System and method for distributing keys in a wireless network

Abstract
A technique for improving authentication speed when a client roams from a first authentication domain to a second authentication domain involves coupling authenticators associated with the first and second authentication domains to an authentication server. A system according to the technique may include, for example, a first authenticator using an encryption key to ensure secure network communication, a second authenticator using the same encryption key to ensure secure network communication, and a server coupled to the first authenticator and the second authenticator wherein the server distributes, to the first authenticator and the second authenticator, information to extract the encryption key from messages that a client sends to the first authenticator and the second authenticator.
Description
BACKGROUND

Consumer demand for wireless local area network (WLAN) products (e.g. smart phones) grew rapidly in the recent past as the cost of WLAN chipsets and software fell while efficiencies rose. Along with the popularity, however, came inevitable and necessary security concerns.


The Institute of Electrical and Electronics Engineers (IEEE) initially attempted to address wireless security issues through the Wired Equivalent Privacy (WEP) standard. Unfortunately, the WEP standard quickly proved inadequate at providing the privacy it advertised and the IEEE developed the 802.11i specification in response. 802.11i provides a framework in which only trusted users are allowed to access WLAN network resources. RFC 2284, setting out an in-depth discussion of Point-to-Point Protocol Extensible Authentication Protocol (PPP EAP) by Merit Network, Inc (available at http://rfc.net/rfc2284.html as of Mar. 9, 2006), is one example of the 802.11i network authentication process and is incorporated by reference.


A typical wireless network based on the 802.11i specification comprises a supplicant common known as a client (e.g. a laptop computer), a number of wireless access points (AP), and an authentication server. In some implementations, the APs also act as authenticators that keep the WLAN closed to all unauthenticated traffic. To access the WLAN securely, an encryption key known as the Pairwise Master Key (PMK) must first be established between the client and an AP. The client and the AP then exchange a sequence of four messages known as the “four-way handshake.” The four-way handshake produces encryption keys unique to the client that are subsequently used to perform bulk data protection (e.g. message source authentication, message integrity assurance, message confidentiality, etc.).


A handoff occurs when the client roams from one AP to another. Prior to 802.11i, it was necessary for the client to re-authenticate itself each time it associates with an AP. This renegotiation results in significant latencies and may prove fatal for real-time exchanges such as voice data transfer.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated in the figures. However, the embodiments and figures are illustrative rather than limiting; they provide examples of the present invention.



FIG. 1 is a block diagram illustrating an example of a WLAN system.



FIG. 2 is a block diagram illustrating an example of a WLAN system including one or more authenticators.



FIG. 3 is a block diagram illustrating an example of a WLAN system including one or more authentication domains.



FIG. 4 depicts a flowchart of an example of a method for secure network communication.



FIG. 5 depicts a flowchart of another example of a method for secure network communication.



FIG. 6 depicts a flowchart of a method to obtain an encryption key for secure network communication.





The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings.


DETAILED DESCRIPTION

In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without one or more of these specific details or in combination with other components or process steps. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present invention.



FIG. 1 is a block diagram illustrating an example of a Wireless Local Area Network (WLAN) system 100. In the example of FIG. 1, the WLAN system 100 includes an authentication server 102, switches 104-1 to 104-N (referred to collectively hereinafter as switches 104), Access Points (APs) 106-1 to 106-N (referred to collectively hereinafter as APs 106), and clients 108-1 to 108-N (referred to collectively hereinafter as clients 108).


In the example of FIG. 1, the authentication server 102 may be any computer system that facilitates authentication of a client in a manner described later with reference to FIGS. 4-6. The authentication server 102 may be coupled to one or more of the switches 104 through, for example, a wired network, a wireless network, or a network such as the Internet. The term “Internet” as used herein refers to a network of networks which uses certain protocols, such as the TCP/IP protocol, and possibly other protocols such as the hypertext transfer protocol (HTTP) for hypertext markup language (HTML) documents that make up the World Wide Web (the web). The physical connections of the Internet and the protocols and communication procedures of the Internet are well known to those of skill in the art. In an alternative embodiment, the authentication server 102 may reside on one of the switches 104 (or, equivalently, one of the switches 104 may reside on the authentication server).


In the example of FIG. 1, the switches 104 may be any computer system that serves as an intermediary between a subset of the APs 106 and the server 102. In an alternative, the APs may include the functionality of the switches 104, obviating the need for the switches 104.


In the example of FIG. 1, the APs 106 typically include a communication port for communicating with one or more of the clients 108. The communication port for communicating with the clients 108 typically includes a radio. In an embodiment, at least some of the clients 108 are wireless clients. Accordingly, APs 108 may be referred to in the alternative as “wireless access points” since the APs 106 provide wireless access for the clients 108 to a network, such as a Local Area Network (LAN) or Virtual LAN (VLAN). The APs 106 may be coupled to the network through network interfaces, which can be Ethernet network or other network interfaces. The network may also be coupled to a gateway computer system (not shown) that can provide firewall and other Internet-related services for the network. This gateway computer system may be coupled to an Internet Service Provider (ISP) to provide Internet connectivity to the clients 108. The gateway computer system can be a conventional server computer system.


In the example of FIG. 1, the clients 108 may include any wireless device. It should be noted that clients may or not be wireless, but for illustrative purposes only, the clients 108 are assumed to include wireless devices, such as by way of example but not limitation, cell phones, PDAs, laptops, notebook computers, or any other device that makes use of 802.11 or other wireless standards. When the clients 108 are authenticated, they can communicate with the network. For illustrative purposes, clients 108 are coupled to the APs 106 by lines 110, which represent a secure connection.


In the example of FIG. 1, in operation, to communicate through data traffic in the WLAN system 100, the clients 108 typically initiate a request to access the network. An authenticator (not shown) logically stands between the clients 108 and the network to authenticate the client's identity and ensure secure communication. The authenticator may reside in any convenient location on the network, such as on one, some, or all of the APs 106, on one, some, or all of the switches 104, or at some other location. Within the 802.11i context, the authenticator ensures secure communication by encryption schemes including the distribution of encryption keys. For example, the authenticator may distribute the encryption keys using existing encryption protocols such as, by way of example but not limitation, the Otway-Rees and the Wide-Mouth Frog protocols. The authenticator may distribute the encryption keys in a known or convenient manner, as described later with reference to FIGS. 4-6.


In the example of FIG. 1, a client may transition from one authenticator to another and establish secure communication via a second authenticator. The change from one authenticator to another is illustrated in FIG. 1 as a dotted line 112 connecting the client 108-N to the AP 106-N. In a non-limiting embodiment, the secure communication via the second authenticator may be accomplished with one encryption key as long as both the first and second authenticators are coupled to the same authentication server 102. In alternative embodiments, this may or may not be the case.



FIG. 2 is a block diagram illustrating an example of a WLAN system 200 including one or more authenticators. In the example of FIG. 2, the WLAN system 200 includes authenticators 204-1 to 204-N (referred to hereinafter as the authenticators 204), and a client 208. As was previously indicated with reference to FIG. 1, the authenticators 204 may reside on APs (see, e.g., FIG. 1), switches (see, e.g., FIG. 1) or at some other location in a network.


In the example of FIG. 2, in a non-limiting embodiment, the client 208 scans different channels for an access point with which to associate in order to access the network. In an alternative embodiment, scanning may or may not be necessary to detect an access point. For example, the client 208 may know of an appropriate access point, obviating the need to scan for one. The access point may or may not have a minimum set of requirements, such as level of security or Quality of Service (QoS). In the example of FIG. 2, the client 208 determines that access point meets the required level of service and thereafter sends an association request. In an embodiment, the access request includes information such as client ID and cryptographic data. The request may be made in the form of a data packet. In another embodiment, the client 208 may generate and later send information including cryptographic data when that data is requested.


In the example of FIG. 2, the authenticator 204-1 authenticates the client 208. By way of example but not limitation, the authenticator 204-1 may first obtain a session encryption key (SEK) in order to authenticate the client 208. In one implementation, the authenticator requests the SEK and relies on an existing protocol (e.g. 802.1X) to generate a PMK as the SEK. In an alternative implementation, the SEK is pre-configured by mapping a preset value (e.g. user password) into a SEK. In the event that a preset value is used, convenient or well-known methods such as periodically resetting the value, or remapping the value with randomly generated numbers, may be employed to ensure security. In this example, once the authenticator 204-1 obtains the SEK, it proceeds to a four-way handshake whereby a new set of session keys are established for data transactions originating from client 208. Typically, the client 208 need not be authenticated again while it communicates via the authenticator 204-1. In the example of FIG. 2, the connection between the client 208 and the server 204-1 is represented by the line 210.


In the example of FIG. 2, the client 208 roams from the authenticator 204-1 to the authenticator 204-N. The connection process is represented by the arrows 212 to 216. In an embodiment, when the client 208 roams, the server 202 verifies the identity of the (new) authenticator 204-N and the client 208. When roaming, the client 208 sends a cryptographic message to authenticator 204-N including the identity of the client 208 (IDc); the identity of the server 202 (IDs); a first payload including the identity of the authenticator 204-N (IDa) and a randomly generated key (k) encrypted by a key that client 208 and the server 202 share (eskey); and a second payload including the SEK encrypted by the random key k. This cryptographic message is represented in FIG. 2 as arrow 212. In an alternative embodiment, the client 208 sends the cryptographic message along with its initial association request.


In the example of FIG. 2, in an embodiment, once authenticator 204-N receives the cryptographic message, it keeps a copy of the encrypted SEK, identifies the server 202 by the IDs, and sends a message to the server 202 including the identity of the client IDc and the first payload from the original cryptographic message having the identity of the authenticator IDa and the random key k encrypted by the share key eskey.


In the example of FIG. 2, when the server 202 receives the message from authenticator 204-N, it looks up the shared key eskey based on the identity of the client IDc and decrypts the message using the eskey. The server 202 then verifies that a trusted entity known by IDa exists and, if so, constructs another message consisting of the random key k encrypted with a key the server 202 shares with authenticator 204-N (askey) and sends that message to the authenticator 204-N. However, if the server 202 can not verify the authenticator 204-N according to IDa, the process ends and client 201 cannot access the network through the authenticator 204-N. In the event that the authenticator 204-N cannot be verified the client may attempt to access the network via another authenticator after a preset waiting period elapses.


Upon receipt of the message from the server 202, the authenticator 204-N decrypts the random key k using the shared key askey and uses k to decrypt the encryption key SEK. Having obtained the encryption key SEK, the authenticator 204-N may then proceed with a four-way handshake, which is represented in FIG. 2 for illustrative purposes as arrows 214 and 216, and allow secure data traffic between the client 208 and the network.


Advantageously, the authentication system illustrated in FIG. 2 enables a client 208 to roam efficiently from authenticator to authenticator by allowing the client 208 to keep the same encryption key SEK when transitioning between authenticators coupled to the same server 202. For example, the client 208 can move the SEK securely between authenticators by using a trusted third party (e.g. the server 202) that negotiates the distribution of the SEK without storing the SEK itself.



FIG. 3 is a block diagram illustrating an example of a WLAN system 300 including one or more authentication domains. In the example of FIG. 3, the WLAN system 300 includes a server 302, authentication domains 304-1 to 304-N (referred to hereinafter as authentication domains 304), and a network 306. The server 302 and the network 306 are similar to those described previously with reference to FIGS. 1 and 2. The authentication domains 304 include any WLANs, including virtual LANs, that are associated with individual authenticators similar to those described with reference to FIGS. 1 and 2.


The scope and boundary of the authentication domains 304 may be determined according to parameters such as geographic locations, load balancing requirements, etc. For illustrative purposes, the client 308 is depicted as roaming from the authentication domain 304-1 to the authentication domain 304-N. This may be accomplished by any known or convenient means, such as that described with reference to FIGS. 1 and 2.



FIGS. 4 to 6, which follow, serve only to illustrate by way of example. The modules are interchangeable in order and fewer or more modules may be used to promote additional features such as security or efficiency. For example, in an alternative embodiment, a client may increase security by generating and distributing a unique random key to each authenticator. In another alternative embodiment of the present invention, the authenticator employs a known or convenient encryption protocol (e.g. Otway-Rees, Wide-Mouth Frog, etc.) to obtain the encryption key.



FIG. 4 depicts a flowchart of an example of a method for secure network communication. In the example of FIG. 4, the flowchart starts at module 401 where a client sends an association request to an access point. The flowchart continues at decision point 403 where it is determined whether a preconfigured encryption key is used. If it is determined that a preconfigured encryption key is not to be used (403-NO), then the flowchart continues at module 405 with requesting an encryption key and at decision point 407 with waiting for the encryption key to be received.


In the example of FIG. 4, if a preconfigured encryption key is provided at module 403, or an encryption key has been received (407-YES), then the flowchart continues at module 409 with a four-way handshake. The flowchart then continues at module 411 where data traffic commences, and the flowchart continues to decision point 413 where it is determined whether the client is ready to transition to a new authentication domain.


In the example of FIG. 4, if it is determined that a client is ready to transition to a new authentication domain (413-YES), then the flowchart continues at module 415 when the client sends a cryptographic message to the new authenticator. In an alternative embodiment, the client sends the cryptographic message along with its initial association request and skips module 415.


The flowchart continues at module 417, where once the new authenticator receives the cryptographic message, the new authenticator sends a message to the server. If at decision point 419 the authenticator is not verified, the flowchart ends. Otherwise, the server sends a message to the authenticator at module 421. The flowchart continues at module 423 where the authenticator obtains an encryption key, at module 424 where the client and the authenticator enter a four-way handshake, and at module 427 where data traffic commences.



FIG. 5 depicts a flowchart of another example of a method for secure network communication. In the example of FIG. 5, the flowchart begins at module 501 where a client makes an association request. The flowchart continues at decision point 503, where it is determined whether a preconfigured encryption key is available. If it is determined that a preconfigured encryption key is not available (503-NO) then the flowchart continues at module 505, where an encryption key is requested, and at decision point 507 where it is determined whether an encryption key is received. If it is determined that an encryption is not received (507-NO), the flowchart continues from module 505. If, on the other hand, it is determined that an encryption key is received (507-YES), or if a preconfigured encryption key is available (503-YES), then the flowchart continues at module 509 with a four-way handshake. In the example of FIG. 5, the flowchart continues at module 511, where data traffic commences, and at decision point 513, where it is determined whether a client is ready to transition. If it is determined that a client is not ready to transition (513-NO), then the flowchart continues at module 511 and at decision point 513 until the client is ready to transition (513-YES). The flowchart continues at module 515, where an authenticator obtains an encryption key using an established cryptographic protocol. The flowchart continues at module 517 with a four-way handshake, and at module 519 where data traffic commences.



FIG. 6 depicts a flowchart of a method to obtain an encryption key for secure network communication. In one embodiment, a client transitions from a first authenticator to a second authenticator, both of which coupled to the same server, and establishes secure communication with the first and the second authenticator using one encryption key.


At module 601, a client generates a first key. In one embodiment, the first key is randomly generated. In an alternative embodiment, the first key is generated according to a preset value such as by requesting a value (e.g. password) from a user. In yet another alternative embodiment, the first key is a constant value such as a combination of the current date, time, etc.


At module 603, the client obtains a second key. In one implementation, the generation of the second key relies on an existing protocol (e.g. 802.1X). In an alternative implementation, the second key is pre-configured (e.g. user password). In yet another alternative implementation, the second key is a combination of a pre-configured value and a randomly generated value.


At module 605, the client constructs a first message using the first key and the second key. In one embodiment, the message is a data packet comprising cryptographic data using the first and the second key. Furthermore, in one embodiment, the first message comprises the second key encrypted with the first key.


At module 607, the client sends the first message to an authenticator. In one embodiment, the authenticator is a second authenticator from which the client transitions from a first authenticator.


At module 609, the authenticator constructs a second message using data from the first message. In one implementation, the authenticator constructs the second message comprising the client's identity, and an encrypted portion having identity of the authenticator and the first key.


At module 611, the authenticator sends the second message to a server with which the authenticator is coupled. At module 613, the server decrypts an encrypted portion of the second message. In one implementation, the encrypted portion of the second message comprises the identity of the authenticator and the first key.


Subsequently at module 615, the server verifies the authenticator with the decrypted identity information extracted from the second message. If the server cannot verify the authenticator according to the identification information, as shown at decision point 617, the client cannot communicate through the authenticator. If, on the other hand, the server verifies the authenticator, the server constructs a third message with the first key that it extracted from the second message at module 619. In one implementation, the third message comprises the first key encrypted with a third key that the server shares with the authenticator. The server then sends the third message to the authenticator at module 621.


After receiving the third message, the authenticator extracts the first key from the message at module 623. In one implementation, the authenticator extracts the first key using a third key it shares with the server. With the first key, the authenticator then decrypts the cryptographic data in the first message and extracts the second key at module 625. Having obtained the second key, the authenticator establishes secure data traffic/communication with the client using the second key. In one embodiment, the authenticator is a second authenticator to which the client transitions from a first authenticator coupled to the server, and the client communicates securely with both the first and the second authenticator using the second key.


As used herein, the term “embodiment” means an embodiment that serves to illustrate by way of example but not limitation. It may be noted that, in an embodiment, timestamps can be observed to measure roaming time.


It will be appreciated to those skilled in the art that the preceding examples and embodiments are exemplary and not limiting to the scope of the present invention. It is intended that all permutations, enhancements, equivalents, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present invention. It is therefore intended that the following appended claims include all such modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.

Claims
  • 1. An apparatus comprising: a first authenticator configured to be coupled to a server,
  • 2. The apparatus of claim 1, wherein the first authenticator is implemented in a switch or an access point within the network.
  • 3. The apparatus of claim 1, wherein: the encryption key is encrypted by a client-generated key in the second message,the client-generated key is encrypted, in the second message, by a key associated with the client and the server.
  • 4. The apparatus of claim 1, wherein: the encryption key is encrypted by a client-generated key in the second message,the third message includes the client-generated key encrypted by a key associated with the client and the server.
  • 5. The apparatus of claim 1, wherein: the encryption key is encrypted by a client-generated key in the second message,the extraction information includes the client-generated key encrypted by a key associated with the first authenticator and the server.
  • 6. The apparatus of claim 1, wherein: the encryption key is encrypted by a client-generated key in the second message,the first authenticator is configured to decrypt and extract the client-generated key from the extraction information using a key associated with the first authenticator and the server.
  • 7. The apparatus of claim 1, wherein the first authenticator is configured to extract the encryption key from the second message based on the extraction information.
  • 8. The apparatus of claim 1, wherein: the third message includes an identifier of the first authenticator,the first authenticator is configured to receive the extraction information from the server in response to the identifier of the first authenticator being verified at the server.
  • 9. The apparatus of claim 1, wherein the first authenticator and the second authenticator are included in different authentication domains.
  • 10. An apparatus comprising: a server operatively coupled to a first authenticator and a second authenticator, the server configured to receive a first message including a first key associated with a client from the first authenticator,the server configured to send a second message including the first key to the first authenticator in response to the first message such that secure communication is established between the client and the first authenticator using an encryption key,the server configured to receive a third message including a second key associated with the client from the second authenticator,the server configured to send a fourth message including the second key to the second authenticator in response to the third message such that secure communication is established between the client and the second authenticator using the encryption key.
  • 11. The apparatus of claim 10, wherein: the server is configured to extract the first key from the first message using a third key associated with the client and the server,the server is configured to extract the second key from the third message using the third key.
  • 12. The apparatus of claim 10, wherein: the server is configured to encrypt the first key in the second message using a fourth key associated with the first authenticator and the server,the server is configured to encrypt the second key in the fourth message using a fifth key associated with the second authenticator and the server.
  • 13. The apparatus of claim 10, wherein: the first message includes an identifier of the first authenticator,the server is configured to verify the identifier of the first authenticator, the server configured to send the second message to the first authenticator in response to the identifier of the first authenticator being verified.
  • 14. The apparatus of claim 10, wherein the first authenticator and the second authenticator are included in different authentication domains.
  • 15. A method, comprising: receive, from an authenticator at a server, a first message including cryptographic data including a first key and an identifier of the authenticator in response to the authenticator receiving from a client a second message including cryptographic data having the first key and a second key;extract the first key and the identifier of the authenticator from the first message at the server;if the identifier of the authenticator is verified at the server, encrypt the first key, in a third message at the server, by a key associated with the authenticator and the server; andsend the third message from the server to the authenticator such that the authenticator extracts the first key from the third message, extracts the second key from the second message using the first key, and sends a signal configured to establish secure communication between the client and a network associated with the authenticator using the second key.
  • 16. The method of claim 15, wherein the second key is encrypted by the first key in the second message.
  • 17. The method of claim 15, wherein the first key is encrypted, in the first message and the second message, by a key associated with the client and the server.
  • 18. The method of claim 15, wherein: the authenticator is a first authenticator associated with the network,at a time before the second message is received at the first authenticator, the client is authenticated at a second authenticator associated with the network and secure communication is established between the client and the network using the second key.
  • 19. The method of claim 15, wherein the authenticator is implemented in a network switch or an access point.
  • 20. The method of claim 15, wherein the first key is randomly generated at the client.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/401,073, entitled “SYSTEM AND METHOD FOR DISTRIBUTING KEYS IN A WIRELESS NETWORK,” filed Mar. 10, 2009, (now U.S. Pat. No. 8,161,278), which is a continuation of U.S. application Ser. No. 11/377,859, filed Mar. 15, 2006 (now U.S. Pat. No. 7,529,925), which claims priority to and the benefit of U.S. Provisional Application No. 60/661,831, filed Mar. 15, 2005, all of which are incorporated by reference herewith in their entireties.

US Referenced Citations (571)
Number Name Date Kind
3641433 Mifflin et al. Feb 1972 A
4168400 De Couasnon et al. Sep 1979 A
4176316 DeRosa et al. Nov 1979 A
4247908 Lockhart et al. Jan 1981 A
4291401 Bachmann Sep 1981 A
4291409 Weinberg et al. Sep 1981 A
4409470 Shepard et al. Oct 1983 A
4460120 Shepard et al. Jul 1984 A
4475208 Ricketts Oct 1984 A
4494238 Groth, Jr. Jan 1985 A
4500987 Hasegawa Feb 1985 A
4503533 Tobagi et al. Mar 1985 A
4550414 Guinon et al. Oct 1985 A
4562415 McBiles Dec 1985 A
4630264 Wah Dec 1986 A
4635221 Kerr Jan 1987 A
4639914 Winters Jan 1987 A
4644523 Horwitz Feb 1987 A
4672658 Kavehrad Jun 1987 A
4673805 Shepard et al. Jun 1987 A
4707839 Andren et al. Nov 1987 A
4730340 Frazier Mar 1988 A
4736095 Shepard et al. Apr 1988 A
4740792 Sagey et al. Apr 1988 A
4758717 Shepard et al. Jul 1988 A
4760586 Takeda Jul 1988 A
4789983 Acampora et al. Dec 1988 A
4829540 Waggener et al. May 1989 A
4850009 Zook et al. Jul 1989 A
4872182 Mcrae et al. Oct 1989 A
4894842 Brockhoven et al. Jan 1990 A
4901307 Gilhousen et al. Feb 1990 A
4933952 Albrieux et al. Jun 1990 A
4933953 Yagi Jun 1990 A
4955053 Siegmund Sep 1990 A
4995053 Simpson et al. Feb 1991 A
5008899 Yamamoto Apr 1991 A
5027343 Chan et al. Jun 1991 A
5029183 Tymes Jul 1991 A
5103459 Gilhousen et al. Apr 1992 A
5103461 Tymes Apr 1992 A
5109390 Gilhousen et al. Apr 1992 A
5119502 Kallin et al. Jun 1992 A
5142550 Tymes Aug 1992 A
5151919 Dent Sep 1992 A
5157687 Tymes Oct 1992 A
5187575 Lim Feb 1993 A
5231633 Hluchy et al. Jul 1993 A
5280498 Tymes et al. Jan 1994 A
5285494 Sprecher et al. Feb 1994 A
5327144 Stilp et al. Jul 1994 A
5329531 Diepstraten Jul 1994 A
5339316 Diepstraten Aug 1994 A
5371783 Rose et al. Dec 1994 A
5418812 Reyes et al. May 1995 A
5444851 Woest Aug 1995 A
5450615 Fortune et al. Sep 1995 A
5465401 Thompson Nov 1995 A
5479441 Tymes et al. Dec 1995 A
5483676 Mahany et al. Jan 1996 A
5488569 Kaplan et al. Jan 1996 A
5491644 Pickering et al. Feb 1996 A
5517495 Lund May 1996 A
5519762 Bartlett May 1996 A
5528621 Heiman et al. Jun 1996 A
5542100 Hatakeyama Jul 1996 A
5546389 Wippenbeck et al. Aug 1996 A
5561841 Markus Oct 1996 A
5568513 Croft et al. Oct 1996 A
5570366 Baker et al. Oct 1996 A
5584048 Wieczorek Dec 1996 A
5598532 Liron Jan 1997 A
5630207 Gitlin et al. May 1997 A
5640414 Blakeney et al. Jun 1997 A
5649289 Wang et al. Jul 1997 A
5668803 Tymes et al. Sep 1997 A
5677954 Hirata et al. Oct 1997 A
5706428 Boer et al. Jan 1998 A
5715304 Nishida et al. Feb 1998 A
5729542 Dupont Mar 1998 A
5742592 Scholefield et al. Apr 1998 A
5774460 Schiffel et al. Jun 1998 A
5793303 Koga Aug 1998 A
5794128 Brockel et al. Aug 1998 A
5812589 Sealander et al. Sep 1998 A
5815811 Pinard et al. Sep 1998 A
5828653 Goss Oct 1998 A
5828960 Tang et al. Oct 1998 A
5835061 Stewart Nov 1998 A
5838907 Hansen Nov 1998 A
5844900 Hong et al. Dec 1998 A
5852722 Hamilton Dec 1998 A
5862475 Zicker et al. Jan 1999 A
5872968 Knox et al. Feb 1999 A
5875179 Tikalsky Feb 1999 A
5887259 Zicker et al. Mar 1999 A
5896561 Schrader et al. Apr 1999 A
5909686 Muller et al. Jun 1999 A
5915214 Reece et al. Jun 1999 A
5920821 Seazholtz et al. Jul 1999 A
5933607 Tate et al. Aug 1999 A
5938721 Dussell et al. Aug 1999 A
5949988 Feisullin et al. Sep 1999 A
5953669 Stratis et al. Sep 1999 A
5960335 Umemoto et al. Sep 1999 A
5969678 Stewart Oct 1999 A
5970066 Lowry et al. Oct 1999 A
5977913 Christ Nov 1999 A
5980078 Krivoshein et al. Nov 1999 A
5982779 Krishnakumar et al. Nov 1999 A
5987062 Engwer et al. Nov 1999 A
5987328 Ephremides et al. Nov 1999 A
5991817 Rowett et al. Nov 1999 A
5999813 Lu et al. Dec 1999 A
6005853 Wang et al. Dec 1999 A
6011784 Brown Jan 2000 A
6012088 Li et al. Jan 2000 A
6029196 Lenz Feb 2000 A
6041240 McCarthy et al. Mar 2000 A
6041358 Huang et al. Mar 2000 A
6070243 See et al. May 2000 A
6073075 Kondou et al. Jun 2000 A
6073152 De Vries Jun 2000 A
6078568 Wright Jun 2000 A
6088591 Trompower et al. Jul 2000 A
6101539 Kennelly et al. Aug 2000 A
6115390 Chuah Sep 2000 A
6118771 Tajika et al. Sep 2000 A
6119009 Baranger et al. Sep 2000 A
6122520 Want et al. Sep 2000 A
6144638 Obenhuber et al. Nov 2000 A
6148199 Hoffman et al. Nov 2000 A
6154776 Martin Nov 2000 A
6160804 Ahmed et al. Dec 2000 A
6177905 Welch Jan 2001 B1
6188649 Birukawa et al. Feb 2001 B1
6199032 Anderson Mar 2001 B1
6208629 Jaszewki et al. Mar 2001 B1
6208841 Wallace et al. Mar 2001 B1
6212395 Lu et al. Apr 2001 B1
6218930 Katzenberg et al. Apr 2001 B1
6240078 Kuhnel et al. May 2001 B1
6240083 Wright May 2001 B1
6240291 Narasimhan et al. May 2001 B1
6246751 Bergl et al. Jun 2001 B1
6249252 Dupray Jun 2001 B1
6256300 Ahmed et al. Jul 2001 B1
6256334 Adachi Jul 2001 B1
6259405 Stewart et al. Jul 2001 B1
6262988 Vig Jul 2001 B1
6269246 Rao et al. Jul 2001 B1
6285662 Watanabe Sep 2001 B1
6304596 Yamano et al. Oct 2001 B1
6304906 Bhatti et al. Oct 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6326918 Stewart Dec 2001 B1
6336035 Somoza et al. Jan 2002 B1
6336152 Richman et al. Jan 2002 B1
6347091 Wallentin et al. Feb 2002 B1
6356758 Almeida et al. Mar 2002 B1
6393290 Ufongene May 2002 B1
6397040 Titmuss et al. May 2002 B1
6404772 Beach et al. Jun 2002 B1
6421714 Rai et al. Jul 2002 B1
6429879 Sturgeon et al. Aug 2002 B1
6446206 Feldbaum Sep 2002 B1
6456239 Werb et al. Sep 2002 B1
6470025 Wilson et al. Oct 2002 B1
6473449 Cafarella et al. Oct 2002 B1
6493679 Rappaport et al. Dec 2002 B1
6496290 Lee Dec 2002 B1
6512916 Forbes, Jr. Jan 2003 B1
6526275 Calvert Feb 2003 B1
6535732 McIntosh et al. Mar 2003 B1
6564380 Murphy May 2003 B1
6567146 Hirakata et al. May 2003 B2
6567416 Chuah May 2003 B1
6574240 Tzeng Jun 2003 B1
6580700 Pinard et al. Jun 2003 B1
6587680 Ala-Laurila et al. Jul 2003 B1
6587835 Treyz et al. Jul 2003 B1
6603970 Huelamo Platas et al. Aug 2003 B1
6614787 Jain et al. Sep 2003 B1
6615276 Mastrianni et al. Sep 2003 B1
6624762 End, III Sep 2003 B1
6625454 Rappaport et al. Sep 2003 B1
6631267 Clarkson et al. Oct 2003 B1
6650912 Chen et al. Nov 2003 B2
6658389 Alpdemir Dec 2003 B1
6659947 Carter et al. Dec 2003 B1
6661787 O'Connell et al. Dec 2003 B1
6674403 Gray et al. Jan 2004 B2
6677894 Sheynblat et al. Jan 2004 B2
6678516 Nordman et al. Jan 2004 B2
6678802 Hickson Jan 2004 B2
6687498 McKenna et al. Feb 2004 B2
6697415 Mahany Feb 2004 B1
6721334 Ketcham Apr 2004 B1
6725260 Philyaw Apr 2004 B1
6738629 McCormick et al. May 2004 B1
6747961 Ahmed et al. Jun 2004 B1
6756940 Oh et al. Jun 2004 B2
6760324 Scott et al. Jul 2004 B1
6785275 Boivie et al. Aug 2004 B1
6798788 Viswanath et al. Sep 2004 B1
6801782 McCrady et al. Oct 2004 B2
6826399 Hoffman et al. Nov 2004 B1
6839338 Amara et al. Jan 2005 B1
6839348 Tang et al. Jan 2005 B2
6839388 Vaidyanathan Jan 2005 B2
6847620 Meier Jan 2005 B1
6847892 Zhou et al. Jan 2005 B2
6856800 Henry et al. Feb 2005 B1
6879812 Agrawal et al. Apr 2005 B2
6901439 Bonasia et al. May 2005 B1
6917688 Yu et al. Jul 2005 B2
6934260 Kanuri Aug 2005 B1
6937566 Forslow Aug 2005 B1
6938079 Anderson et al. Aug 2005 B1
6957067 Iyer et al. Oct 2005 B1
6973622 Rappaport et al. Dec 2005 B1
6978301 Tindal Dec 2005 B2
6980533 Abraham et al. Dec 2005 B1
6985469 Leung Jan 2006 B2
6993683 Bhat et al. Jan 2006 B2
6996630 Masaki et al. Feb 2006 B1
7013157 Norman et al. Mar 2006 B1
7020438 Sinivaara et al. Mar 2006 B2
7020773 Otway et al. Mar 2006 B1
7024199 Massie et al. Apr 2006 B1
7024394 Ashour et al. Apr 2006 B1
7027773 McMillin Apr 2006 B1
7031705 Grootwassink Apr 2006 B2
7035220 Simcoe Apr 2006 B1
7039037 Wang et al. May 2006 B2
7058414 Rofheart et al. Jun 2006 B1
7062566 Amara et al. Jun 2006 B2
7068999 Ballai Jun 2006 B2
7079537 Kanuri et al. Jul 2006 B1
7089322 Stallmann Aug 2006 B1
7092529 Yu et al. Aug 2006 B2
7110756 Diener Sep 2006 B2
7116979 Backes et al. Oct 2006 B2
7126913 Patel et al. Oct 2006 B1
7134012 Doyle et al. Nov 2006 B2
7139829 Wenzel et al. Nov 2006 B2
7142867 Gandhi et al. Nov 2006 B1
7146166 Backes et al. Dec 2006 B2
7155236 Chen et al. Dec 2006 B2
7155518 Forslow Dec 2006 B2
7158777 Lee et al. Jan 2007 B2
7159016 Baker Jan 2007 B2
7221927 Kolar et al. May 2007 B2
7224970 Smith et al. May 2007 B2
7239862 Clare et al. Jul 2007 B1
7246243 Uchida Jul 2007 B2
7263366 Miyashita Aug 2007 B2
7274730 Nakabayashi Sep 2007 B2
7280495 Zweig et al. Oct 2007 B1
7290051 Dobric et al. Oct 2007 B2
7293136 More et al. Nov 2007 B1
7310664 Merchant et al. Dec 2007 B1
7317914 Adya et al. Jan 2008 B2
7320070 Baum Jan 2008 B2
7324468 Fischer Jan 2008 B2
7324487 Saito Jan 2008 B2
7324489 Iyer et al. Jan 2008 B1
7350077 Meier et al. Mar 2008 B2
7359676 Hrastar Apr 2008 B2
7370362 Olson et al. May 2008 B2
7376080 Riddle et al. May 2008 B1
7379423 Caves et al. May 2008 B1
7382756 Barber et al. Jun 2008 B2
7417953 Hicks et al. Aug 2008 B2
7421248 Laux et al. Sep 2008 B1
7421487 Peterson et al. Sep 2008 B1
7440416 Mahany et al. Oct 2008 B2
7443823 Hunkeler et al. Oct 2008 B2
7447502 Buckley Nov 2008 B2
7451316 Halasz et al. Nov 2008 B2
7460855 Barkley et al. Dec 2008 B2
7466678 Cromer et al. Dec 2008 B2
7475130 Silverman Jan 2009 B2
7477894 Sinha Jan 2009 B1
7480264 Duo et al. Jan 2009 B1
7483390 Rover et al. Jan 2009 B2
7489648 Griswold Feb 2009 B2
7493407 Leedom et al. Feb 2009 B2
7505434 Backes Mar 2009 B1
7509096 Palm et al. Mar 2009 B2
7529925 Harkins May 2009 B2
7551574 Peden, II et al. Jun 2009 B1
7551619 Tiwari Jun 2009 B2
7558266 Hu Jul 2009 B2
7570656 Raphaeli et al. Aug 2009 B2
7573859 Taylor Aug 2009 B2
7577453 Matta Aug 2009 B2
7592906 Hanna et al. Sep 2009 B1
7636363 Chang et al. Dec 2009 B2
7680501 Sillasto et al. Mar 2010 B2
7693526 Qian et al. Apr 2010 B2
7715432 Bennett May 2010 B2
7716379 Ruan et al. May 2010 B2
7724703 Matta et al. May 2010 B2
7724704 Simons et al. May 2010 B2
7729278 Chari et al. Jun 2010 B2
7733868 Van Zijst Jun 2010 B2
7746897 Stephenson et al. Jun 2010 B2
7788475 Zimmer et al. Aug 2010 B2
7805529 Galluzzo et al. Sep 2010 B2
7817554 Skog et al. Oct 2010 B2
7844298 Riley Nov 2010 B2
7865713 Chesnutt et al. Jan 2011 B2
7873061 Gast et al. Jan 2011 B2
7894852 Hansen Feb 2011 B2
7912982 Murphy Mar 2011 B2
7929922 Kubo Apr 2011 B2
7945399 Nosovitsky et al. May 2011 B2
7986940 Lee et al. Jul 2011 B2
20010024953 Balogh Sep 2001 A1
20020021701 Lavian et al. Feb 2002 A1
20020052205 Belostotsky et al. May 2002 A1
20020060995 Cervello et al. May 2002 A1
20020062384 Tso May 2002 A1
20020069278 Forslow Jun 2002 A1
20020078361 Giroux et al. Jun 2002 A1
20020080790 Beshai Jun 2002 A1
20020087699 Karagiannis et al. Jul 2002 A1
20020094824 Kennedy et al. Jul 2002 A1
20020095486 Bahl Jul 2002 A1
20020101868 Clear et al. Aug 2002 A1
20020116655 Lew et al. Aug 2002 A1
20020157020 Royer Oct 2002 A1
20020174137 Wolff et al. Nov 2002 A1
20020176437 Busch et al. Nov 2002 A1
20020191572 Weinstein et al. Dec 2002 A1
20020194251 Richter et al. Dec 2002 A1
20030014646 Buddhikot et al. Jan 2003 A1
20030018889 Burnett et al. Jan 2003 A1
20030043073 Gray et al. Mar 2003 A1
20030055959 Sato Mar 2003 A1
20030107590 Levillain et al. Jun 2003 A1
20030120764 Laye et al. Jun 2003 A1
20030133450 Baum Jul 2003 A1
20030134642 Kostic et al. Jul 2003 A1
20030135762 Macaulay Jul 2003 A1
20030156586 Lee et al. Aug 2003 A1
20030174706 Shankar et al. Sep 2003 A1
20030193910 Shoaib et al. Oct 2003 A1
20030204596 Yadav Oct 2003 A1
20030227934 White et al. Dec 2003 A1
20040002343 Brauel et al. Jan 2004 A1
20040003285 Whelan et al. Jan 2004 A1
20040019857 Teig et al. Jan 2004 A1
20040025044 Day Feb 2004 A1
20040029580 Haverinen et al. Feb 2004 A1
20040030777 Reedy et al. Feb 2004 A1
20040038687 Nelson Feb 2004 A1
20040044749 Harkin Mar 2004 A1
20040047320 Eglin Mar 2004 A1
20040053632 Nikkelen et al. Mar 2004 A1
20040054569 Pombo et al. Mar 2004 A1
20040054774 Barber et al. Mar 2004 A1
20040054926 Ocepek et al. Mar 2004 A1
20040062267 Minami et al. Apr 2004 A1
20040064560 Zhang et al. Apr 2004 A1
20040068668 Lor et al. Apr 2004 A1
20040078598 Barber et al. Apr 2004 A1
20040093506 Grawrock et al. May 2004 A1
20040095914 Katsube et al. May 2004 A1
20040095932 Astarabadi et al. May 2004 A1
20040106403 Mori et al. Jun 2004 A1
20040111640 Baum Jun 2004 A1
20040114546 Seshadri et al. Jun 2004 A1
20040119641 Rapeli Jun 2004 A1
20040120370 Lupo Jun 2004 A1
20040143428 Rappaport et al. Jul 2004 A1
20040165545 Cook Aug 2004 A1
20040174900 Volpi et al. Sep 2004 A1
20040184475 Meier Sep 2004 A1
20040208570 Reader Oct 2004 A1
20040214572 Thompson et al. Oct 2004 A1
20040221042 Meier Nov 2004 A1
20040230370 Tzamaloukas Nov 2004 A1
20040233234 Chaudhry et al. Nov 2004 A1
20040236702 Fink et al. Nov 2004 A1
20040246937 Duong et al. Dec 2004 A1
20040246962 Kopeikin et al. Dec 2004 A1
20040252656 Shiu et al. Dec 2004 A1
20040255167 Knight Dec 2004 A1
20040259542 Viitamaki et al. Dec 2004 A1
20040259555 Rappaport et al. Dec 2004 A1
20040259575 Perez-Breva et al. Dec 2004 A1
20050015592 Lin Jan 2005 A1
20050021979 Wiedmann et al. Jan 2005 A1
20050025105 Rue Feb 2005 A1
20050026611 Backes Feb 2005 A1
20050030894 Stephens Feb 2005 A1
20050030929 Swier et al. Feb 2005 A1
20050037818 Seshadri et al. Feb 2005 A1
20050040968 Damarla et al. Feb 2005 A1
20050054326 Rogers Mar 2005 A1
20050054350 Zegelin Mar 2005 A1
20050058132 Okano et al. Mar 2005 A1
20050059405 Thomson et al. Mar 2005 A1
20050059406 Thomson et al. Mar 2005 A1
20050064873 Karaoguz et al. Mar 2005 A1
20050068925 Palm et al. Mar 2005 A1
20050073980 Thomson et al. Apr 2005 A1
20050078644 Tsai et al. Apr 2005 A1
20050097618 Arling et al. May 2005 A1
20050114649 Challener et al. May 2005 A1
20050120125 Morten et al. Jun 2005 A1
20050122927 Wentink Jun 2005 A1
20050122977 Lieberman Jun 2005 A1
20050128142 Shin et al. Jun 2005 A1
20050128989 Bhagwat et al. Jun 2005 A1
20050144237 Heredia et al. Jun 2005 A1
20050154933 Hsu et al. Jul 2005 A1
20050157730 Grant et al. Jul 2005 A1
20050159154 Goren Jul 2005 A1
20050163078 Oba et al. Jul 2005 A1
20050163146 Ota et al. Jul 2005 A1
20050175027 Miller et al. Aug 2005 A1
20050180345 Meier Aug 2005 A1
20050180358 Kolar et al. Aug 2005 A1
20050181805 Gallagher Aug 2005 A1
20050190714 Gorbatov et al. Sep 2005 A1
20050193103 Drabik Sep 2005 A1
20050207336 Choi et al. Sep 2005 A1
20050213519 Relan et al. Sep 2005 A1
20050220033 DelRegno et al. Oct 2005 A1
20050223111 Bhandaru et al. Oct 2005 A1
20050239461 Verma et al. Oct 2005 A1
20050240665 Gu et al. Oct 2005 A1
20050243737 Dooley et al. Nov 2005 A1
20050245258 Classon et al. Nov 2005 A1
20050245269 Demirhan et al. Nov 2005 A1
20050259597 Benedetto et al. Nov 2005 A1
20050259611 Bhagwat et al. Nov 2005 A1
20050270992 Sanzgiri et al. Dec 2005 A1
20050273442 Bennett et al. Dec 2005 A1
20050276218 Ooghe et al. Dec 2005 A1
20050286466 Tagg et al. Dec 2005 A1
20060030290 Rudolf et al. Feb 2006 A1
20060035662 Jeong et al. Feb 2006 A1
20060039395 Perez-Costa et al. Feb 2006 A1
20060041683 Subramanian et al. Feb 2006 A1
20060045050 Floros et al. Mar 2006 A1
20060046744 Dublish et al. Mar 2006 A1
20060050742 Grandhi et al. Mar 2006 A1
20060073847 Pirzada et al. Apr 2006 A1
20060094440 Meier et al. May 2006 A1
20060098607 Zeng et al. May 2006 A1
20060104224 Singh et al. May 2006 A1
20060114872 Hamada Jun 2006 A1
20060117174 Lee Jun 2006 A1
20060128415 Horikoshi et al. Jun 2006 A1
20060143496 Silverman Jun 2006 A1
20060152344 Mowery Jul 2006 A1
20060160540 Strutt et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060165103 Trudeau et al. Jul 2006 A1
20060168383 Lin Jul 2006 A1
20060174336 Chen Aug 2006 A1
20060178168 Roach Aug 2006 A1
20060182118 Lam et al. Aug 2006 A1
20060189311 Cromer et al. Aug 2006 A1
20060193258 Ballai Aug 2006 A1
20060200862 Olson et al. Sep 2006 A1
20060206582 Finn Sep 2006 A1
20060215601 Vieugels et al. Sep 2006 A1
20060217131 Alizadeh-Shabdiz et al. Sep 2006 A1
20060245393 Bajic Nov 2006 A1
20060248229 Saunderson et al. Nov 2006 A1
20060248331 Harkins Nov 2006 A1
20060274774 Srinivasan et al. Dec 2006 A1
20060276192 Dutta et al. Dec 2006 A1
20060285489 Francisco et al. Dec 2006 A1
20060292992 Tajima et al. Dec 2006 A1
20070002833 Bajic Jan 2007 A1
20070008884 Tang Jan 2007 A1
20070011318 Roth Jan 2007 A1
20070025265 Porras et al. Feb 2007 A1
20070025306 Cox et al. Feb 2007 A1
20070027964 Herrod et al. Feb 2007 A1
20070054616 Culbert Mar 2007 A1
20070058598 Ling Mar 2007 A1
20070064673 Bhandaru et al. Mar 2007 A1
20070064718 Ekl et al. Mar 2007 A1
20070067823 Shim et al. Mar 2007 A1
20070070937 Demirhan et al. Mar 2007 A1
20070076694 Iyer et al. Apr 2007 A1
20070083924 Lu Apr 2007 A1
20070086378 Matta et al. Apr 2007 A1
20070086397 Taylor Apr 2007 A1
20070086398 Tiwari Apr 2007 A1
20070091845 Brideglall Apr 2007 A1
20070091889 Xiao et al. Apr 2007 A1
20070098086 Bhaskaran May 2007 A1
20070104197 King May 2007 A1
20070115842 Matsuda et al. May 2007 A1
20070133494 Lai et al. Jun 2007 A1
20070135866 Baker et al. Jun 2007 A1
20070136372 Proctor et al. Jun 2007 A1
20070160046 Matta Jul 2007 A1
20070171909 Pignatelli Jul 2007 A1
20070183375 Tiwari Aug 2007 A1
20070189222 Kolar et al. Aug 2007 A1
20070195793 Grosser et al. Aug 2007 A1
20070230457 Kodera et al. Oct 2007 A1
20070248009 Petersen Oct 2007 A1
20070253380 Jollota et al. Nov 2007 A1
20070255116 Mehta et al. Nov 2007 A1
20070258448 Hu Nov 2007 A1
20070260720 Morain Nov 2007 A1
20070268506 Zeldin Nov 2007 A1
20070268514 Zeldin et al. Nov 2007 A1
20070268515 Freund et al. Nov 2007 A1
20070268516 Bugwadia et al. Nov 2007 A1
20070286208 Kanada et al. Dec 2007 A1
20070287390 Murphy et al. Dec 2007 A1
20070291689 Kapur et al. Dec 2007 A1
20070297329 Park et al. Dec 2007 A1
20080002588 McCaughan et al. Jan 2008 A1
20080008117 Alizadeh-Shabdiz Jan 2008 A1
20080013481 Simons et al. Jan 2008 A1
20080014916 Chen Jan 2008 A1
20080031257 He Feb 2008 A1
20080056200 Johnson Mar 2008 A1
20080056211 Kim et al. Mar 2008 A1
20080064356 Khayrallah Mar 2008 A1
20080069018 Gast Mar 2008 A1
20080080441 Park et al. Apr 2008 A1
20080096575 Aragon et al. Apr 2008 A1
20080102815 Sengupta et al. May 2008 A1
20080107077 Murphy May 2008 A1
20080114784 Murphy May 2008 A1
20080117822 Murphy et al. May 2008 A1
20080151844 Tiwari Jun 2008 A1
20080159319 Gast et al. Jul 2008 A1
20080162921 Chesnutt et al. Jul 2008 A1
20080220772 Islam et al. Sep 2008 A1
20080226075 Gast Sep 2008 A1
20080228942 Lor et al. Sep 2008 A1
20080250496 Namihira Oct 2008 A1
20080261615 Kalhan Oct 2008 A1
20080276303 Gast Nov 2008 A1
20090031044 Barrack et al. Jan 2009 A1
20090046688 Volpi et al. Feb 2009 A1
20090059930 Ryan et al. Mar 2009 A1
20090067436 Gast Mar 2009 A1
20090073905 Gast Mar 2009 A1
20090131082 Gast May 2009 A1
20090247103 Aragon Oct 2009 A1
20090257437 Tiwari Oct 2009 A1
20090260083 Szeto et al. Oct 2009 A1
20090274060 Taylor Nov 2009 A1
20090287816 Matta et al. Nov 2009 A1
20090293106 Peden, II et al. Nov 2009 A1
20100002610 Bowser et al. Jan 2010 A1
20100024007 Gast Jan 2010 A1
20100040059 Hu Feb 2010 A1
20100067379 Zhao et al. Mar 2010 A1
20100172276 Aragon Jul 2010 A1
20100180016 Bugwadia et al. Jul 2010 A1
20100195549 Aragon et al. Aug 2010 A1
20100261475 Kim et al. Oct 2010 A1
20100329177 Murphy et al. Dec 2010 A1
20110128858 Matta et al. Jun 2011 A1
20110158122 Murphy et al. Jun 2011 A1
Foreign Referenced Citations (17)
Number Date Country
0 992 921 Apr 2000 EP
1 542 409 Jun 2005 EP
2 329 801 Mar 1999 GB
2429080 Feb 2007 GB
2000-215169 Aug 2000 JP
2003-234751 Aug 2003 JP
2003274454 Sep 2003 JP
2004-032525 Jan 2004 JP
WO 9403986 Feb 1994 WO
WO 9911003 Mar 1999 WO
WO 0006271 Feb 2000 WO
WO 0018148 Mar 2000 WO
WO 02089442 Nov 2002 WO
WO 03085544 Oct 2003 WO
WO 2004013986 Feb 2004 WO
WO 2004095192 Nov 2004 WO
WO 2004095800 Nov 2004 WO
Non-Patent Literature Citations (139)
Entry
Acampora and Winters, “A Wireless Network for Wide-Band Indoor Communications,” IEEE Journal on selected Areas in Communications, vol. SAC-5, No. 5, Jun. 1987, pp. 796-804.
Acampora and Winters, “System Applications for Wireless Indoor Communications” IEEE Communications Magazine, vol. 25, No. 8, Aug. 1987, pp. 11-20.
Bing and Subramanian, “A New Multiacccss Technique for Multimedia Wireless LANs” IEEE Global Telecommunications Conference, Nov. 3-8, 1997, pp. 1318-1322.
Durgin, et al., “Measurements and Models for Radio Path Loss and Penetration Loss in and Around Homes and Trees at 5.85 GHz”, IEEE Transactions on Communications, vol. 46, No. 11, Nov. 1988, pp. 1484-1496.
Freret et al., Applications of Spread-Spectrum Radio to Wireless Terminal Communications, Conf. Record, Nat'l Telecom. Conf., Nov. 30-Dec. 4, IEEE, 1980, pp. 69.7.1-69.7.4.
Fortune et al., “Wise Design of Indoor Wireless Systems: Practical Computation and Optimization”, IEEE Computational Science and Engineering, p. 58-68 (1995).
Geier, Jim. Wireless Lans Implementing Interoperable Networks, Chapter 3 (pp. 89-125) Chapter 4 (pp. 129-157) Chapter 5 (pp. 159-189) and Chapter 6 (pp. 193-234), 1999, United States.
Ho et al., “Antenna Effects on Indoor Obstructed Wireless Channels and a Deterministic Image-Based Wide-Based Propagation Model for In-Building Personal Communications Systems”, International Journal of Wireless Information Networks, vol. 1, No. 1, 1994.
Kim et al., “Radio Propagation Measurements and Prediction Using Three-Dimensional Ray Tracing in Urban Environments at 908 MHz and 1.9 GHz”, IEEE Transactions on Vehicular Technology, vol. 48, No. 3, May 1999.
Kleinrock and Scholl, “Packet Switching in Radio Channels: New Conflict-Free Multiple Access Schemes for a Small Number of Data Users”, Conference record 1977 ICC vol. 2 of 3, Jun. 12-15 Chicago Illinois (1977).
LAN/MAN Standards Committee of the IEEE Computer Society, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Higher Speed Physical Layer Extension in the 2.4 GHz Band, IEEE Std. 802.11b (1999).
Okamoto and Xu, IEEE, “Multimedia Communications over Wireless LANs via the SWL Protocol” Proceedings of the 13th Annual Hawaii International Conference on System Sciences, pp. 54-63 (1997).
Panjwani et al., “Interactive Computation of Coverage Regions for Wireless Communication in Multifloored Indoor Environments”, IEEE Journal on Selected Areas in Communications, vol. 14, No. 3, Apr. 1996.
Perram and Martinez, “Technology Developments for Low-Cost Residential Alarm Systems”, Proceedings 1977 Carnahan Conference on Crime Countermeasures, Apr. 6-8, pp. 45-50 (1977).
Piazzi et al., “Achievable Accuracy of Site-Specific Path-Loss Predictions in Residential Environments”, IEEE Transactions on Vehicular Technology, vol. 48, No. 3, May 1999.
Seidel et al., “Site-Specific Propagation Prediction for Wireless In-Building Personal Communications System Design”, IEEE Transactions on Vehicular Technology, vol. 43, No. 4, Nov. 1994.
Skidmore et al., “Interactive Coverage Region and System Design Simulation for Wireless Communication Systems in Multi-floored Indoor Environments, SMT Plus” IEEE ICUPC '96 Proceedings (1996).
Ullmo et al., “Wireless Propagation in Buildings: A Statistic Scattering Approach”, IEEE Transactions on Vehicular Technology, vol. 48, No. 3, May 1999.
Puttini, R., Percher, J., Me, L., and de Sousa, R. 2004. A fully distributed IDS for MANET. In Proceedings of the Ninth international Symposium on Computers and Communications 2004 vol. 2 (Iscc''04)—vol. 02 (Jun. 28-Jul. 1, 2004). ISCC. IEEE Computer Society, Washington, DC, 331-338.
P. Martinez, M. Brunner, J. Quittek, F. Straus, J. Schonwlder, S. Mertens, T. Klie “Using the Script MIB for Policy-based Configuration Management”, Technical University Braunschweig, Braunschweig, Germany, 2002.
Law, A., “New Service Discovery Protocol,” Internet Citation [Online] XP002292473 Retrieved from the Internet: <URL: http://sern.uccalgary.ca˜lawa/SENG60921/arch/SDP.htm> [retrieved Aug. 12, 2004] (15 pages).
P. Bahl et al., RADAR: An In-Building RF-based User Location and Tracking System, Microsoft Research, Mar. 2000, 10 pages.
Latvala J. et al., Evaluation of RSSI-Based Human Tracking, Proceedings for the 2000 European Signal Processing Conference, Sep. 2000, 9 pages.
Bahl P. et al. “User Location and Tracking in an In-Building Radio Network,” Microsoft Research, Feb. 1999, 13 pages.
P. Bahl et al., A Software System for Locating Mobile Users: Design, Evaluation, and Lessons, Microsoft Research, Feb. 1999, 13 pages.
Chen, Yen-Chen et al., “Enabling Location-Based Services on Wireless LANs”, Networks, 2003. ICON2003. The 11th IEEE International Conference, Sep. 28-Oct. 1, 2003, pp. 567-572.
Erten, Y. Murat, “A Layered Security Architecture for Corporate 802.11 Wireless Networks”, Wireless Telecommunications Symposium, May 14-15, 2004, pp. 123-128.
Kleine-Ostmann, T., et al., “A Data Fusion Architecture for Enhanced Position Estimation in Wireless Networks,” IEEE Communications Letters , vol. 5(8), Aug. 2001, p. 343-345.
Pulson, Time Domain Corporation, Ultra wideband (UWB) Radios for Precision Location, Third IEEE Workshop on Wireless Local Area Networks, Sep. 27-28, 2001, 8 pages.
Barber, S., Monitoring 802.1 Networks, IEEE 802.11, Sydney, NSW, May 13-17, 2002.
Latvala, J. et al. “Patient Tracking in a Hospital Environment Using Extended Kalman-filtering,” Proceedings of the 1999 Middle East Conference on Networking, Nov. 1999, 5 pages.
Myllymaki, P. et al., “A Probabilistic Approach to WLAN User Location Estimation,” Third IEEE Workshop on Wireless Local Area Networks, Sep. 27-28, 2001, 12 pages.
Potter, B., and Fleck, B., 802.11 Security, O'Reilly Media Inc., Dec. 2002, 14 pages.
McCann, S., et al., “Emergency Services for 802,” IEEE 802.11-07/0505r1, Mar. 2007, 27 pages.
Di Sorte, D., et al., “On the Performance of Service Publishing in IEEE 802.11 Multi-Access Environment,” IEEE Communications Letters, vol. 11, No. 4, Apr. 2007, 3 pages.
Microsoft Computer Dictionary, Fifth Edition, Microsoft Corporation, 2002, 2 pages.
Thomson, Allan, Cisco Systems, AP Power Down Notification, Power Point slide show; IEEE standards committee meeting Jul. 15, 2008; doc.: IEEE 802.11-08/0759r0, 14 pages.
3COM, Wireless LAN Mobility System: Wireless LAN Switch and Controller Configuration Guide, 3COM, Revision A, Oct. 2004, 476 pages.
3COM, Wireless LAN Switch Manager (3WXM), 3COM, Revision C, Oct. 2004, 8 pages.
3COM, Wireless LAN Switch and Controller; Quick Start Guide, 3COM, Revision B, Nov. 2004, 10 pages.
3COM, Wireless LAN Mobility System; Wireless LAN Switch and Controller Installation and Basic Configuration Guide, Revision B, Apr. 2005, 496 pages.
Johnson, David B, et al., “DSR The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks,” Computer Science Department, Carnegie Mellon University, Nov. 3, 2005 (http://monarch.es.rice.edu/monarch-papers/dsr-chapter00.pdf).
Information Sciences Institute, RFC-791—Internet Protocol, DARPA, Sep. 1981.
Aerohive Blog, posted by Devin Akin, Cooperative Control: Part 3, [Online] Retrieved from the Internet: <URL: http://blog.aerohive.com/blog/?p=71> Mar. 1, 2010 (3 pages).
Wikipedia, Wireless LAN, 2 definitions for wireless LAN roaming, [Online] [retrieved Oct. 4, 2010] Retrieved from the Internet: <URL: http://en.wikipedia.org/wiki/Wireless—LAN> (1 page).
U.S. Appl. No. 12/603,391, filed Oct. 21, 2009.
U.S. Appl. No. 12/763,057, filed Apr. 19, 2010.
U.S. Appl. No. 13/006,950, filed Jan. 14, 2011.
U.S. Appl. No. 09/866,474, filed May 29, 2001 (not available).
U.S. Appl. No. 13/017,801, filed Jan. 31, 2011.
Final Office Action for U.S. Appl. No. 11/784,307, mailed Jun. 14, 2010.
Office Action for U.S. Appl. No. 12/500,392, mailed Jun. 20, 2011.
Office Action for U.S. Appl. No. 12/489,295, mailed Apr. 27, 2011.
Final Office Action for U.S. Appl. No. 11/330,877, mailed Apr. 22, 2010.
Office Action for U.S. Appl. No. 11/330,877, mailed Jan. 13, 2011.
Final Office Action for U.S. Appl. No. 11/330,877, mailed May 27, 2011.
Office Action for U.S. Appl. No. 11/351,104, mailed May 26, 2010.
Office Action for U.S. Appl. No. 11/351,104, mailed Nov. 29, 2010.
Office Action for U.S. Appl. No. 11/351,104, mailed Jul. 26, 2011.
Office Action for U.S. Appl. No. 11/437,537, mailed Dec. 23, 2008.
Final Office Action for U.S. Appl. No. 11/437,537, mailed Jul. 16, 2009.
Office Action for U.S. Appl. No. 12/785,362, mailed Apr. 22, 2011.
Office Action for U.S. Appl. No. 11/417,993, mailed Oct. 29, 2008.
Office Action for U.S. Appl. No. 12/370,562, mailed Sep. 30, 2010.
Office Action for U.S. Appl. No. 12/370,562, mailed Apr. 6, 2011.
Office Action for U.S. Appl. No. 11/595,119, mailed Aug. 19, 2010.
Final Office Action for U.S. Appl. No. 11/595,119, mailed Aug. 2, 2011.
Office Action for U.S. Appl. No. 11/604,075, mailed May 3, 2010.
Office Action for U.S. Appl. No. 11/845,029, mailed Jul. 9, 2009.
Final Office Action for U.S. Appl. No. 11/845,029, mailed Jan. 25, 2010.
Office Action for U.S. Appl. No. 11/845,029, mailed May 14, 2010.
Final Office Action for U.S. Appl. No. 11/845,029, mailed Dec. 9, 2010.
Office Action for U.S. Appl. No. 11/437,538, mailed Dec. 22, 2008.
Final Office Action for U.S. Appl. No. 11/437,538, mailed Jun. 10, 2009.
Office Action for U.S. Appl. No. 11/437,387, mailed Dec. 23, 2008.
Final Office Action for U.S. Appl. No. 11/437,387, mailed Jul. 15, 2009.
Office Action for U.S. Appl. No. 11/437,582, mailed Jan. 8, 2009.
Final Office Action for U.S. Appl. No. 11/437,582, mailed Jul. 22, 2009.
Office Action for U.S. Appl. No. 11/801,964, mailed Sep. 17, 2010.
Final Office Action for U.S. Appl. No. 11/801,964, mailed May 11, 2011.
Office Action for U.S. Appl. No. 12/304,100, mailed Jun. 17, 2011.
Office Action for U.S. Appl. No. 11/643,329, mailed Jul. 9, 2010.
Office Action for U.S. Appl. No. 11/648,359, mailed Nov. 19, 2009.
Office Action for U.S. Appl. No. 11/944,346, mailed Nov. 23, 2010.
Office Action for U.S. Appl. No. 12/077,051, mailed Dec. 28, 2010.
Office Action for U.S. Appl. No. 12/113,535, mailed Apr. 21, 2011.
Office Action for U.S. Appl. No. 11/852,234, mailed Jun. 29, 2009.
Office Action for U.S. Appl. No. 11/852,234, mailed Jan. 21, 2010.
Office Action for U.S. Appl. No. 11/852,234, mailed Aug. 9, 2010.
Office Action for U.S. Appl. No. 11/852,234, mailed Apr. 27, 2011.
Office Action for U.S. Appl. No. 11/970,484, mailed Nov. 24, 2010.
Final Office Action for U.S. Appl. No. 11/970,484, mailed Jul. 22, 2011.
Office Action for U.S. Appl. No. 12/172,195, mailed Jun. 1, 2010.
Office Action for U.S. Appl. No. 12/172,195, mailed Nov. 12, 2010.
Office Action for U.S. Appl. No. 12/210,917, mailed Nov. 15, 2010.
Final Office Action for U.S. Appl. No. 12/210,917, mailed May 13, 2011.
Office Action for U.S. Appl. No. 12/350,927, mailed Aug. 17, 2011.
Office Action for U.S. Appl. No. 12/365,891, mailed Aug. 29, 2011.
Office Action for U.S. Appl. No. 10/235,338, mailed Jan. 8, 2003.
Office Action for U.S. Appl. No. 11/094,987, mailed Dec. 27, 2007.
Final Office Action for U.S. Appl. No. 11/094,987, mailed May 23, 2008.
Office Action for U.S. Appl. No. 11/094,987, mailed Oct. 21, 2008.
Office Action for U.S. Appl. No. 12/474,020, mailed Jun. 3, 2010.
Final Office Action for U.S. Appl. No. 12/474,020, mailed Oct. 4, 2010.
Office Action for U.S. Appl. No. 09/866,474, mailed Nov. 30, 2004.
Final Office Action for U.S. Appl. No. 09/866,474, mailed Jun. 10, 2005.
Office Action for U.S. Appl. No. 10/667,027, mailed Jul. 29, 2005.
Final Office Action for U.S. Appl. No. 10/667,027, mailed Mar. 10, 2006.
Office Action for U.S. Appl. No. 10/667,027, mailed May 5, 2006.
Final Office Action for U.S. Appl. No. 10/667,027, mailed Feb. 26, 2007.
Office Action for U.S. Appl. No. 10/666,848, mailed Mar. 22, 2007.
Office Action for U.S. Appl. No. 10/667,136, mailed Jan. 25, 2006.
Office Action for U.S. Appl. No. 10/667,136, mailed Aug. 28, 2006.
Final Office Action for U.S. Appl. No. 10/667,136, mailed Mar. 9, 2007.
Office Action for U.S. Appl. No. 11/845,029, mailed Sep. 27, 2011.
Office Action for U.S. Appl. No. 12/336,492, mailed Sep. 15, 2011.
International Search Report and Written Opinion for PCT/US2006/009525, mailed Sep. 13, 2007.
International Search Report and Written Opinion for PCT/US06/40500, mailed Aug. 17, 2007.
International Search Report and Written Opinion for PCT/US2007/012194 dated Feb. 4, 2008.
International Search Report and Written Opinion for PCT/US06/40499, mailed Dec. 13, 2007.
International Search Report and Written Opinion for PCT/US2007/19696, mailed Feb. 29, 2008.
International Search Report and Written Opinion for PCT/US2007/12016, mailed Jan. 4, 2008.
International Search Report and Written Opinion for PCT/US2007/012195, mailed Mar. 19, 2008.
International Search Report and Written Opinion for PCT/US07/013758 mailed Apr. 3, 2008.
First Office Action for Chinese Application No. 2007800229623.X , mailed Dec. 31, 2010.
International Search Report and Written Opinion for PCT/US07/013757, mailed Jan. 22, 2008.
International Search Report and Written Opinion for PCT/US2008/010708, mailed May 18, 2009.
Supplementary Partial European Search Report for European Application No. 02770460, mailed Aug. 20, 2004.
Supplementary Partial European Search Report for European Application No. 02770460, mailed Dec. 15, 2004.
Examination Report for European Application No. 02770460, Mar. 18, 2005.
Summons for Oral Hearing Proceedings for European Application No. 02770460, Jan. 31, 2006.
International Search Report for PCT/US02/28090, mailed Aug. 13, 2003.
International Preliminary Examination Report for PCT/US02/28090, mailed Oct. 29, 2003.
Examination Report for European Application No. 06006504, mailed Oct. 10, 2006.
English Translation of Office Action for Japanese Application No. 2006-088348, mailed Jan. 4, 2011.
International Search Report and Written Opinion for PCT/US04/30769, mailed Oct. 4, 2005.
International Search Report and Written Opinion for PCT/US04/30683, mailed Feb. 10, 2006.
International Search Report and Written Opinion for PCT/US04/30684, mailed Feb. 10, 2006.
Office Action for Canadian Application No. 2,638,754, mailed Oct. 3, 2011.
Related Publications (1)
Number Date Country
20120204031 A1 Aug 2012 US
Provisional Applications (1)
Number Date Country
60661831 Mar 2005 US
Continuations (2)
Number Date Country
Parent 12401073 Mar 2009 US
Child 13447656 US
Parent 11377859 Mar 2006 US
Child 12401073 US