The present invention relates to systems and methods for a dual-band backhaul radio. In particular, the present system and method enables higher reliability data transmission radios by utilizing more than one frequency band to leverage uncorrelated interference between frequency bands.
MIMO systems in general utilize multiple antennae at both the transmitter and receiver to improve communication performance between the transmitter and receiver. MIMO systems may allow for the communication of different information on each of a plurality of antennae via the transmitter, even using the same frequency. These MIMO systems may compensate for both frequency and time discrepancies. Exemplary systems that utilize MIMO technology include, but are not limited to, wireless Internet service providers (ISP), worldwide interoperability for microwave access (WiMAX) systems, and 4G long-term evolution (LTE) data transmission systems.
A master antenna may include a baseband radio and two chains of communication through vertically and horizontally polarized antennas. The master antenna may have a connection for power and data communications, typically shared through an interface such as power-over-Ethernet. A slave antenna connected by coaxial cable to the master antenna includes circuitry to compensate for cable loss and split the transmit and receive paths. The slave antenna provides communication over another pair of vertically and horizontally polarized antennae. With adequate physical separation between the pair of dishes on each end of a long distance link, a phase angle difference between the vertical and horizontal antenna elements allows four distinct channels of communication to occur as a result of MIMO processing.
According to some embodiments, the present technology may be directed to a method for multiple input multiple output (MIMO) multi-frequency transmission of data by a MIMO radio comprising a first and second set of antennae, wherein the first and second set of antennae each comprise a vertically polarized antenna and a horizontally polarized antenna. In some instances, the method includes: (a) transmitting or receiving data on the first set of antennae using a first frequency; and (b) transmitting or receiving the data on the second set of antennae using a second frequency.
The present technology may also be directed to a multiple input multiple output (MIMO) transceiver. The MIMO radio may include: (a) a processor; (b) a memory for storing multi-frequency transmission logic; (c) a first set of antennae comprising a first vertically polarized antenna and a first horizontally polarized antenna; (d) a second set of antennae comprising a second vertically polarized antenna and a second horizontally polarized antenna; (e) wherein the processor executes the multi-frequency transmission logic to cause the first set of antennae to transmit or receive data using a first frequency, and the second set of antennae to transmit or receive the data using a second frequency.
The present technology may also be directed to a wireless network that includes a plurality of MIMO radios, each comprising: (a) a processor; (b) a memory for storing multi-frequency transmission logic; (c) a first set of antennae comprising a first vertically polarized antenna and a first horizontally polarized antenna, the first set of antennae being configured to transmit or receive data using a first frequency; (d) a second set of antennae comprising a second vertically polarized antenna and a second horizontally polarized antenna, the first set of antennae being configured to transmit or receive data using a first frequency which is different from the first frequency; and (e) wherein a first portion of the MIMO radios are configured to transmit data using their first and second sets of antennae, while a second portion of the MIMO radios are configured to receive data from the first portion of the MIMO radios using their first and second sets of antenna.
The accompanying drawings, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed disclosure, and explain various principles and advantages of those embodiments.
The methods and systems disclosed herein have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosure. It will be apparent, however, to one skilled in the art, that the disclosure may be practiced without these specific details. In other instances, structures and devices are shown at block diagram form only in order to avoid obscuring the disclosure.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” or “according to one embodiment” (or other phrases having similar import) at various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Furthermore, depending on the context of discussion herein, a singular term may include its plural forms and a plural term may include its singular form. Similarly, a hyphenated term (e.g., “on-demand”) may be occasionally interchangeably used with its non-hyphenated version (e.g., “on demand”), a capitalized entry (e.g., “Software”) may be interchangeably used with its non-capitalized version (e.g., “software”), a plural term may be indicated with or without an apostrophe (e.g., PE's or PEs), and an italicized term (e.g., “N+1”) may be interchangeably used with its non-italicized version (e.g., “N+1”). Such occasional interchangeable uses shall not be considered inconsistent with each other.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It is noted at the outset that the terms “coupled,” “connected”, “connecting,” “electrically connected,” etc., are used interchangeably herein to generally refer to the condition of being electrically/electronically connected. Similarly, a first entity is considered to be in “communication” with a second entity (or entities) when the first entity electrically sends and/or receives (whether through wireline or wireless means) information signals (whether containing data information or non-data/control information) to the second entity regardless of the type (analog or digital) of those signals. It is further noted that various figures (including component diagrams) shown and discussed herein are for illustrative purpose only, and are not drawn to scale.
A dual-band 5 GHz and 24 GHz system (MIMO radio), using 4×4 MIMO 802.11 ac, provides four-stream communication. The system places two signals in orthogonal polarizations within each band. Because the outage conditions in the two bands are uncorrelated (24 GHz fades with rain, 5 GHz is impaired by manmade interference), the dual-band radio can provide higher reliability than a single-band radio. Using the provided dual-band backhaul radio, a 1 Gb/sec. transmission rate is possible.
Similarly, such as the system 600 of
The present technology provides a 4×4 MIMO transmission by making the four chains orthogonal through both polarization and frequency. A four stream MIMO link is typically communicated through four transmit and four receive antennas that are not necessarily orthogonal, but which have adequate spatial diversity to allow a pre- and post-processing of the signals to create orthogonality. In the dual-band radio conceived here, the pre- and post-processing may be minimal, since two polarizations (orthogonal) are on one band, and two polarizations (orthogonal) are on another band. The frequency separation creates orthogonality. Two reasons to use a 4×4 MIMO radio are (a) it is a relatively inexpensive and available way to aggregate four data streams, and (b) there is likely to be some rotation of the antenna polarizations from end-to-end, which requires a matrix rotation to bring them back into orthogonality before demodulation. The four data streams using two different frequencies and different polarizations within each frequency are inherently orthogonal, which facilitates processing. In particular, a QAM (Quadrature Amplitude Modulation) decoder may be used to separate the four data streams from a dual-band 4×4 MIMO radio.
An exemplary implementation of the dual-band radio could be with either two dishes (one for each band), or just a single dish. The two dish solution is simpler to implement, but the single dish may be more desirable due to reduced hardware requirements.
Two longer probes for 5 GHz, which may be about 12 mm long, are in the outer annular region. The energy from all four probes may then hit a sub-reflector, or feed directly to a primary dish. More specifically, the radio 100 may include a second vertically polarized antenna 115 and a second horizontally polarized antenna 120. These two antennae may be referred to as the first set of antennae.
In
Four single dish radios 100 may be positioned at one location according to
Telecommunication carriers and/or Internet service providers want high reliability. Unlicensed spectrum includes both 5 GHz and 24 GHz, and these two bands have different impairments. 24 GHz is weather-sensitive (e.g., suffers impairment due to rain), and has limited power transmission. 5 GHz is affected by consumer interference, since this band is shared with consumer electronics. Since the two bands have uncorrelated failure modes, used together they have higher net reliability. In particular, using 5 GHz and 24 GHz together in a 4×4 MIMO radio with two polarized streams in one band and two polarized streams in another band provides improved reliability and data throughput.
Correspondingly, the system 300 may also comprise a plurality of receivers 315, which are disposed outwardly from the plurality of transmitters 305. Each of the plurality of receivers 315 are positioned such that they are in substantial alignment with at least one of the plurality of transmitters 305.
In accordance with the present technology, the plurality of transmitters 305 may be configured to transmit simultaneously. That is, the plurality of transmitters 305 may transmit data on the same channel (e.g., frequency) as one another. According to exemplary embodiments of the present technology, some of the transmitters may transmit on one frequency, while other transmitters transmit on a second frequency. In exemplary embodiments, one of the frequencies is 5 GHz, and the other is 24 GHz, and in further exemplary embodiments, two of the transmitters are 5 GHz, and the two others are 24 GHz.
Advantageously, the plurality of transmitters 305 may transmit different data from one another, which increases the volume and diversity of data that can be transmitted at the same time. It will be understood that collocated transmitters (or receivers) may be grouped together according to a common time reference, such as a time slot. That is, collocated transmitters may be configured to transmit simultaneously according to a schedule.
The spacing of the plurality of transmitters 305 and careful timing of the data transmissions allow for simultaneous transmission of different data using the same channel. It will be understood that using transmitters 305 having adequate side lobe radiation rejection may enhance the efficacy of data transmissions of the system 300.
Similarly to the plurality of transmitters 305, the plurality of receivers 315 may be configured to receive data simultaneously relative to one another. In some instances, the system 300 may be synchronized such that when the plurality of transmitters 305 are transmitting simultaneously, the plurality of receivers 315 are configured to receive simultaneously.
An exemplary system, such as the system 300 of
According to some embodiments, the system 300 may implement signal synchronization using, for example, GPS time references. The system 300 may obtain GPS time references from a GPS satellite system (not shown). A GPS receiver 320 may be associated with each transmitter and receiver individually and may be utilized to obtain GPS time references from the GPS satellite system. In contrast to systems that utilize a common GPS receiver to provide GPS information to a plurality of devices, integrating the GPS receiver 320 within a device itself advantageously eliminates time deltas present in systems that require the transmission of GPS information from a GPS receiver to a desired device. That is, wired or wireless transmission of GPS information between a main GPS receiver and a plurality of devices introduces timing delays.
After placement or installation of the various transmitters and receivers of the system 300, each transmitter may be configured to execute a configuration cycle in order to communicatively couple itself with the system 300. The configuration cycle may include execution of a site survey, where the device determines whether it is a transmitter or receiver. Because the devices used herein (such as the device of
The mode of operation may inform the device of its broadcast and/or receiving schedules, as well as channel information, such as the shared channel utilized by the plurality of devices.
According to some embodiments, the device may, upon power up, enter into scan mode to determine a list of collocated devices, as well as broadcast its own SSID to other collocated devices. The device may then exit the scan mode and perform a manual rescan, listing for configuration information. The device may reset configuration details to default or factory settings. In other instances, the configuration details determined by the device during the scan session may be installed or accepted by the device.
In some instances, if a device needs to determine its location information, the device may be configured to broadcast ping signals that are received by, for example, receivers that are not collocated with the device. Using the time differential between transmission of a ping signal by a device, relative to receiving of the ping signal by a receiver, an approximate distance between devices may be determined. Again, a GPS counter may track the broadcast and receipt of signals. The system may compare the GPS time references associated with the broadcast and received signals to determine distance values.
In other embodiments, each device (transmitter or receiver) may utilize a media access control (MAC) layer protocol that uses GPS coordinates. When a site survey is conducted, the latitude and longitude of each transmitter and receiver is shown on a map, which may be displayed via a graphical user interface. In other instances, the site survey data points may be stored in a log file.
According to some embodiments, the method may include transmitting or receiving 405 data on the first set of antennae using a first frequency. In some instances, the first frequency may include 5 GHz. Simultaneously, or substantially so, the method includes transmitting or receiving 410 the data on the second set of antennae using a second frequency. The second frequency may include, for example, 24 GHz. When the same data is transmitted using the first and second sets of antennae operating on separate frequencies, a diversity of frequency is produced, which may at least partially compensate for interference of signals transmitted on any one given frequency.
According to some embodiments, the method may include measuring 415 upload bandwidth use and download bandwidth use of the MIMO radio, or a plurality of MIMO radios in a wireless network. That is, the MIMO radio may be configured to monitor the actual download/upload performance of one or more MIMO radios and use this information as a basis to adjust the performance of the MIMO radios. Thus, in some embodiments, the method may include selectively adjusting 420 any of an available upload bandwidth or an available download bandwidth of the MIMO radio in response to the upload bandwidth use and the download bandwidth use.
The components shown in
Mass storage device 530, which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor 510. Mass storage device 530 may store the system software for implementing embodiments of the present invention for purposes of loading that software into main memory 520.
Portable storage device 540 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk, digital video disc, or USB storage device, to input and output data and code to and from the system. The system software for implementing embodiments of the present invention may be stored on such a portable medium and input to the system 500 via the portable storage device 540.
User input devices 560 provide a portion of a user interface. User input devices 560 may include one or more microphones, an alphanumeric keypad, such as a keyboard, for inputting alpha-numeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. User input devices 560 may also include a touchscreen. Additionally, the system 500 as shown in
Graphics display 570 may include a liquid crystal display (LCD) or other suitable display device. Graphics display 570 receives textual and graphical information, and processes the information for output to the display device.
Peripheral devices 580 may be included and may include any type of computer support device to add additional functionality to the computer system.
The components provided in the system 500 are those typically found in computer systems that may be suitable for use with embodiments of the present invention and are intended to represent a broad category of such computer components that are well known in the art. Thus, the system 500 may be a personal computer, hand held computing system, telephone, mobile computing system, workstation, server, minicomputer, mainframe computer, or any other computing system. The computer may also include different bus configurations, networked platforms, multi-processor platforms, etc. Various operating systems may be used including Unix, Linux, Windows, Mac OS, Palm OS, Android, iOS (known as iPhone OS before June 2010), QNX, and other suitable operating systems.
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the embodiments provided herein. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit (CPU), a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a CD-ROM disk, digital video disk (DVD), Blu-ray Disc (BD), any other optical storage medium, RAM, PROM, EPROM, EEPROM, FLASH memory, and/or any other memory chip, module, or cartridge.
While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.
This Non-Provisional U.S. Patent Application is a continuation of and claims the benefit of Non-Provisional U.S. patent application Ser. No. 14/183,329, filed on Feb. 18, 2014, now U.S. Pat. No. 9,191,081, issued Nov. 17, 2015, which in turn claims the benefit of U.S. Provisional Application Ser. No. 61/775,408, filed on Mar. 8, 2013. All of the aforementioned applications are incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2735993 | Humphrey | Feb 1956 | A |
3182129 | Clark et al. | May 1965 | A |
D227476 | Kennedy | Jun 1973 | S |
4188633 | Frazita | Feb 1980 | A |
4402566 | Powell et al. | Sep 1983 | A |
D273111 | Hirata et al. | Mar 1984 | S |
4543579 | Teshirogi | Sep 1985 | A |
4626863 | Knop et al. | Dec 1986 | A |
4835538 | McKenna et al. | May 1989 | A |
4866451 | Chen | Sep 1989 | A |
4893288 | Maier et al. | Jan 1990 | A |
4903033 | Tsao et al. | Feb 1990 | A |
4986764 | Eaby et al. | Jan 1991 | A |
5015195 | Piriz | May 1991 | A |
5226837 | Cinibulk et al. | Jul 1993 | A |
5231406 | Sreenivas | Jul 1993 | A |
D346598 | McCay et al. | May 1994 | S |
D355416 | McCay et al. | Feb 1995 | S |
5389941 | Yu | Feb 1995 | A |
5491833 | Hamabe | Feb 1996 | A |
5513380 | Ivanov et al. | Apr 1996 | A |
D375501 | Lee et al. | Nov 1996 | S |
5580264 | Aoyama et al. | Dec 1996 | A |
5684495 | Dyott et al. | Nov 1997 | A |
D389575 | Grasfield et al. | Jan 1998 | S |
5724666 | Dent | Mar 1998 | A |
5742911 | Dumbrill et al. | Apr 1998 | A |
5746611 | Brown et al. | May 1998 | A |
6014372 | Kent et al. | Jan 2000 | A |
6067053 | Runyon et al. | May 2000 | A |
6137449 | Kildal | Oct 2000 | A |
6140962 | Groenenboom | Oct 2000 | A |
6176739 | Denlinger et al. | Jan 2001 | B1 |
6216266 | Eastman et al. | Apr 2001 | B1 |
6304762 | Myers et al. | Oct 2001 | B1 |
D455735 | Winslow | Apr 2002 | S |
6421538 | Byrne | Jul 2002 | B1 |
6716063 | Bryant et al. | Apr 2004 | B1 |
6754511 | Halford et al. | Jun 2004 | B1 |
6847653 | Smiroldo | Jan 2005 | B1 |
D501848 | Uehara et al. | Feb 2005 | S |
6877277 | Kussel et al. | Apr 2005 | B2 |
6962445 | Zimmel et al. | Nov 2005 | B2 |
7075492 | Chen et al. | Jul 2006 | B1 |
D533899 | Ohashi et al. | Dec 2006 | S |
7173570 | Wensink et al. | Feb 2007 | B1 |
7193562 | Shtrom et al. | Mar 2007 | B2 |
7212163 | Huang et al. | May 2007 | B2 |
7245265 | Kienzle et al. | Jul 2007 | B2 |
7253783 | Chiang et al. | Aug 2007 | B2 |
7264494 | Kennedy et al. | Sep 2007 | B2 |
7281856 | Grzegorzewska et al. | Oct 2007 | B2 |
7292198 | Shtrom et al. | Nov 2007 | B2 |
7306485 | Masuzaki | Dec 2007 | B2 |
7324057 | Argaman et al. | Jan 2008 | B2 |
D566698 | Choi et al. | Apr 2008 | S |
7362236 | Hoiness | Apr 2008 | B2 |
7369095 | Hirtzlin et al. | May 2008 | B2 |
7380984 | Wuester | Jun 2008 | B2 |
7431602 | Corona | Oct 2008 | B2 |
7498996 | Shtrom et al. | Mar 2009 | B2 |
7507105 | Peters et al. | Mar 2009 | B1 |
7542717 | Green, Sr. et al. | Jun 2009 | B2 |
7581976 | Liepold et al. | Sep 2009 | B2 |
7586891 | Masciulli | Sep 2009 | B1 |
7616959 | Spenik et al. | Nov 2009 | B2 |
7675473 | Kienzle et al. | Mar 2010 | B2 |
7726997 | Kennedy et al. | Jun 2010 | B2 |
7778226 | Rayzman et al. | Aug 2010 | B2 |
7857523 | Masuzaki | Dec 2010 | B2 |
7929914 | Tegreene | Apr 2011 | B2 |
RE42522 | Zimmel et al. | Jul 2011 | E |
8009646 | Lastinger et al. | Aug 2011 | B2 |
8069465 | Bartholomay et al. | Nov 2011 | B1 |
8111678 | Lastinger et al. | Feb 2012 | B2 |
8270383 | Lastinger et al. | Sep 2012 | B2 |
8325695 | Lastinger et al. | Dec 2012 | B2 |
D674787 | Tsuda et al. | Jan 2013 | S |
8345651 | Lastinger et al. | Jan 2013 | B2 |
8482478 | Hartenstein | Jul 2013 | B2 |
8515434 | Narendran et al. | Aug 2013 | B1 |
8515495 | Shang et al. | Aug 2013 | B2 |
D694740 | Apostolakis | Dec 2013 | S |
8777660 | Chiarelli et al. | Jul 2014 | B2 |
8792759 | Benton et al. | Jul 2014 | B2 |
8827729 | Gunreben et al. | Sep 2014 | B2 |
8836601 | Sanford et al. | Sep 2014 | B2 |
8870069 | Bellows | Oct 2014 | B2 |
8935122 | Stisser | Jan 2015 | B2 |
9001689 | Hinman et al. | Apr 2015 | B1 |
9019874 | Choudhury et al. | Apr 2015 | B2 |
9077071 | Shtrom et al. | Jul 2015 | B2 |
9130305 | Ramos et al. | Sep 2015 | B2 |
9161387 | Fink et al. | Oct 2015 | B2 |
9179336 | Fink et al. | Nov 2015 | B2 |
9191081 | Hinman et al. | Nov 2015 | B2 |
D752566 | Hinman et al. | Mar 2016 | S |
9295103 | Fink et al. | Mar 2016 | B2 |
9362629 | Hinman et al. | Jun 2016 | B2 |
9391375 | Bales et al. | Jul 2016 | B1 |
9407012 | Shtrom et al. | Aug 2016 | B2 |
9431702 | Hartenstein | Aug 2016 | B2 |
9504049 | Hinman et al. | Nov 2016 | B2 |
9531114 | Ramos et al. | Dec 2016 | B2 |
9537204 | Cheng et al. | Jan 2017 | B2 |
9693388 | Fink et al. | Jun 2017 | B2 |
9780892 | Hinman et al. | Oct 2017 | B2 |
20010033600 | Yang et al. | Oct 2001 | A1 |
20020102948 | Stanwood et al. | Aug 2002 | A1 |
20020159434 | Gosior et al. | Oct 2002 | A1 |
20030013452 | Hunt et al. | Jan 2003 | A1 |
20030027577 | Brown et al. | Feb 2003 | A1 |
20030169763 | Choi et al. | Sep 2003 | A1 |
20030222831 | Dunlap | Dec 2003 | A1 |
20030224741 | Sugar et al. | Dec 2003 | A1 |
20040002357 | Benveniste | Jan 2004 | A1 |
20040029549 | Fikart | Feb 2004 | A1 |
20040120277 | Holur et al. | Jun 2004 | A1 |
20040196812 | Barber | Oct 2004 | A1 |
20040196813 | Ofek et al. | Oct 2004 | A1 |
20040240376 | Wang et al. | Dec 2004 | A1 |
20040242274 | Corbett et al. | Dec 2004 | A1 |
20050032479 | Miller et al. | Feb 2005 | A1 |
20050058111 | Hung et al. | Mar 2005 | A1 |
20050124294 | Wentink | Jun 2005 | A1 |
20050143014 | Li et al. | Jun 2005 | A1 |
20050195758 | Chitrapu | Sep 2005 | A1 |
20050227625 | Diener | Oct 2005 | A1 |
20050254442 | Proctor, Jr. et al. | Nov 2005 | A1 |
20050271056 | Kaneko | Dec 2005 | A1 |
20060072518 | Pan et al. | Apr 2006 | A1 |
20060098592 | Proctor, Jr. et al. | May 2006 | A1 |
20060132359 | Chang et al. | Jun 2006 | A1 |
20060132602 | Muto et al. | Jun 2006 | A1 |
20060172578 | Parsons | Aug 2006 | A1 |
20060187952 | Kappes et al. | Aug 2006 | A1 |
20070001910 | Yamanaka et al. | Jan 2007 | A1 |
20070019664 | Benveniste | Jan 2007 | A1 |
20070035463 | Hirabayashi | Feb 2007 | A1 |
20070060158 | Medepalli et al. | Mar 2007 | A1 |
20070132643 | Durham et al. | Jun 2007 | A1 |
20070173199 | Sinha | Jul 2007 | A1 |
20070173260 | Love et al. | Jul 2007 | A1 |
20070210974 | Chiang | Sep 2007 | A1 |
20070223701 | Emeott et al. | Sep 2007 | A1 |
20070238482 | Rayzman et al. | Oct 2007 | A1 |
20070255797 | Dunn et al. | Nov 2007 | A1 |
20070268848 | Khandekar et al. | Nov 2007 | A1 |
20080109051 | Splinter et al. | May 2008 | A1 |
20080112380 | Fischer | May 2008 | A1 |
20080192707 | Xhafa et al. | Aug 2008 | A1 |
20080218418 | Gillette | Sep 2008 | A1 |
20080242342 | Rofougaran | Oct 2008 | A1 |
20090046673 | Kaidar | Feb 2009 | A1 |
20090052362 | Meier et al. | Feb 2009 | A1 |
20090075606 | Shtrom et al. | Mar 2009 | A1 |
20090232026 | Lu | Sep 2009 | A1 |
20090233475 | Mildon et al. | Sep 2009 | A1 |
20090291690 | Guvenc et al. | Nov 2009 | A1 |
20090315792 | Miyashita et al. | Dec 2009 | A1 |
20100029282 | Stamoulis et al. | Feb 2010 | A1 |
20100046650 | Jongren et al. | Feb 2010 | A1 |
20100067505 | Fein et al. | Mar 2010 | A1 |
20100085950 | Sekiya et al. | Apr 2010 | A1 |
20100091818 | Sen et al. | Apr 2010 | A1 |
20100103065 | Shtrom et al. | Apr 2010 | A1 |
20100103066 | Shtrom et al. | Apr 2010 | A1 |
20100136978 | Cho et al. | Jun 2010 | A1 |
20100151877 | Lee et al. | Jun 2010 | A1 |
20100167719 | Sun | Jul 2010 | A1 |
20100171665 | Nogami | Jul 2010 | A1 |
20100171675 | Borja et al. | Jul 2010 | A1 |
20100189005 | Bertani et al. | Jul 2010 | A1 |
20100202613 | Ray et al. | Aug 2010 | A1 |
20100210147 | Hauser | Aug 2010 | A1 |
20100216412 | Rofougaran | Aug 2010 | A1 |
20100238083 | Malasani | Sep 2010 | A1 |
20100315307 | Syed et al. | Dec 2010 | A1 |
20100322219 | Fischer et al. | Dec 2010 | A1 |
20110006956 | McCown | Jan 2011 | A1 |
20110028097 | Memik et al. | Feb 2011 | A1 |
20110032159 | Wu et al. | Feb 2011 | A1 |
20110044186 | Jung et al. | Feb 2011 | A1 |
20110103309 | Wang et al. | May 2011 | A1 |
20110111715 | Buer et al. | May 2011 | A1 |
20110133996 | Alapuranen | Jun 2011 | A1 |
20110170424 | Safavi | Jul 2011 | A1 |
20110172916 | Pakzad et al. | Jul 2011 | A1 |
20110182260 | Sivakumar et al. | Jul 2011 | A1 |
20110182277 | Shapira | Jul 2011 | A1 |
20110194644 | Liu et al. | Aug 2011 | A1 |
20110241969 | Zhang et al. | Oct 2011 | A1 |
20110243291 | McAllister et al. | Oct 2011 | A1 |
20120008542 | Koleszar et al. | Jan 2012 | A1 |
20120040700 | Gomes et al. | Feb 2012 | A1 |
20120057533 | Junell et al. | Mar 2012 | A1 |
20120093091 | Kang et al. | Apr 2012 | A1 |
20120115487 | Josso | May 2012 | A1 |
20120134280 | Rotvold et al. | May 2012 | A1 |
20120238201 | Du et al. | Sep 2012 | A1 |
20120263145 | Marinier et al. | Oct 2012 | A1 |
20120282868 | Hahn | Nov 2012 | A1 |
20120299789 | Orban et al. | Nov 2012 | A1 |
20120314634 | Sekhar | Dec 2012 | A1 |
20130003645 | Shapira et al. | Jan 2013 | A1 |
20130005350 | Campos et al. | Jan 2013 | A1 |
20130023216 | Moscibroda et al. | Jan 2013 | A1 |
20130082899 | Gomi | Apr 2013 | A1 |
20130095747 | Moshfeghi | Apr 2013 | A1 |
20130128858 | Zou et al. | May 2013 | A1 |
20130176902 | Wentink et al. | Jul 2013 | A1 |
20130182652 | Tong et al. | Jul 2013 | A1 |
20130195081 | Merlin et al. | Aug 2013 | A1 |
20130210457 | Kummetz | Aug 2013 | A1 |
20130223398 | Li | Aug 2013 | A1 |
20130271319 | Trerise | Oct 2013 | A1 |
20130286950 | Pu | Oct 2013 | A1 |
20130286959 | Lou et al. | Oct 2013 | A1 |
20130288735 | Guo | Oct 2013 | A1 |
20130301438 | Li et al. | Nov 2013 | A1 |
20130322276 | Pelletier et al. | Dec 2013 | A1 |
20130322413 | Pelletier et al. | Dec 2013 | A1 |
20140024328 | Balbien et al. | Jan 2014 | A1 |
20140051357 | Steer et al. | Feb 2014 | A1 |
20140098748 | Chan et al. | Apr 2014 | A1 |
20140145890 | Ramberg | May 2014 | A1 |
20140185494 | Yang et al. | Jul 2014 | A1 |
20140198867 | Sturkovich et al. | Jul 2014 | A1 |
20140206322 | Dimou et al. | Jul 2014 | A1 |
20140225788 | Schulz et al. | Aug 2014 | A1 |
20140233613 | Fink et al. | Aug 2014 | A1 |
20140235244 | Hinman | Aug 2014 | A1 |
20140253378 | Hinman | Sep 2014 | A1 |
20140253402 | Hinman et al. | Sep 2014 | A1 |
20140254700 | Hinman et al. | Sep 2014 | A1 |
20140256166 | Ramos et al. | Sep 2014 | A1 |
20140320306 | Winter | Oct 2014 | A1 |
20140320377 | Cheng et al. | Oct 2014 | A1 |
20140355578 | Fink et al. | Dec 2014 | A1 |
20140355584 | Fink et al. | Dec 2014 | A1 |
20150002335 | Hinman et al. | Jan 2015 | A1 |
20150015435 | Shen et al. | Jan 2015 | A1 |
20150215952 | Hinman et al. | Jul 2015 | A1 |
20150256275 | Hinman et al. | Sep 2015 | A1 |
20150263816 | Hinman et al. | Sep 2015 | A1 |
20150319584 | Fink et al. | Nov 2015 | A1 |
20150321017 | Perryman et al. | Nov 2015 | A1 |
20150325945 | Ramos et al. | Nov 2015 | A1 |
20150327272 | Fink et al. | Nov 2015 | A1 |
20160149634 | Kalkunte et al. | May 2016 | A1 |
20160149635 | Hinman et al. | May 2016 | A1 |
20160338076 | Hinman et al. | Nov 2016 | A1 |
20160365666 | Ramos et al. | Dec 2016 | A1 |
20160366601 | Hinman et al. | Dec 2016 | A1 |
20170048647 | Jung et al. | Feb 2017 | A1 |
20170201028 | Eberhardt et al. | Jul 2017 | A1 |
20170238151 | Fink et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
303453662 | Nov 2015 | CN |
105191204 | Dec 2015 | CN |
1384285 | Jun 2007 | EP |
002640177 | Feb 2015 | EP |
WO2014137370 | Sep 2014 | WO |
WO2014138292 | Sep 2014 | WO |
WO2014193394 | Dec 2014 | WO |
WO2015112627 | Jul 2015 | WO |
WO2017123558 | Jul 2017 | WO |
Entry |
---|
Non-Final Office Action, dated Sep. 15, 2016, U.S. Appl. No. 14/183,375, filed Feb. 18, 2014. |
Non-Final Office Action, dated Sep. 30, 2016, U.S. Appl. No. 14/657,942, filed Mar. 13, 2015. |
Final Office Action, dated Oct. 12, 2016, U.S. Appl. No. 14/741,423, filed Jun. 16, 2015. |
Final Office Action, dated Oct. 17, 2016, U.S. Appl. No. 14/639,976, filed Mar. 5, 2015. |
Non-Final Office Action, dated Oct. 26, 2016, U.S. Appl. No. 15/139,225, filed Apr. 26, 2016. |
Notice of Allowance dated Sep. 8, 2015 in Chinese Design Patent Application 201530058063.8, filed Mar. 11, 2015. |
Advisory Action, dated Mar. 2, 2016, U.S. Appl. No. 14/183,375, filed Feb. 18, 2014. |
Non-Final Office Action, dated Mar. 16, 2016, U.S. Appl. No. 14/325,307, filed Jul. 7, 2014. |
Notice of Allowance, dated Apr. 6, 2016, U.S. Appl. No. 14/198,378, filed Mar. 5, 2014. |
Non-Final Office Action, dated Apr. 7, 2016, U.S. Appl. No. 14/639,976, filed Mar. 5, 2015. |
Non-Final Office Action, dated Jan. 5, 2015, U.S. Appl. No. 14/183,445, filed Feb. 18, 2014. |
Notice of Allowance, dated Jul. 13, 2015, U.S. Appl. No. 14/183,445, filed Feb. 18, 2014. |
Non-Final Office Action, dated Jan. 15, 2015, U.S. Appl. No. 14/183,329, filed Feb. 18, 2014. |
Notice of Allowance, dated Aug. 19, 2015, U.S. Appl. No. 14/183,329, filed Feb. 18, 2014. |
Non-Final Office Action, dated Mar. 18, 2015, U.S. Appl. No. 14/183,375, filed Feb. 18, 2014. |
Non-Final Office Action, dated Jan. 2, 2015, U.S. Appl. No. 13/925,566, filed Jun. 24, 2013. |
Notice of Allowance, dated Jul. 15, 2015, U.S. Appl. No. 13/925,566, filed Jun. 24, 2013. |
Non-Final Office Action, dated Dec. 11, 2013, U.S. Appl. No. 13/906,128, filed May 30, 2013. |
Final Office Action, dated Apr. 15, 2014, U.S. Appl. No. 13/906,128, filed May 30, 2013. |
Advisory Action, dated Jul. 31, 2014, U.S. Appl. No. 13/906,128, filed May 30, 2013. |
Non-Final Office Action, dated Aug. 25, 2014, U.S. Appl. No. 13/906,128, filed May 30, 2013. |
Final Office Action, dated Mar. 23, 2015, U.S. Appl. No. 13/906,128, filed May 30, 2013. |
Non-Final Office Action, dated Jun. 16, 2014, U.S. Appl. No. 14/164,081, filed Jan. 24, 2014. |
Notice of Allowance, dated Dec. 30, 2014, U.S. Appl. No. 14/164,081, filed Jan. 24, 2014. |
Non-Final Office Action, dated Dec. 24, 2013, U.S. Appl. No. 14/045,741, filed Oct. 3, 2013. |
Final Office Action, dated Apr. 16, 2014, U.S. Appl. No. 14/045,741, filed Oct. 3, 2013. |
Non-Final Office Action, dated Sep. 22, 2014, U.S. Appl. No. 14/045,741, filed Oct. 3, 2013. |
Notice of Allowance, dated Jun. 3, 2015, U.S. Appl. No. 14/045,741, filed Oct. 3, 2013. |
Non-Final Office Action, dated Apr. 26, 2016, U.S. Appl. No. 14/802,829, filed Jul. 17, 2015. |
Non-Final Office Action, dated Sep. 17, 2015, U.S. Appl. No. 14/741,423, filed Jun. 16, 2015. |
Notice of Allowance, dated Jan. 11, 2016, U.S. Appl. No. 29/502,253, filed Sep. 12, 2014. |
Advisory Action, dated Jan. 19, 2017, U.S. Appl. No. 14/639,976, filed Mar. 5, 2015. |
Non-Final Office Action, dated Jan. 27, 2017, U.S. Appl. No. 14/198,473, filed Mar. 5, 2014. |
Non-Final Office Action, dated Feb. 23, 2017, U.S. Appl. No. 15/246,094, filed Aug. 24, 2016. |
Notice of Allowance, dated Mar. 1, 2017, U.S. Appl. No. 14/741,423, filed Jun. 16, 2015. |
Weisstein, Eric “Electric Polarization”, Retrieved from the Internet [retrieved Mar. 23, 2007] available at <http://scienceworld.wolfram.com/physics/ElectricPolarization.html>, 1 page. |
Liu, Lingjia et al., “Downlink MIMO in LTE-Advanced: SU-MIMO vs. MU-MIMO,” IEEE Communications Magazine, Feb. 2012, pp. 140-147. |
International Search Report and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/012884, dated Apr. 6, 2017, 9 pages. |
Non-Final Office Action, dated Mar. 22, 2017, U.S. Appl. No. 15/224,412, filed Jul. 29, 2016. |
Non-Final Office Action, dated Mar. 30, 2017, U.S. Appl. No. 15/246,118, filed Aug. 24, 2016. |
Non-Final Office Action, dated Mar. 31, 2017, U.S. Appl. No. 14/316,537, filed Jun. 26, 2014. |
Notice of Allowance, dated Apr. 10, 2017, U.S. Appl. No. 14/639,976, filed Mar. 5, 2015. |
Final Office Action, dated Apr. 13, 2017, U.S. Appl. No. 15/139,225, filed Apr. 26, 2016. |
Final Office Action, dated May 11, 2017, U.S. Appl. No. 14/183,375, filed Feb. 18, 2014. |
International Search Report and Written Opinion of the International Search Authority dated Nov. 26, 2013 in Patent Cooperation Treaty Application No. PCT/US2013/047406, filed Jun. 24, 2013. |
International Search Report and Written Opinion of the International Search Authority dated Aug. 9, 2013 in Patent Cooperation Treaty Application No. PCT/US2013/043436, filed May 30, 2013. |
International Search Report and Written Opinion of the International Search Authority dated Jul. 1, 2014 in Patent Cooperation Treaty Application No. PCT/US2014/020880, filed Mar. 5, 2014. |
International Search Report and Written Opinion of the International Search Authority dated Jun. 29, 2015 in Patent Cooperation Treaty Application No. PCT/US2015/012285, filed Jan. 21, 2015. |
Hinman et al., U.S. Appl. No. 61/774,632, filed Mar. 7, 2013. |
First Official Notification dated Jun. 15, 2015 in Chinese Design Patent Application 201530058063.8, filed Mar. 11, 2015. |
Final Office Action dated Sep. 21, 2017 U.S. Appl. No. 15/246,118 filed Aug. 24, 2016. |
Notice of Allowance dated Sep. 29, 2017 U.S. Appl. No. 15/139,225 filed Apr. 26, 2016. |
Number | Date | Country | |
---|---|---|---|
20150365866 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
61775408 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14183329 | Feb 2014 | US |
Child | 14833038 | US |