Furthermore, people tend to view web pages around the clock (again, especially in light of the global accessibility to the web), so servers hosting web pages should be kept functional 24 hours per day.


Managing a large number of servers, however, can be difficult. A reliable power supply is necessary to ensure the servers can run. Physical security is necessary to ensure that a thief or other mischievous person does not attempt to damage or steal the servers. A reliable Internet connection is required to ensure that the access requests will reach the servers. A proper operating environment (e.g., temperature, humidity, etc.) is required to ensure that the servers operate properly. Thus, “co-location facilities” have evolved which assist companies in handling these difficulties.


A co-location facility refers to a complex that can house multiple servers. The co-location facility typically provides a reliable Internet connection, a reliable power supply, and proper operating environment. The co-location facility also typically includes multiple secure areas (e.g., cages) into which different companies can situate their servers. The collection of servers that a particular company situates at the co-location facility is referred to as a “server cluster”, even though in fact there may only be a single server at any individual co-location facility. The particular company is then responsible for managing the operation of the servers in their server cluster.


Such co-location facilities, however, also present problems. One problem is data security. Different companies (even competitors) can have server clusters at the same co-location facility. Care is required, in such circumstances, to ensure that data received from the Internet (or sent by a server in the server cluster) that is intended for one company is not routed to a server of another company situated at the co-location facility.


An additional problem is the management of the servers once they are placed in the co-location facility. Currently, a system administrator from a company is able to contact a co-location facility administrator (typically by telephone) and ask him or her to reset a particular server (typically by pressing a hardware reset button on the server, or powering off then powering on the server) in the event of a failure of (or other problem with) the server. This limited reset-only ability provides very little management functionality to the company. Alternatively, the system administrator from the company can physically travel to the co-location facility him/her-self and attend to the faulty server. Unfortunately, a significant amount of time can be wasted by the system administrator in traveling to the co-location facility to attend to a server. Thus, it would be beneficial to have an improved way to manage remote server computers at a co-location facility.


Another problem concerns the enforcement of the rights of both the operators of the servers in the co-location facility and the operators of the web service hosted on those servers. The operators of the servers need to be able to maintain their rights (e.g., re-possessing areas of the facility where servers are stored), even though the servers are owned by the operators of the web service. Additionally, the operators of the web service need to be assured that their data remains secure.


The invention described below addresses these disadvantages, improving the distributed management of shared computers in co-location facilities.


SUMMARY OF THE INVENTION

Distributed management of shared computers is described herein.


According to one aspect, a multi-tiered management architecture is employed including an application development tier, an application operations tier, and a cluster operations tier. In the application development tier, applications are developed for execution on one or more server computers. In the application operations tier, execution of the applications is managed and sub-boundaries within a cluster of servers at a co-location facility may be established. In the cluster operations tier, operation of the server computers is managed without concern for what applications are executing on the one or more server computers, and server cluster boundaries at the co-location facility may be established.


According to another aspect, a co-location facility includes multiple server clusters, each corresponding to a different customer. For each server cluster, a cluster operations management console is implemented locally at the co-location facility to manage hardware operations of the cluster, and an application operations management console is implemented at a location remote from the co-location facility to manage software operations of the cluster. In the event of a hardware failure, the cluster operations management console takes corrective action (e.g., notifying an administrator at the co-location facility or attempting to correct the failure itself). In the event of a software failure, the application operations management console takes corrective action (e.g., notifying one of the customer's administrators or attempting to correct the failure itself).


According to another aspect, boundaries of a server cluster are established by a cluster operations management console. Establishment of the boundaries ensures that data is routed only to nodes within the server cluster, and not to other nodes at the co-location facility that are not part of the server cluster. Further sub-boundaries within a server cluster may be established by an application operations management console to ensure data is routed only to particular nodes within the server cluster.


According to another aspect, rights to multiple server computers to be located at a co-location facility are sold to a customer and a multiple-tiered management scheme is enforced on the server computers. According to the multiple-tiered management scheme, hardware operation of the server computers is managed locally at the co-location facility whereas software operation of the server computers is managed from a location remote from the co-location facility. The server computers can be either sold to the customer or leased to the customer.


According to another aspect, a landlord/tenant relationship is created using one or more server computers at a co-location facility. The operator of the co-location facility supplies the facility as well as the servers (and thus can be viewed as a “landlord”), while customers of the facility lease the use of the facility as well as servers at that facility (and thus can be viewed as “tenants”). This landlord/tenant relationship allows the landlord to establish clusters of computers for different tenants and establish boundaries between clusters so that a tenant's data does not pass beyond its cluster (and to another tenant's cluster). Additionally, encryption is employed in various manners to assure the tenant that information stored at the servers it leases cannot be viewed by anyone else, even if the tenant terminates its lease or returns to the landlord one of the servers it is leasing.


According to another aspect, a multi-tiered management architecture is employed in managing computers that are not part of a co-location facility. This multi-tiered architecture is used for managing computers (whether server computers or otherwise) in a variety of settings, such as businesses, homes, etc.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings. The same numbers are used throughout the figures to reference like components and/or features.



FIG. 1 shows a client/server network system and environment such as may be used with certain embodiments of the invention.



FIG. 2 shows a general example of a computer that can be used in accordance with certain embodiments of the invention.



FIG. 3 is a block diagram illustrating an exemplary co-location facility in more detail.



FIG. 4 is a block diagram illustrating an exemplary multi-tiered management architecture.



FIG. 5 is a block diagram illustrating an exemplary node in more detail in accordance with certain embodiments of the invention.



FIG. 6 is a flowchart illustrating an exemplary process for encryption key generation and distribution in accordance with certain embodiments of the invention.



FIG. 7 is a flowchart illustrating an exemplary process for the operation of a cluster operations management console in accordance with certain embodiments of the invention.



FIG. 8 is a flowchart illustrating an exemplary process for the operation of an application operations management console in accordance with certain embodiments of the invention.





DETAILED DESCRIPTION


FIG. 1 shows a client/server network system and environment such as may be used with certain embodiments of the invention. Generally, the system includes multiple (n) client computers 102 and multiple (m) co-location facilities 104 each including multiple clusters of server computers (server clusters) 106. The servers and client computers communicate with each other over a data communications network 108. The communications network in FIG. 1 comprises a public network 108 such as the Internet. Other types of communications networks might also be used, in addition to or in place of the Internet, including local area networks (LANs), wide area networks (WANs), etc. Data communications network 108 can be implemented in any of a variety of different manners, including wired and/or wireless communications media.


Communication over network 108 can be carried out using any of a wide variety of communications protocols. In one implementation, client computers 102 and server computers in clusters 106 can communicate with one another using the Hypertext Transfer Protocol (HTTP), in which web pages are hosted by the server computers and written in a markup language, such as the Hypertext Markup Language (HTML) or the eXtensible Markup Language (XML).


In the discussions herein, embodiments of the invention are described primarily with reference to implementation at a co-location facility (such as facility 104). The invention, however, is not limited to such implementations and can be used for distributed management in any of a wide variety of situations. For example, in situations where all of the servers at a facility are owned or leased to the same customer, in situations where a single computing device (e.g., a server or client) is being managed, in situations where computers (whether servers or otherwise) in a business or home environment are being managed, etc.


In the discussion herein, embodiments of the invention are described in the general context of computer-executable instructions, such as program modules, being executed by one or more conventional personal computers. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that various embodiments of the invention may be practiced with other computer system configurations, including hand-held devices, gaming consoles, Internet appliances, multiprocessor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. In a distributed computer environment, program modules may be located in both local and remote memory storage devices.


Alternatively, embodiments of the invention can be implemented in hardware or a combination of hardware, software, and/or firmware. For example, all or part of the invention can be implemented in one or more application specific integrated circuits (ASICs) or programmable logic devices (PLDs).



FIG. 2 shows a general example of a computer 142 that can be used in accordance with certain embodiments of the invention. Computer 142 is shown as an example of a computer that can perform the functions of a client computer 102 of FIG. 1, a computer or node in a co-location facility 104 of FIG. 1 or other location (e.g., node 248 of FIG. 5 below), or a local or remote management console as discussed in more detail below.


Computer 142 includes one or more processors or processing units 144, a system memory 146, and a bus 148 that couples various system components including the system memory 146 to processors 144. The bus 148 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. The system memory includes read only memory (ROM) 150 and random access memory (RAM) 152. A basic input/output system (BIOS) 154, containing the basic routines that help to transfer information between elements within computer 142, such as during start-up, up, is stored in ROM 150.


Computer 142 further includes a hard disk drive 156 for reading from and writing to a hard disk, not shown, connected to bus 148 via a hard disk driver interface 157 (e.g., a SCSI, ATA, or other type of interface); a magnetic disk drive 158 for reading from and writing to a removable magnetic disk 160, connected to bus 148 via a magnetic disk drive interface 161; and an optical disk drive 162 for reading from or writing to a removable optical disk 164 such as a CD ROM, DVD, or other optical media, connected to bus 148 via an optical drive interface 165. The drives and their associated computer-readable media provide nonvolatile storage of computer readable instructions, data structures, program modules and other data for computer 142. Although the exemplary environment described herein employs a hard disk, a removable magnetic disk 160 and a removable optical disk 164, it should be appreciated by those skilled in the art that other types of computer readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, random access memories (RAMs) read only memories (ROM), and the like, may also be used in the exemplary operating environment.


A number of program modules may be stored on the hard disk, magnetic disk 160, optical disk 164, ROM 150, or RAM 152, including an operating system 170, one or more application programs 172, other program modules 174, and program data 176. A user may enter commands and information into computer 142 through input devices such as keyboard 178 and pointing device 180. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are connected to the processing unit 144 through an interface 168 that is coupled to the system bus. A monitor 184 or other type of display device is also connected to the system bus 148 via an interface, such as a video adapter 186. In addition to the monitor, personal computers typically include other peripheral output devices (not shown) such as speakers and printers.


Computer 142 optionally operates in a networked environment using logical connections to one or more remote computers, such as a remote computer 188. The remote computer 188 may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer 142, although only a memory storage device 190 has been illustrated in FIG. 2. The logical connections depicted in FIG. 2 include a local area network (LAN) 192 and a wide area network (WAN) 194. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet. In the described embodiment of the invention, remote computer 188 executes an Internet Web browser program (which may optionally be integrated into the operating system 170) such as the “Internet Explorer” Web browser manufactured and distributed by Microsoft Corporation of Redmond, Wash.


When used in a LAN networking environment, computer 142 is connected to the local network 192 through a network interface or adapter 196. When used in a WAN networking environment, computer 142 typically includes a modem 198 or other component for establishing communications over the wide area network 194, such as the Internet. The modem 198, which may be internal or external, is connected to the system bus 148 via an interface (e.g., a serial port interface 168). In a networked environment, program modules depicted relative to the personal computer 142, or portions thereof, may be stored in the remote memory storage device. It is to be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.


Generally, the data processors of computer 142 are programmed by means of instructions stored at different times in the various computer-readable storage media of the computer. Programs and operating systems are typically distributed, for example, on floppy disks or CD-ROMs. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory. The invention described herein includes these and other various types of computer-readable storage media when such media contain instructions or programs for implementing the steps described below in conjunction with a microprocessor or other data processor. The invention also includes the computer itself when programmed according to the methods and techniques described below. Furthermore, certain sub-components of the computer may be programmed to perform the functions and steps described below. The invention includes such sub-components when they are programmed as described. In addition, the invention described herein includes data structures, described below, as embodied on various types of memory media.


For purposes of illustration, programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computer, and are executed by the data processor(s) of the computer.



FIG. 3 is a block diagram illustrating an exemplary co-location facility in more detail. Co-location facility 104 is illustrated including multiple nodes (also referred to as server computers) 210. Co-location facility 104 can include any number of nodes 210, and can easily include an amount of nodes numbering into the thousands.


The nodes 210 are grouped together in clusters, referred to as server clusters (or node clusters). For ease of explanation and to avoid cluttering the drawings, only a single cluster 212 is illustrated in FIG. 3. Each server cluster includes nodes 210 that correspond to a particular customer of co-location facility 104. The nodes 210 of a server cluster are physically isolated from the nodes 210 of other server clusters. This physical isolation can take different forms, such as separate locked cages or separate rooms at co-location facility 104. Physically isolating server clusters ensures customers of co-location facility 104 that only they can physically access their nodes (other customers cannot). Alternatively, server clusters may be logically, but not physically, isolated for each other (e.g., using cluster boundaries as discussed in more detail below).


A landlord/tenant relationship (also referred to as a lessor/lessee relationship) can also be established based on the nodes 210. The owner (and/or operator) of co-location facility 104 owns (or otherwise has rights to) the individual nodes 210, and thus can be viewed as a “landlord”. The customers of co-location facility 104 lease the nodes 210 from the landlord, and thus can be viewed as a “tenant”. The landlord is typically not concerned with what types of data or programs are being stored at the nodes 210 by the tenant, but does impose boundaries on the clusters that prevent nodes 210 from different clusters from communicating with one another, as discussed in more detail below.


The landlord/tenant relationship is discussed herein primarily with reference to only two levels: the landlord and the tenant. However, in alternate embodiments this relationship can be expanded to any number of levels. For example, the landlord may share its management responsibilities with one or more sub-landlords (each of which would have certain managerial control over one or more nodes 210), and the tenant may similarly share its management responsibilities with one or more sub-tenants (each of which would have certain managerial control over one or more nodes 210).


Although physically isolated, nodes 210 of different clusters are often physically coupled to the same transport medium (or media) 211 that enables access to network connection(s) 216, and possibly application operations management console 242, discussed in more detail below. This transport medium can be wired or wireless.


As each node 210 can be coupled to a shared transport medium 211, each node 210 is configurable to restrict which other nodes 210 data can be sent to or received from. Given that a number of different nodes 210 may be included in a tenant's server cluster, the tenant may want to be able to pass data between different nodes 210 within the cluster for processing, storage, etc. However, the tenant will typically not want data to be passed to other nodes 210 that are not in the server cluster. Configuring each node 210 in the cluster to restrict which other nodes 210 data can be sent to or received from allows a boundary for the server cluster to be established and enforced. Establishment and enforcement of such server cluster boundaries prevents tenant data from being erroneously or improperly forwarded to a node that is not part of the cluster.


These initial boundaries established by the landlord prevent communication between nodes 210 of different tenants, thereby ensuring that each tenant's data can be passed to other nodes 210 of that tenant. The tenant itself may also further define sub-boundaries within its cluster, establishing sub-clusters of nodes 210 that data cannot be communicated out of (or in to) either to or from other nodes in the cluster. The tenant is able to add, modify, remove, etc. such sub-cluster boundaries at will, but only within the boundaries defined by the landlord (that is, the cluster boundaries). Thus, the tenant is not able to alter boundaries in a manner that would allow communication to or from a node 210 to extend to another node 210 that is not within the same cluster.


Co-location facility 104 supplies reliable power 214 and reliable network connection(s) 216 to each of the nodes 210. Power 214 and network connection(s) 216 are shared by all of the nodes 210, although alternatively separate power 214 and network connection(s) 216 may be supplied to nodes 210 or groupings (e.g., clusters) of nodes. Any of a wide variety of conventional mechanisms for supplying reliable power can be used to supply reliable power 214, such as power received from a public utility company along with backup generators in the event of power failures, redundant generators, batteries, fuel cells, or other power storage mechanisms, etc. Similarly, any of a wide variety of conventional mechanisms for supplying a reliable network connection can be used to supply network connection(s) 216, such as redundant connection transport media, different types of connection media, different access points (e.g., different Internet access points, different Internet service providers (ISPs), etc.).


In certain embodiments, nodes 210 are leased or sold to customers by the operator or owner of co-location facility 104 along with the space (e.g., locked cages) and service (e.g., access to reliable power 214 and network connection(s) 216) at facility 104. In other embodiments, space and service at facility 104 may be leased to customers while one or more nodes are supplied by the customer.


Management of each node 210 is carried out in a multiple-tiered manner. FIG. 4 is a block diagram illustrating an exemplary multi-tiered management architecture. The multi-tiered architecture includes three tiers: a cluster operations management tier 230, an application operations management tier 232, and an application development tier 234. Cluster operations management tier 230 is implemented locally at the same location as the server(s) being managed (e.g., at a co-location facility) and involves managing the hardware operations of the server(s). In the illustrated example, cluster operations management tier 230 is not concerned with what software components are executing on the nodes 210, but only with the continuing operation of the hardware of nodes 210 and establishing any boundaries between clusters of nodes.


The application operations management tier 232, on the other hand, is implemented at a remote location other than where the server(s) being managed are located (e.g., other than the co-location facility), but from a client computer that is still communicatively coupled to the server(s). The application operations management tier 232 involves managing the software operations of the server(s) and defining sub-boundaries within server clusters. The client can be coupled to the server(s) in any of a variety of manners, such as via the Internet or via a dedicated (e.g., dial-up) connection. The client can be coupled continually to the server(s), or alternatively sporadically (e.g., only when needed for management purposes).


The application development tier 234 is implemented on another client computer at a location other than the server(s) (e.g., other than at the co-location facility) and involves development of software components or engines for execution on the server(s). Alternatively, current software on a node 210 at co-location facility 104 could be accessed by a remote client to develop additional software components or engines for the node. Although the client at which application development tier 234 is implemented is typically a different client than that at which application operations management tier 232 is implemented, tiers 232 and 234 could be implemented (at least in part) on the same client.


Although only three tiers are illustrated in FIG. 4, alternatively the multi-tiered architecture could include different numbers of tiers. For example, the application operations management tier may be separated into two tiers, each having different (or overlapping) responsibilities, resulting in a 4-tiered architecture. The management at these tiers may occur from the same place (e.g., a single application operations management console may be shared), or alternatively from different places (e.g., two different operations management consoles).


Returning to FIG. 3, co-location facility 104 includes a cluster operations management console for each server cluster. In the example of FIG. 3, cluster operations management console 240 corresponds to cluster 212. Cluster operations management console 240 implements cluster operations management tier 230 (FIG. 4) for cluster 212 and is responsible for managing the hardware operations of nodes 210 in cluster 212. Cluster operations management console 240 monitors the hardware in cluster 212 and attempts to identify hardware failures. Any of a wide variety of hardware failures can be monitored for, such as processor failures, bus failures, memory failures, etc. Hardware operations can be monitored in any of a variety of manners, such as cluster operations management console 240 sending test messages or control signals to the nodes 210 that require the use of particular hardware in order to respond (no response or an incorrect response indicates failure), having messages or control signals that require the use of particular hardware to generate periodically sent by nodes 210 to cluster operations management console 240 (not receiving such a message or control signal within a specified amount of time indicates failure), etc. Alternatively, cluster operations management console 240 may make no attempt to identify what type of hardware failure has occurred, but rather simply that a failure has occurred.


Once a hardware failure is detected, cluster operations management console 240 acts to correct the failure. The action taken by cluster operations management console 240 can vary based on the hardware as well as the type of failure, and can vary for different server clusters. The corrective action can be notification of an administrator (e.g., a flashing light, an audio alarm, an electronic mail message, calling a cell phone or pager, etc.), or an attempt to physically correct the problem (e.g., reboot the node, activate another backup node to take its place, etc.).


Cluster operations management console 240 also establishes cluster boundaries within co-location facility 104. The cluster boundaries established by console 240 prevent nodes 210 in one cluster (e.g., cluster 212) from communicating with nodes in another cluster (e.g., any node not in cluster 212), while at the same time not interfering with the ability of nodes 210 within a cluster from communicating with other nodes within that cluster. These boundaries provide security for the tenants' data, allowing them to know that their data cannot be communicated to other tenants' nodes 210 at facility 104 even though network connection 216 may be shared by the tenants.


In the illustrated example, each cluster of co-location facility 104 includes a dedicated cluster operations management console. Alternatively, a single cluster operations management console may correspond to, and manage hardware operations of multiple server clusters. According to another alternative, multiple cluster operations management consoles may correspond to, and manage hardware operations of, a single server cluster. Such multiple consoles can manage a single server cluster in a shared manner, or one console may operate as a backup for another console (e.g., providing increased reliability through redundancy, to allow for maintenance, etc.).


An application operations management console 242 is also communicatively coupled to co-location facility 104. Application operations management console 242 is located at a location remote from co-location facility 104 (that is, not within co-location facility 104), typically being located at the offices of the customer. A different application operations management console 242 corresponds to each server cluster of co-location facility 104, although alternatively multiple consoles 242 may correspond to a single server cluster, or a single console 242 may correspond to multiple server clusters. Application operations management console 242 implements application operations management tier 232 (FIG. 4) for cluster 212 and is responsible for managing the software operations of nodes 210 in cluster 212 as well as securing sub-boundaries within cluster 212.


Application operations management console 242 monitors the software in cluster 212 and attempts to identify software failures. Any of a wide variety of software failures can be monitored for, such as application processes or threads that are “hung” or otherwise non-responsive, an error in execution of application processes or threads, etc. Software operations can be monitored in any of a variety of manners (similar to the monitoring of hardware operations discussed above), such as application operations management console 242 sending test messages or control signals to particular processes or threads executing on the nodes 210 that require the use of particular routines in order to respond (no response or an incorrect response indicates failure), having messages or control signals that require the use of particular software routines to generate periodically sent by processes or threads executing on nodes 210 to application operations management console 242 (not receiving such a message or control signal within a specified amount of time indicates failure), etc. Alternatively, application operations management console 242 may make no attempt to identify what type of software failure has occurred, but rather simply that a failure has occurred.


Once a software failure is detected, application operations management console 242 acts to correct the failure. The action taken by application operations management console 242 can vary based on the hardware as well as the type of failure, and can vary for different server clusters. The corrective action can be notification of an administrator (e.g., a flashing light, an audio alarm, an electronic mail message, calling a cell phone or pager, etc.), or an attempt to correct the problem (e.g., reboot the node, re-load the software component or engine image, terminate and re-execute the process, etc.).


Thus, the management of a node 210 is distributed across multiple managers, regardless of the number of other nodes (if any) situated at the same location as the node 210. The multi-tiered management allows the hardware operations management to be separated from the application operations management, allowing two different consoles (each under the control of a different entity) to share the management responsibility for the node.


The multi-tiered management architecture can also be used in other situations to manage one or more computers from one or more remote locations, even if the computers are not part of a co-location facility. By way of example, a small business may purchase their own computers, but hire another company to manage the hardware operations of the computers, and possibly yet another company to manage the software operations of the computers.


In this example, the small business (the owner of the computers) is a first management tier. The owner then leases the computers to the outsourced hardware operator, which is the second management tier. The hardware operator can manage the hardware operation from a control console, either located locally at the small business along with the computers being managed or alternatively at some remote location, analogous to cluster operations management console 240. The hardware operator then leases the computers to an outsourced software operator, which is the third management tier. The software operator can manage the software operation from a control console, either located locally at the small business along with the computers being managed or alternatively at some remote location, analogous to application operations management console 242. The software operator then leases the computers back to their owner, so the owner becomes the “user” of the computers, which is the fourth management tier. During normal operation, the computer owner occupies this fourth management tier. However, the computer owner can exercise its first management tier rights to sever one or both of the leases to the software operator and the hardware operator, such as when the computer owner desires to change software or hardware operators.



FIG. 5 is a block diagram illustrating an exemplary node in more detail in accordance with certain embodiments of the invention. Node 248 is an exemplary node managed by other devices (e.g., consoles 240 and 242 of FIG. 3) external to the node. Node 248 can be a node 210 of FIG. 3, or alternatively a node at another location (e.g., a computer in a business or home environment). Node 248 includes a monitor 250, referred to as the “BMonitor”, and a plurality of software components or engines 252, and is coupled to (or alternatively incorporates) a mass storage device 262. In the illustrated example, node 248 is a server computer having a processor(s) that supports multiple privilege levels (e.g., rings in an x86 architecture processor). In the illustrated example, these privilege levels are referred to as rings, although alternate implementations using different processor architectures may use different nomenclature. The multiple rings provide a set of prioritized levels that software can execute at, often including 4 levels (Rings 0, 1, 2, and 3). Ring 0 is typically referred to as the most privileged ring. Software processes executing in Ring 0 can typically access more features (e.g., instructions) than processes executing in less privileged Rings. Furthermore, a processor executing in a particular Ring cannot alter code or data in a higher priority ring. In the illustrated example, BMonitor 250 executes in Ring 0, while engines 252 execute in Ring 1 (or alternatively Rings 2 and/or 3). Thus, the code or data of BMonitor 250 (executing in Ring 0) cannot be altered directly by engines 252 (executing in Ring 1). Rather, any such alterations would have to be made by an engine 252 requesting BMonitor 250 to make the alteration (e.g., by sending a message to BMonitor 250, invoking a function of BMonitor 250, etc.). Implementing BMonitor 250 in Ring 0 protects BMonitor 250 from a rogue or malicious engine 252 that tries to bypass any restrictions imposed by BMonitor 250.


BMonitor 250 is the fundamental control module of node 248—it controls (and optionally includes) both the network interface card and the memory manager. By controlling the network interface card (which may be separate from BMonitor 250, or alternatively BMonitor 250 may be incorporated on the network interface card), BMonitor 250 can control data received by and sent by node 248. By controlling the memory manager, BMonitor 250 controls the allocation of memory to engines 252 executing in node 248 and thus can assist in preventing rogue or malicious engines from interfering with the operation of BMonitor 250.


Although various aspects of node 248 may be under control of BMonitor 250 (e.g., the network interface card), BMonitor 250 still makes at least part of such functionality available to engines 252 executing on the node 248. BMonitor 250 provides an interface (e.g., via controller 254 discussed in more detail below) via which engines 252 can request access to the functionality, such as to send data out to another node 248 or to the Internet. These requests can take any of a variety of forms, such as sending messages, calling a function, etc.


BMonitor 250 includes controller 254, network interface 256, one or more filters 258, and a Distributed Host Control Protocol (DHCP) module 260. Network interface 256 provides the interface between node 248 and the network (e.g., network connections 126 of FIG. 3) via the internal transport medium 211 of co-location facility 104. Filters 258 identify other nodes 248 (and/or other sources or targets (e.g., coupled to Internet 108 of FIG. 1) that data can (or alternatively cannot) be sent to and/or received from. The nodes or other sources/targets can be identified in any of a wide variety of manners, such as by network address (e.g., Internet Protocol (IP) address), some other globally unique identifier, a locally unique identifier (e.g., a numbering scheme proprietary or local to co-location facility 104), etc.


Filters 258 can fully restrict access to a node (e.g., no data can be received from or sent to the node), or partially restrict access to a node. Partial access restriction can take different forms. For example, a node may be restricted so that data can be received from the node but not sent to the node (or vice versa). By way of another example, a node may be restricted so that only certain types of data (e.g., communications in accordance with certain protocols, such as HTTP) can be received from and/or sent to the node. Filtering based on particular types of data can be implemented in different manners, such as by communicating data in packets with header information that indicate the type of data included in the packet.


Filters 258 can be added by application operations management console 242 or cluster operations management console 240. In the illustrated example, filters added by cluster operations management console 240 (to establish cluster boundaries) restrict full access to nodes (e.g., any access to another node can be prevented) whereas filters added by application operations management console 242 (to establish sub-boundaries within a cluster) can restrict either full access to nodes or partial access.


Controller 254 also imposes some restrictions on what filters can be added to filters 258. In the illustrated example, controller 254 allows cluster operations management console 240 to add any filters it desires (which will define the boundaries of the cluster). However, controller 254 restricts application operations management console 242 to adding only filters that are at least as restrictive as those added by console 240. If console 242 attempts to add a filter that is less restrictive than those added by console 240 (in which case the sub-boundary may extend beyond the cluster boundaries), controller 254 refuses to add the filter (or alternatively may modify the filter so that it is not less restrictive). By imposing such a restriction, controller 254 can ensure that the sub-boundaries established at the application operations management level do not extend beyond the cluster boundaries established at the cluster operations management level.


Controller 254, using one or more filters 258, operates to restrict data packets sent from node 248 and/or received by node 248. All data intended for an engine 252, or sent by an engine 252, to another node, is passed through network interface 256 and filters 258. Controller 254 applies the filters 258 to the data, comparing the target of the data (e.g., typically identified in a header portion of a packet including the data) to acceptable (and/or restricted) nodes (and/or network addresses) identified in filters 258. If filters 258 indicate that the target of the data is acceptable, then controller 254 allows the data to pass through to the target (either into node 248 or out from node 248). However, if filters 258 indicate that the target of the data is not acceptable, then controller 254 prevents the data from passing through to the target. Controller 254 may return an indication to the source of the data that the data cannot be passed to the target, or may simply ignore or discard the data.


The application of filters 258 to the data by controller 254 allows the boundary restrictions of a server cluster to be imposed. Filters 258 can be programmed (e.g., by application operations management console 242 of FIG. 3) with the node addresses of all the nodes within the server cluster (e.g., cluster 212). Controller 254 then prevents data received from any node not within the server cluster from being passed through to an engine 252, and similarly prevents any data being sent to a node other than one within the server cluster from being sent. Similarly, data received from Internet 108 (FIG. 1) can identify a target node 210 (e.g., by IP address), so that controller 254 of any node other than the target node will prevent the data from being passed through to an engine 252.


DHCP module 260 implements the Distributed Host Control Protocol, allowing BMonitor 250 (and thus node 210) to obtain an IP address from a DHCP server (e.g., cluster operations management console 240 of FIG. 3). During an initialization process for node 210, DHCP module 260 requests an IP address from the DHCP server, which in turn provides the IP address to module 260. Additional information regarding DHCP is available from Microsoft Corporation of Redmond, Wash.


Software engines 252 include any of a wide variety of conventional software components. Examples of engines 252 include an operating system (e.g., Windows NT®), a load balancing server component (e.g., to balance the processing load of multiple nodes 248), a caching server component (e.g., to cache data and/or instructions from another node 248 or received via the Internet), a storage manager component (e.g., to manage storage of data from another node 248 or received via the Internet), etc. In one implementation, each of the engines 252 is a protocol-based engine, communicating with BMonitor 250 and other engines 252 via messages and/or function calls without requiring the engines 252 and BMonitor 250 to be written using the same programming language.


Controller 254 is further responsible for controlling the execution of engines 252. This control can take different forms, including beginning execution of an engine 252, terminating execution of an engine 252, re-loading an image of an engine 252 from a storage device, debugging execution of an engine 252, etc. Controller 254 receives instructions from application operations management console 242 of FIG. 3 regarding which of these control actions to take and when to take them. Thus, the control of engines 252 is actually managed by the remote application operations management console 242, not locally at co-location facility 104. Controller 254 also provides an interface via which application operations management console 242 can identify filters to add (and/or remove) from filter set 258.


Controller 254 also includes an interface via which cluster operations management console 240 of FIG. 3 can communicate commands to controller 254. Different types of hardware operation oriented commands can be communicated to controller 254 by cluster operations management console 240, such as re-booting the node, shutting down the node, placing the node in a low-power state (e.g., in a suspend or standby state), changing cluster boundaries, changing encryption keys, etc.


Controller 254 further provides encryption support for BMonitor 250, allowing data to be stored securely on mass storage device 262 (e.g., a magnetic disk, an optical disk, etc.) and secure communications to occur between node 248 and an operations management console (e.g., console 240 or 242 of FIG. 3). Controller 254 maintains multiple encryption keys, including: one for the landlord (referred to as the “landlord key”) which accesses node 248 from cluster operations management console 240, one for the lessee of node 248 (referred to as the “tenant key”) which accesses node 248 from application operations management console 242, and keys that BMonitor 250 uses to securely store data on mass storage device 262 (referred to as the “disk key”).


BMonitor 250 makes use of public key cryptography to provide secure communications between node 248 and the management consoles (e.g., consoles 240 and 242). Public key cryptography is based on a key pair, including both a public key and a private key, and an encryption algorithm. The encryption algorithm can encrypt data based on the public key such that it cannot be decrypted efficiently without the private key. Thus, communications from the public-key holder can be encrypted using the public key, allowing only the private-key holder to decrypt the communications. Any of a variety of public key cryptography techniques may be used, such as the well-known RSA (Rivest, Shamir, and Adelman) encryption technique. For a basic introduction of cryptography, the reader is directed to a text written by Bruce Schneier and entitled “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” published by John Wiley & Sons with copyright 1994 (or second edition with copyright 1996).


BMonitor 250 is initialized to include a public/private key pair for both the landlord and the tenant. These key pairs can be generated by BMonitor 250, or alternatively by some other component and stored within BMonitor 250 (with that other component being trusted to destroy its knowledge of the key pair). As used herein, U refers to a public key and R refers to a private key. The public/private key pair 264 for the landlord is referred to as (UL, RL), and the public/private key pair 266 for the tenant is referred to as (UT, RT). BMonitor 250 makes the public keys UL and UT available to the landlord, but keeps the private keys RL and RT secret. In the illustrated example, BMonitor 250 never divulges the private keys RL and RT, so both the landlord and the tenant can be assured that no entity other than the BMonitor 250 can decrypt information that they encrypt using their public keys (e.g., via cluster operations management console 240 and application operations management console 242 of FIG. 3, respectively).


Once the landlord has the public keys UL and UT, the landlord can assign node 210 to a particular tenant, giving that tenant the public key UT. Use of the public key UT allows the tenant to encrypt communications to BMonitor 250 that only BMonitor 250 can decrypt (using the private key RT). Although not required, a prudent initial step for the tenant is to request that BMonitor 250 generate a new public/private key pair (UT, RT). In response to such a request, a key generator 268 of BMonitor 250 generates a new public/private key pair in any of a variety of well-known manners, stores the new key pair as key pair 266, and returns the new public key UT to the tenant. By generating a new key pair, the tenant is assured that no other entity, including the landlord, is aware of the tenant public key UT. Additionally, the tenant may also have new key pairs generated at subsequent times.


BMonitor 250 enforces restrictions on what entities can request new public/private key pairs. The tenant is able to request new tenant public/private key pairs, but is not able to request new landlord public/private key pairs. The landlord, however, can request new landlord public/private key pairs as well as new tenant public/private key pairs. Whenever a request for a new public/private key pair is received, controller 254 verifies the identity of the requestor as the tenant or landlord (e.g., based on a remote log-in procedure, password verification, manner in which the requestor is communicating with or is coupled to node 248, etc.) before generating the new key pair.


In order to ensure bi-directional communication security between BMonitor 250 and the landlord and tenant control devices (e.g., operations management consoles 240 and 242, respectively), the landlord and tenant control devices may also generate (or otherwise be assigned) public/private key pairs. In this situation, consoles 240 and 242 can communicate their respective public keys to BMonitors 250 of nodes 248 they desire (or expect to desire) to communicate with securely. Once the public key of a console is known by a BMonitor 250, the BMonitor 250 can encrypt communications to that console using its public key, thereby preventing any other device except the console having the private key from reading the communication.


BMonitor 250 also maintains a disk key 270, which is generated based on one or more symmetric keys 272 and 274 (symmetric keys refer to secret keys used in secret key cryptography). Disk key 270, also a symmetric key, is used by BMonitor 250 to store information in mass storage device 262. BMonitor 250 keeps disk key 270 secure, using it only to encrypt data node 248 stores on mass storage device 262 and decrypt data node 248 retrieves from mass storage device 262 (thus there is no need for any other entities, including the landlord and tenant, to have knowledge of disk key 270). Alternatively, the landlord or tenant may be informed of disk key 270, or another key on which disk key 270 is based.


Use of disk key 270 ensures that data stored on mass storage device 262 can only be decrypted by the node 248 that encrypted it, and not any other node or device. Thus, for example, if mass storage device 262 were to be removed and attempts made to read the data on device 262, such attempts would be unsuccessful. BMonitor 250 uses disk key 270 to encrypt data to be stored on mass storage device 262 regardless of the source of the data. For example, the data may come from a client device (e.g., client 102 of FIG. 1) used by a customer of the tenant, from an operations management console (e.g., console 242 of FIG. 3), etc.


Disk key 270 is generated based on symmetric keys 272 and 274. As used herein, K refers to a symmetric key, so KL refers to a landlord symmetric key (key 272) and KT refers to a tenant symmetric key (key 274). The individual keys 272 and 274 can be generated in any of a wide variety of conventional manners (e.g., based on a random number generator). Disk key 270 is either the KL key alone, or alternatively is a combination of the KL and KT keys. In situations where the node 210 is not currently leased to a tenant, or in which the tenant has not established a KT key, then controller 254 maintains the KL key as disk key 270. However, in situations where the node 248 is leased to a tenant that establishes a KT key, then disk key 270 is a combination of the KL and KT keys. The KL and KT keys can be combined in a variety of different manners, and in one implementation are combined by using one of the keys to encrypt the other key, with the resultant encrypted key being disk key 270. Thus, the data stored on mass storage device 262 is always encrypted, even if the tenant does not establish a symmetric key KT. Additionally, in situations where the landlord and tenant are aware of their respective keys KL and KT, then the combination of the keys results in a key that can be used to encrypt the data so that neither the landlord nor the tenant can decrypt it individually.


In the illustrated example, a node 248 does not initially have symmetric keys KL and KT. When the landlord initializes the node 248, it requests a new key KL (e.g., via cluster operations management console 240 of FIG. 3), in response to which key generator 268 generates a new key and controller 254 maintains the newly generated key as key 272. Similarly, when a tenant initially leases a node 248 there is not yet a tenant symmetric key KT for node 248. The tenant can communicate a request for a new key KT (e.g., via application operations management console 242 of FIG. 3), in response to which key generator 268 generates a new key and controller 254 maintains the newly generated key as key 274. Additionally, each time a new key KT or KL is generated, then controller 254 generates a new disk key 270.


Although only a landlord and tenant key (KL and KT) are illustrated in FIG. 5, alternatively additional symmetric keys (e.g., from a sub-tenant, a sub-landlord, etc.) may be combined to generate disk key 270. For example, if there are three symmetric keys, then they can be combined by encrypting a first of the keys with a second of the keys, and then encrypting the result with the third of the keys to generate disk key 270. Additional symmetric keys may be used, for example, for a sub-tenant(s).


The landlord can also request new public/private key pairs from BMonitor 250, either tenant key pairs or landlord key pairs. Requesting new key pairs can allow, for example, the landlord to re-assign a node 248 from one tenant to another. By way of example, if a tenant no longer desires the node 248 (or does not make required lease payments for the node), then the landlord can communicate with BMonitor 250 (e.g., via console 240 of FIG. 3) to change the public/private key pairs of the tenant (thereby prohibiting any communications from the tenant from being decrypted by the BMonitor 250 because the tenant does not have the new key). Additionally, the landlord may also request a new public/private key pair for the landlord—this may be done at particular intervals or simply whenever the landlord desires a new key (e.g., for safety concerns).


In one implementation, BMonitor 250 discards both the disk key 270 and the landlord symmetric key KL, and generates a new key KL (and a new disk key 270) each time it generates a new landlord private key RL. By replacing the key KL and disk key 270 (and keeping no record of the old keys), the landlord can ensure that once it changes its key, any tenant data previously stored at the node 210 cannot be accessed. Thus, care should be taken by the landlord to generate a new public/private key pair only when the landlord wants to prevent the tenant from accessing the data previously stored at node 248.


Additionally, BMonitor 250 may also replace both the disk key 270 and the tenant symmetric key KT, with a newly generated key KT (and a new disk key 270) each time it generates a new tenant private key RT. This allows the tenant to increase the security of the data being stored at the node 248 because it can change how that data is encrypted as it desires. However, as BMonitor 250 discards the previous key KT and disk key 270, care should be exercised by the tenant to request a new tenant private key RT only when the data previously stored at node 210 is no longer needed (e.g., has been backed up elsewhere).


It should be noted that different nodes 248 will typically have different keys (keys 264, 266, and 270). Alternatively, attempts may be made to have multiple nodes use the same key (e.g., key 270). However, in such situations care should be taken to ensure that any communication of the keys (e.g., between nodes 248) is done in a secure manner so that the security is not compromised. For example, additional public/private key pairs may be used by BMonitors 250 of two nodes 248 to securely communicate information between one another.


A leased hardware environment having guaranteed and enforced rights can thus be established. Landlords can lease nodes to multiple different tenants and establish boundaries that prevent nodes leased by different tenants from communicating with one another. Tenants can be assured that nodes they lease are accessible for management only to them, not to others, and that data is stored at the nodes securely so that no one else can access it (even if the tenant leaves or reduces its hardware usages). Furthermore, landlords and tenants are both assured that the landlord can move equipment, change which nodes are assigned to individuals, remove hardware (e.g., mass storage devices), etc. without compromising the secure storage of data by any of the tenants.



FIG. 6 is a flowchart illustrating an exemplary process for encryption key generation and distribution in accordance with certain embodiments of the invention. Initially, the computer (e.g., a node 248 of FIG. 5) identifies public/private key pairs for both the landlord and the tenant (act 280). This identification can be accessing previously generated key pairs, or alternatively generating a new key pair by the computer itself. The computer keeps both the landlord private key from the landlord key pair and the tenant private key from the tenant key pair secret, but forwards the landlord public key from the landlord key pair and the tenant public key from the tenant key pair to the landlord (act 282). In the illustrated example, the landlord is represented by cluster operations management console 240 of FIG. 3, although alternatively other devices or entities could represent the landlord.


The landlord then forwards the tenant public key to the tenant (act 284). In the illustrated example, the tenant is represented by application operations management console 242 of FIG. 3, although alternatively other devices or entities could represent the tenant. The tenant then communicates with the computer to generate a new tenant key pair (act 286). The computer keeps the tenant private key from the new key pair secret and forwards the tenant public key from the new key pair to the tenant (act 288). The tenant is then able to communicate secure messages (e.g., data, instructions, requests, etc.) to the computer using the new tenant public key (act 290), while the landlord is able to communicate secure messages to the computer using the landlord public key (act 292).



FIG. 7 is a flowchart illustrating an exemplary process for the operation of a cluster operations management console in accordance with certain embodiments of the invention. The process of FIG. 7 is implemented by a cluster operations management console at a co-location facility, and may be performed in software.


Initially, the cluster operations management console configures the nodes in the server cluster with the boundaries (if any) of the server cluster (act 300). This configuration is accomplished by the cluster operations management console communicating filters to the nodes in the server cluster(s).


Hardware operations within a server cluster are then continually monitored for a hardware failure (acts 302 and 304). Once a hardware failure is detected, corrective action is taken (act 306) and monitoring of the hardware operation continues. Any of a wide variety of corrective action can be taken, as discussed above. Note that, based on the corrective action (or at other times), the nodes may be re-configured with new cluster boundaries (act 300).



FIG. 8 is a flowchart illustrating an exemplary process for the operation of an application operations management console in accordance with certain embodiments of the invention. The process of FIG. 8 is implemented by an application operations management console located remotely from the co-location facility, and may be performed in software.


Initially, the application operations management console configures the nodes in the server cluster with sub-boundaries (if any) of the server cluster (act 320). This configuration is accomplished by the application operations management console communicating filters to the nodes in the server cluster.


Software operations within the server cluster are then continually monitored until a software failure is detected (acts 322 and 324). This software failure could be failure of a particular software engine (e.g., the engine fails, but the other engines are still running), or alternatively failure of the entire node (e.g., the entire node is hung). Once a software failure is detected, corrective action is taken (act 326) and monitoring of the software operation continues. Any of a wide variety of corrective action can be taken, as discussed above. Note that, based on the corrective action (or at any other time during operation), the server computer may be re-configured with new sub-boundaries (act 320).


CONCLUSION

Although the description above uses language that is specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing the invention.

Claims
  • 1. A computer readable memory having stored thereon a multi-tiered management architecture for implementation by a computer, the management architecture comprising: an application development tier at which applications are developed for execution on one or more computers, the application development tier being implemented on a client console communicatively coupled to the one or more computers, wherein the client console is located remotely from a cluster operation tier console and an application operations tier console;an application operations tier at which execution of the applications is managed, the application operations tier being implemented on the application operation management console at a location remote from the oneor more computers; anda cluster operations tier to manage the operation of the computers without concern for what applications are executing on the one or more computers, wherein the cluster operations tier is responsible for securing a computer cluster boundary based on network filters received from the cluster operation tier console and the application operation management console giving precedence to those from the cluster operation tier console over the application operation management console to prevent a plurality of other computers that are not part of the computer cluster from accessing the one or more computers in the computer cluster.
  • 2. A management architecture as recited in claim 1, wherein the application operations tier is responsible for securing sub-boundaries within the computer cluster boundary to restrict communication between computers within the computer cluster.
  • 3. A management architecture as recited in claim 1, wherein the cluster operations tier is implemented at a cluster operations management console located at the same location as the one or more computers.
  • 4. A management architecture as recited in claim 1, wherein the application operations tier monitors execution of application processes on the one or more computers and detects failures of the application processes.
  • 5. A management architecture as recited in claim 1, wherein the application operations tier takes corrective action in response to a software failure on one of the computers.
  • 6. A management architecture as recited in claim 5, wherein the corrective action comprises re-booting the computer.
  • 7. A management architecture as recited in claim 5, wherein the corrective action comprises notifying an administrator of the failure.
  • 8. A management architecture as recited in claim 1, wherein the cluster operations tier monitors hardware operation of the one or more computers and detects failures of the hardware.
  • 9. A management architecture as recited in claim 1, wherein the cluster operations tier takes corrective action in response to a hardware failure of one of the computers.
  • 10. A management architecture as recited in claim 9, wherein the corrective action comprises re-booting the computer.
  • 11. A management architecture as recited in claim 9, wherein the corrective action comprises notifying a co-location facility administrator.
  • 12. A management architecture as recited in claim 9, wherein the one or more computers are situated in one or more clusters at a co-location facility.
  • 13. A co-location facility system comprising: a plurality of server node clusters, each cluster corresponding to a different customer, where each server node comprises a management component that regulates network communication between the server nodes in accordance with network filters received from one or more cluster operations management consoles and in accordance with network filters received from remote consoles of the customers, where the management components give precedence to network filters from the one or more cluster operations management consoles over the network filters from the remote consoles such that network filters from the remote consoles cannot enable communications between applications on server nodes across cluster boundaries that have been defined by the network filters received from the one or more cluster operations management consoles, wherein each management console is configured to receive node control commands from an application operations management console located remotely from the co-location facility and software components developed on an application development console, the application operations management console and application development console being located remote to each other; andthe one or more cluster operations management consoles corresponding to one or more of the server node clusters and configured to manage hardware operations of the one or more server node clusters.
  • 14. A system as recited in claim 13, further comprising a different cluster operations management console corresponding to each of the plurality of server node clusters.
  • 15. A system as recited in claim 13, wherein each of the plurality of server node clusters includes, as its server nodes, a plurality of server computers.
  • 16. A system as recited in claim 13, wherein the hardware operations include one or more of: mass storage device operation, memory device operation, and network interface operation, and processor operation.
  • 17. A system as recited in claim 13, wherein each server node in each server node cluster is configured with a private key that allows the server node to decrypt communications that are received, in a form encrypted using a public key, from the application operations management console associated with the customer that corresponds to the node cluster.
  • 18. A system as recited in claim 13, further comprising a data transport medium coupled to each server node in the plurality of server node clusters via which each node can access an external network.
  • 19. A system as recited in claim 13, wherein the external network comprises the Internet.
  • 20. A system as recited in claim 13, wherein each server node in each server node cluster is configured with the boundary of the server node cluster.
  • 21. A system as recited in claim 13, wherein each server node in each server node cluster is configured with a private key that allows the server node to decrypt communications that are received, in a form encrypted using a public key, from at least one of the one or more cluster operations management consoles.
  • 22. A system as recited in claim 13, wherein one or more of the server nodes in a server node cluster are leased by the customer from an operator of the co-location facility.
  • 23. A system as recited in claim 13, wherein the one or more cluster operations management consoles are configured to manage hardware operations of the one or more server node clusters without concern for what applications are executing on server nodes of the server node cluster, and wherein the one or more server cluster operations management consoles are responsible for securing a server node cluster boundary to prevent a plurality of other server nodes that are not part of the at least one server node cluster from accessing the server nodes of the at least one server node cluster.
  • 24. A computer readable memory having stored thereon a multi-tiered computer management architecture for implementation by a computer, the management architecture comprising: a first tier corresponding to an owner or lessee of a computer;a second tier, implemented by a cluster operations management console and a remote console that establishes network traffic boundaries based on network filters, giving preference to those from the cluster operations management console over that from the remote console, corresponding to a hardware operator that is to manage hardware operations of the computer but not application software operations of the computer;a third tier, implemented by an application operations management console, corresponding to a software operator that is to manage software application operations of the computer but not hardware operations of the computer; anda fourth tier corresponding to the owner or lessee, wherein the owner or lessee operates in the fourth tier except when revoking rights of the hardware operator or software operator.
  • 25. An architecture as recited in claim 24, wherein the cluster operations management console is at a location remote from the computer.
  • 26. An architecture as recited in claim 24, wherein the application operations management console is at a location remote from the computer.
  • 27. An architecture as recited in claim 24, further comprising using a plurality of key pairs, each key pair including a private key and a public key, to securely communicate between the computer and the cluster operations management console, as well as between the computer and the application operations management console.
US Referenced Citations (492)
Number Name Date Kind
4200770 Hellman et al. Apr 1980 A
4218582 Hellman et al. Aug 1980 A
4405829 Rivest et al. Sep 1983 A
4424414 Hellman et al. Jan 1984 A
5031089 Liu et al. Jul 1991 A
5115505 Bishop et al. May 1992 A
5220621 Saitoh Jun 1993 A
5371852 Attanasio et al. Dec 1994 A
5430810 Saeki Jul 1995 A
5475817 Waldo et al. Dec 1995 A
5490276 Doli, Jr. et al. Feb 1996 A
5499357 Sonty et al. Mar 1996 A
5504921 Dev et al. Apr 1996 A
5539883 Allon et al. Jul 1996 A
5557774 Shimabukuro et al. Sep 1996 A
5579482 Einkauf et al. Nov 1996 A
5668995 Bhat Sep 1997 A
5686940 Kuga Nov 1997 A
5724508 Harple, Jr. et al. Mar 1998 A
5748958 Badovinatz et al. May 1998 A
5758351 Gibson et al. May 1998 A
5768271 Seid et al. Jun 1998 A
5774660 Brendel et al. Jun 1998 A
5774668 Choquier et al. Jun 1998 A
5774689 Curtis et al. Jun 1998 A
5784463 Chen et al. Jul 1998 A
5790895 Krontz et al. Aug 1998 A
5801970 Rowland et al. Sep 1998 A
5802590 Draves Sep 1998 A
5815574 Fortinsky Sep 1998 A
5818937 Watson Oct 1998 A
5822531 Gorczyca et al. Oct 1998 A
5826015 Schmidt Oct 1998 A
5845124 Berman Dec 1998 A
5845277 Pfeil et al. Dec 1998 A
5850399 Ganmukhi et al. Dec 1998 A
5867706 Martin et al. Feb 1999 A
5872914 Walker, Jr. et al. Feb 1999 A
5878220 Olkin et al. Mar 1999 A
5895499 Chu Apr 1999 A
5905728 Han et al. May 1999 A
5917730 Rittie et al. Jun 1999 A
5918017 Attanasio et al. Jun 1999 A
5930798 Lawler et al. Jul 1999 A
5938732 Lim et al. Aug 1999 A
5948055 Pulsipher et al. Sep 1999 A
5951694 Choquier et al. Sep 1999 A
5958009 Friedrich et al. Sep 1999 A
5960371 Saito et al. Sep 1999 A
5968126 Ekstrom et al. Oct 1999 A
6012113 Tuckner Jan 2000 A
6035405 Gage et al. Mar 2000 A
6041054 Westberg Mar 2000 A
6047323 Krause Apr 2000 A
6047325 Jain et al. Apr 2000 A
6049528 Hendel et al. Apr 2000 A
6052469 Johnson et al. Apr 2000 A
6059842 Dumarot et al. May 2000 A
6065058 Hailpern et al. May 2000 A
6067580 Aman et al. May 2000 A
6070243 See et al. May 2000 A
6073183 Slonim Jun 2000 A
6073227 Abily et al. Jun 2000 A
6075776 Tanimoto et al. Jun 2000 A
6076108 Courts et al. Jun 2000 A
6081826 Masuoka et al. Jun 2000 A
6085238 Yuasa et al. Jul 2000 A
6086618 Al-Hilali et al. Jul 2000 A
6097818 Saito Aug 2000 A
6098093 Bayeh et al. Aug 2000 A
6108699 Moiin Aug 2000 A
6108702 Wood Aug 2000 A
6111993 Matsunaga Aug 2000 A
6112243 Downs et al. Aug 2000 A
6115393 Engel et al. Sep 2000 A
6118785 Araujo et al. Sep 2000 A
6125442 Maves et al. Sep 2000 A
6125447 Gong Sep 2000 A
6134194 Kato Oct 2000 A
6134594 Helland et al. Oct 2000 A
6141749 Coss et al. Oct 2000 A
6144959 Anderson et al. Nov 2000 A
6147995 Dobbins et al. Nov 2000 A
6151688 Wipfel et al. Nov 2000 A
6167052 McNeill et al. Dec 2000 A
6167383 Henson Dec 2000 A
6167515 Lin Dec 2000 A
6178529 Short et al. Jan 2001 B1
6182275 Beelitz et al. Jan 2001 B1
6185308 Ando et al. Feb 2001 B1
6192401 Modiri et al. Feb 2001 B1
6195091 Harple et al. Feb 2001 B1
6195355 Demizu Feb 2001 B1
6208345 Sheard et al. Mar 2001 B1
6208649 Kloth Mar 2001 B1
6209099 Saunders Mar 2001 B1
6212559 Bixler et al. Apr 2001 B1
6215877 Matsumoto Apr 2001 B1
6215878 Harkins Apr 2001 B1
6226788 Schoening et al. May 2001 B1
6230312 Hunt May 2001 B1
6233610 Hayball et al. May 2001 B1
6236365 LeBlanc et al. May 2001 B1
6236729 Takaragi et al. May 2001 B1
6236901 Goss May 2001 B1
6253230 Couland et al. Jun 2001 B1
6256773 Bowman-Amuah Jul 2001 B1
6259448 McNally et al. Jul 2001 B1
6263089 Otsuka et al. Jul 2001 B1
6266707 Boden et al. Jul 2001 B1
6269076 Shamir et al. Jul 2001 B1
6269079 Marin et al. Jul 2001 B1
6272522 Lin et al. Aug 2001 B1
6272523 Factor Aug 2001 B1
6305015 Akriche et al. Oct 2001 B1
6311144 Abu El Ata Oct 2001 B1
6311270 Challener et al. Oct 2001 B1
6317438 Trebes, Jr. Nov 2001 B1
6324571 Hacherl Nov 2001 B1
6327622 Jindal et al. Dec 2001 B1
6330602 Law et al. Dec 2001 B1
6330605 Christensen et al. Dec 2001 B1
6336138 Caswell et al. Jan 2002 B1
6336171 Coskrey, IV Jan 2002 B1
6338112 Wipfel et al. Jan 2002 B1
6341356 Johnson et al. Jan 2002 B1
6351685 Dimitri et al. Feb 2002 B1
6353698 Talamini, Sr. Mar 2002 B1
6353861 Dolin, Jr. et al. Mar 2002 B1
6353898 Wipfel et al. Mar 2002 B1
6360265 Falck et al. Mar 2002 B1
6366578 Johnson Apr 2002 B1
6367010 Venkatram et al. Apr 2002 B1
6370573 Bowman-Amuah Apr 2002 B1
6370584 Bestavros et al. Apr 2002 B1
6377996 Lumelsky et al. Apr 2002 B1
6389464 Krishnamurthy et al. May 2002 B1
6393386 Zager et al. May 2002 B1
6393456 Ambler et al. May 2002 B1
6393474 Eichert et al. May 2002 B1
6393485 Chao et al. May 2002 B1
6408390 Saito Jun 2002 B1
6424718 Holloway Jul 2002 B1
6424992 Devarakonda et al. Jul 2002 B2
6427163 Arendt et al. Jul 2002 B1
6427171 Craft et al. Jul 2002 B1
6438100 Halpern et al. Aug 2002 B1
6442557 Buteau et al. Aug 2002 B1
6442713 Block et al. Aug 2002 B1
6449641 Moiin et al. Sep 2002 B1
6449650 Westfall et al. Sep 2002 B1
6457048 Sondur et al. Sep 2002 B2
6463536 Saito Oct 2002 B2
6466932 Dennis et al. Oct 2002 B1
6466978 Mukherjee et al. Oct 2002 B1
6466984 Naveh et al. Oct 2002 B1
6466985 Goyal et al. Oct 2002 B1
6470025 Wilson et al. Oct 2002 B1
6470332 Weschler Oct 2002 B1
6470464 Bertram et al. Oct 2002 B2
6473791 Al-Ghosein et al. Oct 2002 B1
6480955 DeKoning et al. Nov 2002 B1
6484261 Wiegel Nov 2002 B1
6487622 Coskrey, IV et al. Nov 2002 B1
6493715 Funk et al. Dec 2002 B1
6496187 Deering et al. Dec 2002 B1
6502131 Vaid et al. Dec 2002 B1
6505244 Natarajan et al. Jan 2003 B1
6510154 Mayes et al. Jan 2003 B1
6510509 Chopra et al. Jan 2003 B1
6519615 Wollrath et al. Feb 2003 B1
6529953 Van Renesse Mar 2003 B1
6539494 Abramson et al. Mar 2003 B1
6542504 Mahler et al. Apr 2003 B1
6546423 Dutta et al. Apr 2003 B1
6546553 Hunt Apr 2003 B1
6549516 Albert et al. Apr 2003 B1
6549934 Peterson et al. Apr 2003 B1
6564252 Hickman et al. May 2003 B1
6564261 Gudjonsson et al. May 2003 B1
6570847 Hosein May 2003 B1
6570875 Hegde May 2003 B1
6574195 Roberts Jun 2003 B2
6578144 Gennaro et al. Jun 2003 B1
6584499 Jantz et al. Jun 2003 B1
6587876 Mahon et al. Jul 2003 B1
6598077 Primak et al. Jul 2003 B2
6598173 Sheikh et al. Jul 2003 B1
6598223 Vrhel, Jr. et al. Jul 2003 B1
6601101 Lee et al. Jul 2003 B1
6606708 Shifrin et al. Aug 2003 B1
6609148 Salo et al. Aug 2003 B1
6609213 Nguyen et al. Aug 2003 B1
6611522 Zheng et al. Aug 2003 B1
6615256 van Ingen et al. Sep 2003 B1
6628671 Dynarski et al. Sep 2003 B1
6631141 Kumar et al. Oct 2003 B1
6640303 Vu Oct 2003 B1
6651101 Gai et al. Nov 2003 B1
6654782 O'Brien et al. Nov 2003 B1
6654796 Slater et al. Nov 2003 B1
6665714 Blumenau et al. Dec 2003 B1
6671699 Black et al. Dec 2003 B1
6675308 Thomsen Jan 2004 B1
6678821 Waugh et al. Jan 2004 B1
6678835 Shah et al. Jan 2004 B1
6681262 Rimmer Jan 2004 B1
6684335 Epstein, III et al. Jan 2004 B1
6691148 Zinky et al. Feb 2004 B1
6691168 Bal et al. Feb 2004 B1
6694436 Audebert Feb 2004 B1
6701363 Chiu et al. Mar 2004 B1
6717949 Boden et al. Apr 2004 B1
6718361 Basani et al. Apr 2004 B1
6718379 Krishna et al. Apr 2004 B1
6725253 Okano et al. Apr 2004 B1
6728885 Taylor et al. Apr 2004 B1
6735596 Corynen May 2004 B2
6738736 Bond May 2004 B1
6741266 Kamiwada et al. May 2004 B1
6742020 Dimitroff et al. May 2004 B1
6748447 Basani et al. Jun 2004 B1
6754716 Sharma et al. Jun 2004 B1
6754816 Layton et al. Jun 2004 B1
6757744 Narisi et al. Jun 2004 B1
6760765 Asai et al. Jul 2004 B1
6760775 Anerousis et al. Jul 2004 B1
6769008 Kumar et al. Jul 2004 B1
6769060 Dent et al. Jul 2004 B1
6772333 Brendel Aug 2004 B1
6779016 Aziz et al. Aug 2004 B1
6782408 Chandra et al. Aug 2004 B1
6789090 Miyake et al. Sep 2004 B1
6801528 Nassar Oct 2004 B2
6801937 Novaes et al. Oct 2004 B1
6804783 Wesinger et al. Oct 2004 B1
6813778 Poli et al. Nov 2004 B1
6816897 McGuire Nov 2004 B2
6820042 Cohen et al. Nov 2004 B1
6820121 Callis et al. Nov 2004 B1
6823299 Contreras et al. Nov 2004 B1
6823373 Pancha et al. Nov 2004 B1
6823382 Stone Nov 2004 B2
6829639 Lawson et al. Dec 2004 B1
6829770 Hinson et al. Dec 2004 B1
6836750 Wong et al. Dec 2004 B2
6845160 Aoki Jan 2005 B1
6853841 St. Pierre Feb 2005 B1
6854069 Kampe et al. Feb 2005 B2
6856591 Ma et al. Feb 2005 B1
6862613 Kumar et al. Mar 2005 B1
6868062 Yadav et al. Mar 2005 B1
6868454 Kubota et al. Mar 2005 B1
6880002 Hirschfeld et al. Apr 2005 B2
6882613 Temple Apr 2005 B2
6886038 Tabbara et al. Apr 2005 B1
6888807 Heller et al. May 2005 B2
6895534 Wong et al. May 2005 B2
6898791 Chandy et al. May 2005 B1
6904458 Bishop et al. Jun 2005 B1
6907395 Hunt et al. Jun 2005 B1
6912568 Nishiki et al. Jun 2005 B1
6915338 Hunt et al. Jul 2005 B1
6922791 Mashayekhi et al. Jul 2005 B2
6928482 Ben Nun et al. Aug 2005 B1
6944183 Iyer et al. Sep 2005 B1
6944759 Crisan Sep 2005 B1
6947987 Boland Sep 2005 B2
6957186 Guheen et al. Oct 2005 B1
6963981 Bailey et al. Nov 2005 B1
6968291 Desai Nov 2005 B1
6968550 Branson et al. Nov 2005 B2
6968551 Hediger et al. Nov 2005 B2
6971063 Rappaport et al. Nov 2005 B1
6971072 Stein Nov 2005 B1
6973620 Gusler et al. Dec 2005 B2
6973622 Rappaport et al. Dec 2005 B1
6976079 Ferguson et al. Dec 2005 B1
6976269 Avery, IV et al. Dec 2005 B1
6983317 Bishop et al. Jan 2006 B1
6985956 Luke et al. Jan 2006 B2
6990666 Hirschfeld et al. Jan 2006 B2
7003562 Mayer Feb 2006 B2
7003574 Bahl Feb 2006 B1
7012919 So et al. Mar 2006 B1
7013462 Zara et al. Mar 2006 B2
7016950 Tabbara et al. Mar 2006 B2
7024451 Jorgenson Apr 2006 B2
7027412 Miyamoto et al. Apr 2006 B2
7028228 Lovy et al. Apr 2006 B1
7035786 Abu El Ata et al. Apr 2006 B1
7035930 Graupner et al. Apr 2006 B2
7043407 Lynch et al. May 2006 B2
7043545 Tabbara et al. May 2006 B2
7046680 McDysan et al. May 2006 B1
7050961 Lee et al. May 2006 B1
7054943 Goldszmidt et al. May 2006 B1
7058704 Mangipudi et al. Jun 2006 B1
7058826 Fung Jun 2006 B2
7058858 Wong et al. Jun 2006 B2
7062718 Kodosky et al. Jun 2006 B2
7069480 Lovy et al. Jun 2006 B1
7069553 Narayanaswamy et al. Jun 2006 B2
7072807 Brown et al. Jul 2006 B2
7072822 Humenansky et al. Jul 2006 B2
7076633 Tormasov et al. Jul 2006 B2
7080143 Hunt et al. Jul 2006 B2
7082464 Hasan et al. Jul 2006 B2
7089281 Kazemi et al. Aug 2006 B1
7089293 Grosner et al. Aug 2006 B2
7089530 Dardinski et al. Aug 2006 B1
7093005 Patterson Aug 2006 B2
7093288 Hydrie et al. Aug 2006 B1
7096258 Hunt et al. Aug 2006 B2
7099936 Chase et al. Aug 2006 B2
7103185 Srivastava et al. Sep 2006 B1
7103874 McCollum et al. Sep 2006 B2
7113900 Hunt et al. Sep 2006 B1
7117158 Weldon et al. Oct 2006 B2
7117261 Kryskow, Jr. et al. Oct 2006 B2
7120154 Bavant et al. Oct 2006 B2
7124289 Suorsa Oct 2006 B1
7127625 Farkas et al. Oct 2006 B2
7131123 Suorsa et al. Oct 2006 B2
7134011 Fung Nov 2006 B2
7134122 Sero et al. Nov 2006 B1
7139930 Mashayekhi et al. Nov 2006 B2
7139999 Bowman-Amuah Nov 2006 B2
7143420 Radhakrishnan Nov 2006 B2
7146353 Garg et al. Dec 2006 B2
7150015 Pace et al. Dec 2006 B2
7152109 Suorsa et al. Dec 2006 B2
7152157 Murphy et al. Dec 2006 B2
7155380 Hunt et al. Dec 2006 B2
7155490 Malmer et al. Dec 2006 B1
7162427 Myrick et al. Jan 2007 B1
7162509 Brown et al. Jan 2007 B2
7174379 Agarwal et al. Feb 2007 B2
7181731 Pace et al. Feb 2007 B2
7191344 Lin et al. Mar 2007 B2
7194439 Kassan et al. Mar 2007 B2
7194616 Axnix et al. Mar 2007 B2
7197418 Fuller, III et al. Mar 2007 B2
7200530 Brown et al. Apr 2007 B2
7200655 Hunt et al. Apr 2007 B2
7203911 Williams Apr 2007 B2
7213231 Bandhole et al. May 2007 B1
7222147 Black et al. May 2007 B1
7225441 Kozuch et al. May 2007 B2
7231410 Walsh et al. Jun 2007 B1
7254634 Davis et al. Aug 2007 B1
7257584 Hirschfeld et al. Aug 2007 B2
7275156 Balfanz et al. Sep 2007 B2
7278273 Whitted et al. Oct 2007 B1
7281154 Mashayekhi et al. Oct 2007 B2
7302608 Acharya et al. Nov 2007 B1
7305549 Hunt et al. Dec 2007 B2
7305561 Hunt et al. Dec 2007 B2
7313573 Leung et al. Dec 2007 B2
7315801 Dowd et al. Jan 2008 B1
7333000 Vassallo Feb 2008 B2
7349891 Charron et al. Mar 2008 B2
7350068 Anderson et al. Mar 2008 B2
7350186 Coleman et al. Mar 2008 B2
7367028 Kodosky et al. Apr 2008 B2
7370103 Hunt et al. May 2008 B2
7376125 Hussain et al. May 2008 B1
7379982 Tabbara May 2008 B2
7386721 Vilhuber et al. Jun 2008 B1
7395320 Hunt et al. Jul 2008 B2
7403901 Carley et al. Jul 2008 B1
7406517 Hunt et al. Jul 2008 B2
7461249 Pearson et al. Dec 2008 B1
7464147 Fakhouri et al. Dec 2008 B1
20010014158 Baltzley Aug 2001 A1
20010016909 Gehrmann Aug 2001 A1
20010019554 Nomura et al. Sep 2001 A1
20010020228 Cantu et al. Sep 2001 A1
20010039585 Primak et al. Nov 2001 A1
20010047400 Coates et al. Nov 2001 A1
20010051937 Ross et al. Dec 2001 A1
20020009079 Jungck et al. Jan 2002 A1
20020010771 Mandato Jan 2002 A1
20020022952 Zager et al. Feb 2002 A1
20020038421 Hamada Mar 2002 A1
20020040402 Levy-Abegnoli et al. Apr 2002 A1
20020049573 El Ata Apr 2002 A1
20020057684 Mlyamoto et al. May 2002 A1
20020069267 Thiele Jun 2002 A1
20020069369 Tremain Jun 2002 A1
20020075844 Hagen Jun 2002 A1
20020087264 Hills et al. Jul 2002 A1
20020090089 Branigan et al. Jul 2002 A1
20020095524 Sanghvi et al. Jul 2002 A1
20020099785 Teeple Jul 2002 A1
20020120761 Berg Aug 2002 A1
20020131601 Ninomiya et al. Sep 2002 A1
20020138551 Erickson Sep 2002 A1
20020152086 Smith et al. Oct 2002 A1
20020156900 Marquette et al. Oct 2002 A1
20020171690 Fox et al. Nov 2002 A1
20020194342 Lu et al. Dec 2002 A1
20020194345 Lu et al. Dec 2002 A1
20020194369 Rawlings et al. Dec 2002 A1
20020198995 Liu et al. Dec 2002 A1
20030008712 Poulin Jan 2003 A1
20030009559 Ikeda Jan 2003 A1
20030014644 Burns et al. Jan 2003 A1
20030028642 Agarwal et al. Feb 2003 A1
20030028770 Litwin, Jr. et al. Feb 2003 A1
20030041139 Beadles et al. Feb 2003 A1
20030041142 Zhang et al. Feb 2003 A1
20030041159 Tinsley et al. Feb 2003 A1
20030046615 Stone Mar 2003 A1
20030051049 Noy et al. Mar 2003 A1
20030056063 Hochmuth et al. Mar 2003 A1
20030065743 Jenny et al. Apr 2003 A1
20030069369 Belenkaya et al. Apr 2003 A1
20030074395 Eshghi et al. Apr 2003 A1
20030101284 Cabrera et al. May 2003 A1
20030105963 Slick et al. Jun 2003 A1
20030120763 Voilpano Jun 2003 A1
20030126230 Donatelli et al. Jul 2003 A1
20030126464 McDaniel et al. Jul 2003 A1
20030130833 Brownell et al. Jul 2003 A1
20030138105 Challener et al. Jul 2003 A1
20030154404 Beadles et al. Aug 2003 A1
20030165140 Tang et al. Sep 2003 A1
20030204734 Wheeler Oct 2003 A1
20030206548 Bannai et al. Nov 2003 A1
20030214908 Kumar et al. Nov 2003 A1
20030217263 Sakai Nov 2003 A1
20030225563 Gonos Dec 2003 A1
20040002878 Maria Hinton Jan 2004 A1
20040054791 Chakraborty et al. Mar 2004 A1
20040068631 Ukeda et al. Apr 2004 A1
20040073443 Gabrick et al. Apr 2004 A1
20040073795 Jablon Apr 2004 A1
20040078787 Borek et al. Apr 2004 A1
20040111315 Sharma et al. Jun 2004 A1
20040117438 Considine et al. Jun 2004 A1
20040117476 Steele et al. Jun 2004 A1
20040160386 Michelitsch et al. Aug 2004 A1
20040161111 Sherman Aug 2004 A1
20040193388 Outhred et al. Sep 2004 A1
20040199572 Hunt et al. Oct 2004 A1
20040205179 Hunt et al. Oct 2004 A1
20040208292 Winterbottom Oct 2004 A1
20040226010 Suorsa Nov 2004 A1
20040261079 Sen Dec 2004 A1
20040264481 Darling et al. Dec 2004 A1
20040267920 Hydrie et al. Dec 2004 A1
20040268357 Joy et al. Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050008001 Williams et al. Jan 2005 A1
20050021742 Yemini et al. Jan 2005 A1
20050055435 Gbadegesin et al. Mar 2005 A1
20050080811 Speeter et al. Apr 2005 A1
20050086502 Rayes et al. Apr 2005 A1
20050091078 Hunt et al. Apr 2005 A1
20050091227 McCollum et al. Apr 2005 A1
20050097097 Hunt et al. May 2005 A1
20050097146 Konstantinou et al. May 2005 A1
20050102388 Tabbara et al. May 2005 A1
20050125212 Hunt et al. Jun 2005 A1
20050138416 Qian et al. Jun 2005 A1
20050152270 Gomez Paredes et al. Jul 2005 A1
20050192971 Tabbara et al. Sep 2005 A1
20050193103 Drabik Sep 2005 A1
20050246529 Hunt et al. Nov 2005 A1
20050246771 Hunt et al. Nov 2005 A1
20050251783 Torone et al. Nov 2005 A1
20050257244 Joly et al. Nov 2005 A1
20060025984 Papaefstathiou et al. Feb 2006 A1
20060025985 Vinberg et al. Feb 2006 A1
20060031248 Vinberg et al. Feb 2006 A1
20060034263 Outhred et al. Feb 2006 A1
20060037002 Vinberg et al. Feb 2006 A1
20060048017 Anerousis et al. Mar 2006 A1
20060123040 McCarthy et al. Jun 2006 A1
20060149838 Hunt et al. Jul 2006 A1
20060155708 Brown et al. Jul 2006 A1
20060161879 Lubrecht et al. Jul 2006 A1
20060161884 Lubrecht et al. Jul 2006 A1
20060235664 Vinberg et al. Oct 2006 A1
20060259609 Hunt et al. Nov 2006 A1
20060259610 Hunt et al. Nov 2006 A1
20060271341 Brown et al. Nov 2006 A1
20070006177 Aiber et al. Jan 2007 A1
20070112847 Dublish et al. May 2007 A1
20070192769 Mimura et al. Aug 2007 A1
20080059214 Vinberg et al. Mar 2008 A1
Foreign Referenced Citations (27)
Number Date Country
1368694 Sep 2002 CN
1375685 Oct 2002 CN
0 962 861 Dec 1999 EP
0964546 Dec 1999 EP
1063815 Dec 2000 EP
1180886 Feb 2002 EP
1307018 May 2003 EP
8297567 Nov 1996 JP
11007407 Jan 1999 JP
11340980 Dec 1999 JP
2000293497 Oct 2000 JP
2001339437 Dec 2001 JP
20011526814 Dec 2001 JP
2002084302 Mar 2002 JP
2002354006 Dec 2002 JP
2003532784 Nov 2003 JP
2005155729 Dec 2006 JP
WO9930514 Jun 1999 WO
WO9963439 Dec 1999 WO
WO0022526 Apr 2000 WO
WO0031945 Jun 2000 WO
WO0073929 Dec 2000 WO
WO0237748 May 2002 WO
WO02085051 Oct 2002 WO
WO03017615 Feb 2003 WO
WO03027876 Apr 2003 WO
WO03039104 May 2003 WO