This application claims the benefits of priority from:
In a variety of subterranean environments, reservoirs hold desirable production fluids, such as petroleum. Wellbores often are drilled into the subterranean environments to facilitate production of the desired fluid. However, wellbores also can be drilled for a variety of other applications related to the fluid production. Such applications include, for example, facilitation of fluid production, fluid injection, sensor placement or other production related functions. The drilling can be oriented in, for example, vertical or deviated, e.g. lateral, directions with the aid of an appropriate drilling tool.
When drilling, cuttings are produced by the action of the drilling tool excavating the borehole. Those cuttings have a larger volume than the original rock mass and therefore need to be removed for excavation of the wellbore. In the conventional drilling of vertical wellbores with drilling equipment deployed on tubing, the cuttings can be removed from the wellbore by circulating drilling mud to transport the cuttings along the wellbore. However, conventional cuttings removal techniques do not work well with, for example, wireline deployed cutting tools, even if a fluid conduit is deployed with the wireline. With wireline deployed systems, the power supply available is limited and there is only a single fluid filled wellbore region behind the drilling tool, thus rendering difficult the circulation of drilling fluid to remove cuttings.
In general, the present invention provides a system and methodology for drilling wellbores. A drilling tool is deployed downhole to cut through formation material in forming a desired wellbore or wellbores. A pumping system circulates fluid to remove cuttings from the drilling tool and to transport the cuttings away from the drilling tool along the wellbore being formed.
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The present invention generally relates to a system and method for drilling wellbores used, for example, in the production of desired fluids, e.g. petroleum. The system and method may be used with a variety of downhole drilling tools and equipment. Furthermore, the system and method may be used to form a variety of wellbores in numerous environments and applications, such as wireline services, through-tubing drilling, low-cost reentry drilling, sensor placement, fluid production, fluid injection optimization and other applications. However, the devices and methods of the present invention are not limited to the specific applications that are described herein.
Referring generally to
In the embodiment illustrated, system 20 comprises a pumping system 30 that delivers separate, unique fluid flows to a drilling tool 32 and at least a portion of wellbore 22, respectively. The unique fluid flows clear cuttings from drilling tool 32 and transport cuttings along the wellbore to a location where the cuttings do not interfere with the drilling operation or subsequent uses of the wellbore. In the example illustrated, a first-fluid flow clears cuttings from drilling tool 32 and moves them to lateral wellbore 28. A second fluid flow then transports the cuttings along lateral wellbore 28 and deposits them in a downwardly extending section 34 of main wellbore 26.
In this embodiment, the first fluid flow is directed to drilling tool 32 at a higher pressure, lower flow rate relative to the second flow. The higher pressure enables the fluid to clear cuttings from drilling tool 32. The second fluid flow is relatively lower pressure but has a greater flow rate to provide suitable transport of cuttings along lateral wellbore 28.
Referring again to the embodiment of
Although system 20 may utilize several components arranged in a variety of configurations, the illustrated embodiment provides one example. Specifically, second pump 38 is positioned in main wellbore 26 and coupled to a rear tractor 42 by a fluid conduit 44. Rear tractor 42 is coupled to bottom hole assembly 40 by a transition pipe 46. Second pump 38 draws fluid from main wellbore 26 and pumps the fluid through fluid conduit 44, through rear tractor 42, through transition pipe 46 and typically through at least a portion of bottom hole assembly 40. As will be explained more fully below, the fluid is then expelled outwardly into the lateral wellbore surrounding bottom hole assembly 40. The expelled fluid flows back along lateral wellbore 28 in sufficient volume to transport the cuttings along lateral wellbore 28 to a collection point, such as downwardly extending section 34.
As illustrated, drilling tool 32 and overall system 20 are deployed on a wireline 48. Power may be supplied to system 20 through wireline 48. However, the power supplied through a wireline often is limited to less than 10 kilowatts. Thus, the drilling system components, such as drilling tool 32, pump 36 and pump 38 are designed to operate collectively within the power limitations. One example of a suitable wireline 48 is a quad cable that handles approximately nine kilowatts. In many system designs, the use of separate pumps for clearing cuttings from drilling tool 32 and for transporting cuttings along lateral wellbore 28 can make relatively efficient use of available power.
A variety of bottom hole assemblies can be used in the illustrated system depending on the specific application, environment and design parameters. An embodiment of bottom hole assembly 40 is illustrated in
In an alternate embodiment, illustrated in
Regardless of the specific configuration of the pumping system 30, the use of separate fluid flows to clean cutting bit 54 of drilling tool 32 and to transport cuttings along the wellbore provides a more efficient system amenable to deployment with a wireline. In the system illustrated, for example, first pump 36 is used to provide a fluid flow of relatively high pressure but low volume flow rate for efficient cleaning of drilling bit 54. However, second pump 38 provides a second fluid flow at a higher volume flow rate but at a lower pressure, relative to first pump 36. The second flow rate is sufficient to move cuttings along the wellbore, e.g. lateral wellbore 28. The dual pumps provide greater power efficiency and an ability to remove cuttings with a wireline deployed system used for drilling lateral wellbores. The configuration enables the efficient cleaning of cuttings from the drilling bit 54 as well as the transport of those cuttings from the lateral wellbore 28.
To avoid problems in the transfer of cuttings] between the bottom hole assembly 40 and the main fluid transport flow through lateral wellbore 28, a filter 66 may be used to prevent recirculation of cuttings, as illustrated in
As the cuttings are cleared from drilling bit 54 and moved back along the lateral wellbore 28, the cuttings are drawn into the main fluid transport flow. In this embodiment, the fluid transport flow, generated by second pump 38, exits bottom hole assembly 40 through bypass ports 74. The cuttings from drilling bit 54 are drawn into this transport stream, as represented by arrows 76, and transported back along lateral wellbore 28. As described previously, the cuttings can be transported to downwardly extending section 34 of main wellbore 26 or to some other collection location.
Although only a few embodiments of the present invention have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this invention. Accordingly, such modifications are intended to be included within the scope of this invention as defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
0416547.8 | Jul 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2005/002352 | 6/14/2005 | WO | 00 | 10/16/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/010877 | 2/2/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2765146 | Williams, Jr. | Oct 1956 | A |
4341273 | Walker et al. | Jul 1982 | A |
5269384 | Cherrington | Dec 1993 | A |
5984011 | Misselbrook et al. | Nov 1999 | A |
20040112645 | Eppink et al. | Jun 2004 | A1 |
20050098351 | Tennoy et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
0075476 | Dec 2000 | WO |
2004011766 | Feb 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090038854 A1 | Feb 2009 | US |