The wearing of jewelry can be described as a method of self-expression that combines physical objects and their visual effects in such a way as to coordinate the jewelry with the wearer's overall look and the wearer's environment. For this reason, jewelry pieces are not only evaluated in isolation, they are inevitably also chosen for wearing based on their relationship to the wearer's outfit and intended environment.
The use, manipulation, and interplay with light plays an important role in jewelry design and wearing. Diamonds, precious metals, precious stones, or indeed any item intended to be worn as jewelry has some relationship with light that plays an integral part in the jewelry's overall effect.
Therefore, optimal jewelry design and function takes into account the jewelry piece's ability to interact with light, relationship with the wearer's environment, and ability to compliment the wearer's look and outfit.
In an effort to address these needs, some designers have integrated light sources and corresponding electronic circuitry directly into jewelry so as to control and provide the light source for these interactions. Other designers have created jewelry that can be worn differently or adjusted to coordinate with different colors or types of outfits. Still other designers have created pieces that are adjustable, interchangeable, or variable so as to be appropriate to use in a variety of settings, from formal to casual.
However, the current jewelry available to users that incorporates lights and electronic circuitry is severely handicapped and effectively unappealing to users. Such pieces lack a truly dynamic and interactive interface that will allow the jewelry to interact with its environment by processing environmentally-derived data, such as ambient sounds, music, or speech, along with visual and wireless data.
There have been many devices and objects that have illumination, such as, light emitting diodes (LEDs) placed on or in them. For example, shoes that illuminate in the dark when the user compresses a piezoelectric device to produce electricity while walking Generally, however, these devices are usually reserved for males and younger children and youths. Fine jewelry, while having its own sparkle, does not currently have any means of providing women with the same illuminating enjoyment that others have. Thus, there remains a need for illuminating jewelry that can accommodate either a flat or a curved design and that can process and respond to auditory, visual, and wireless data to enhance user experience with sophisticated color effects that respond to this data, including systems that operate autonomously and systems that are associated with wired or wireless computer networks.
The present invention relates to a system and method for illuminating jewelry, and more particularly to a system that illuminates a jewelry device according to environmental, biometric, user-generated, and/or predetermined data, and also to a jewelry device that houses, displays, and employs the present invention.
In one embodiment, a system may gather data from a plurality of biometric and environmental sensors, such as but not by way of limitation to a microphone and an accelerometer, in addition to, in conjunction with, or instead of data from predetermined sources, user generated sources, Bluetooth or other wirelessly enabled sources, then may process this data using algorithms and may direct the system's light emitting diodes (LEDs) to illuminate in colors or patterns to match or compliment the user's outfit or environment. In another embodiment, a device employing the system illuminates according to the system's process.
The present invention may utilize a processor mounted on rigid, flex, or rigid-flex circuitry to accomplish these tasks. The present invention may also utilize an exterior housing arranged in a design that allows the LEDs or other light emission elements, to be visible from a vantage point outside the system and method without exposing the circuitry to view.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying figures where:
The present invention overcomes the limitations of the prior art by providing a system and method for dynamic jewelry enhancements. The system can be applied or adapted to a variety of jewelry, for example, bracelets, necklaces, watches, earrings, hairpins, tiaras, armlets, etc. Jewelers will now have the capability of making enhanced jewelry that will go with any outfit and any social setting from a party to a cotillion. Further, the system provides that these enhanced jewelry features can respond to data derived from environmental sensors and change their appearance accordingly, such as by displaying an illumination sequence or pattern, or alerting the user to information.
All dimensions specified in this disclosure are by way of example only and are not intended to be limiting. Further, the proportions shown in these Figures are not necessarily to scale. As will be understood by those with skill in the art with reference to this disclosure, the actual dimensions and proportions of any system, any device or part of a system or device disclosed in this disclosure will be determined by its intended use.
Systems and devices that implement the embodiments of the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate potential embodiments of the invention and not to limit the scope of the invention. Reference in the specification to “one embodiment” or “an embodiment” is intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an embodiment of the invention. The appearances of the phrase “in one embodiment” or “an embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. In addition, the first digit of each reference number indicates the figure where the element first appears.
As used in this disclosure, except where the context requires otherwise, the term “comprise” and variations of the term, such as “comprising”, “comprises” and “comprised” are not intended to exclude other additives, components, integers or steps.
In the following description, specific details are given to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific detail. Well known circuits, structures and techniques may not be shown in detail in order not to obscure the embodiments. For example, circuits may be shown in block diagrams in order not to obscure the embodiments in unnecessary detail.
Furthermore, the term “algorithm” or “algorithms” are to be read as encompassing any equivalent processing or computing method. In addition, “display signal” is to be read as any signal capable of conveying information to a display element such that the display element can make at least one display change in response to the display signal.
Also, it is noted that the embodiments may be described as a process that is depicted as a flowchart, a flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe or depict the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process is terminated when its operations are completed. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
Furthermore, the term “Bluetooth chip” is herein used as an example of any wireless communication technology or system that can transmit and receive transmissions of data or communications between the system and method and an outside data processing element, such as a computer, mobile device, or mobile device application. The term “Bluetooth chip” is therefore to be interpreted as including any and all equivalents or equivalent systems.
Moreover, a storage element may represent one or more devices for storing data, including read-only memory (ROM), random access memory (RAM), magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other non-transitory machine readable mediums for storing information. The term “machine readable medium” includes, but is not limited to portable or fixed storage devices, optical storage devices, wireless channels and various other non-transitory mediums capable of storing, comprising, containing, executing or carrying instruction(s) and/or data.
Moreover, the term “Li-Polymer Battery” and other references to batteries are herein intended to refer to any power source, whether rechargeable or single-use, in any storage or voltage range, capable of powering the system and/or device and of any dimensions or designs configured to facilitate the battery's functionality. Any references to batteries are herein intended to not be limiting and to include equivalents.
Furthermore, embodiments may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof. When implemented in software, firmware, middleware or microcode, the program code or code segments to perform the necessary tasks may be stored in a machine-readable medium such as a storage medium or other storage(s). One or more than one processor may perform the necessary tasks in series, distributed, concurrently or in parallel. A code segment may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or a combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted through a suitable means including memory sharing, message passing, token passing, network transmission, etc. and are also referred to as an interface, where the interface is the point of interaction with software, or computer hardware, or with peripheral devices.
The term “mobile device application” is here used to refer to any external computer, whether wired or wireless, including but not limited to a smart phone, a desktop or laptop computer, internet-based application, or other computer application capable of transmitting to and/or receiving transmissions from the present system and method.
The term LED, as used in this disclosure, refers to any light emitting element, including light emitting diodes, electro-luminescent wire, electro-luminescent strips, electro-luminescent sheets, a monochrome light emitting diode, optical wirings, light tubes, light pipe, or a multi-color light emitting diode.
The term “dynamic” refers to the interaction between the system and method and processed data that generates a unique signal, outcome, data set, set of instructions, or other output that is a result of the system and method's algorithmic processing of data and may, but is not required to be, a unique output based on real-time and/or changing data captured from the user's environment, physiological state or biometrics, movement or other source as processed by the system and method. Thus, “dynamic” refers to outcomes that are not predetermined, but rather are the product of the system and method operating using, at least in part, newly-acquired data, applying the system and method's algorithms, and deriving a unique output therefrom.
Furthermore, the term “information” as used in the present disclosure refers to any data, signal, impression, or other information capable of capture by a sensor or other data-gathering element and can be used interchangeably with the words “data” or “signal.” Such information can include, by way of illustration and not of limitation, information derived from the sensor or user's environment, such as sound, light, visuals or images, external movement, vibrations, gravitational forces, or other such information, or can include information derived via a sensor of a user's biometric condition, such as by illustration but not by way of limitation to the user's pulse, skin temperature, circadian rhythms, or other biometric data. Such information could also include, by illustration but not by way of limitation, information regarding the sensor or user's movement, or any other data capable of capture by a sensor or data-gathering device.
Furthermore, the term “information signal” is here used to refer to any transmission, signal, or communication of information between any two devices or entities capable of sending and/or receiving an information signal. In addition, when an information signal contains a specific form, type, or element of information, it is herein referred to as the type of information followed by the word “signal.” For example, information as used in this disclosure that contains information concerning light emission is herein referred to as a “light emission signal.”
Moreover, the terms “communicating relationship” or “communicating arrangement” may refer to any relationship between two or more elements wherein each or both of the elements have the capacity to send or transmit, or both, one or more signals or transmissions containing data to, from, or between the elements.
The term “providing” can include but is not limited to include the process whereby an element is selected if necessary, arranged or configured if necessary, attached if necessary, powered on if necessary, activated if necessary, and connected via either wireless or wired connection with another element if necessary.
Various embodiments provide a system and method for dynamic jewelry. One embodiment of the present invention provides a system for dynamic jewelry. In another embodiment, there is provided a method for using the system. The system and method will now be disclosed in detail.
In one or more non-limiting embodiments, the present system and method begins by providing one or more circuit board elements, one or more processor elements, one or more battery elements, one or more sensor elements, and one or more light emission elements. The processor element is in communicating relationship with the circuit board elements, the battery elements, the sensor elements, and the light emission elements. The battery element is in a communicating relationship with the processor.
The system and method, in one non-limiting embodiment then captures information using one or more of the sensor elements. This information is then transmitted from the sensor element in the form of an information signal to the processor element via a circuit or circuit board, a wired or wireless communication, or other connection form as necessary.
The processor element then applies one or more algorithms to the information signal, interprets or processes the results of this application, and creates a light emission signal based on the information signal. In one non-limiting embodiment, this application and processing may result in a light emission signal that is unique, based on real-time information and data gathered from the sensor element, not predetermined, and specific to the user's circumstance in that real-time setting. In one non-limiting embodiment, the light emission signal may be thought of as translating or interpreting the information captured by the sensor into one or more light emission signals. In one non-limiting embodiment, and by way of example and not of limitation, the resulting light emission signal could encode instructions for a light emission pattern that, in real-time, corresponds to, mimics or mirrors, inverts or counters, or otherwise responds to the user's sonic or musical environment, the user's outfit, the user's mood or physiological state, or the user's motions or movement.
This light emission signal is then sent from the processor element to a light emission element by way of a circuit board, this circuit board being either a flex circuit board, a rigid circuit board, a rigid-flex circuit board, or an equivalent signal transmission element. Those of skill in the art will recognize that the wired or wireless pathway between the processor and the light emission element is capable of various configurations both of communicating elements and pathways.
The light emission element then receives the light emission signal and may illuminate, by way of illustration and not of limitation, in a way, manner, sequence, color, color pattern, illumination pattern, or other form of illumination in conformity with the directions in the light emission signal. The light emission element may be attached or connected to light diffusers or other light directing or affecting elements.
Referring now to
Referring now to
Continuing with
Referring now to
Continuing with
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
What has been described is a new and improved system and method for dynamic jewelry, thereby overcoming the limitations and disadvantages inherent in the related art.
Although the present invention has been described with a degree of particularity, it is understood that the present disclosure has been made by way of example and that other versions are possible. As various changes could be made in the above description without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be illustrative and not used in a limiting sense. The spirit and scope of the appended claims should not be limited to the description of the preferred versions contained in this disclosure.
All features disclosed in the specification, including the claims, abstracts, and drawings, and all the steps in any method or process disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. Each feature disclosed in the specification, including the claims, abstract, and drawings, can be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Any element in a claim that does not explicitly state “means” for performing a specified function or “step” for performing a specified function should not be interpreted as a “means” or “step” clause as specified in 35 U.S.C. §112.
While the system and method has been disclosed in connection with a number of embodiments shown and described in detail, various modifications should be readily apparent to those of skill in the art.
This application claims priority to U.S. Provisional Application No. 61/939,076 filed on Feb. 12, 2014, the disclosure of which, including any materials incorporated by reference therein, is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61939076 | Feb 2014 | US |