The present invention relates generally to the field of navigation and guidance systems, and more specifically, but not exclusively, to a system and method for dynamically estimating output variances for carrier-smoothing filters used, for example, in global positioning system-based navigation or guidance systems or similar types of navigation or guidance systems.
Satellite-based navigation and guidance systems are known. For example, the Global Positioning System (GPS) is a satellite navigation system used for determining one's precise location, by estimating the three-dimensional, global position of a radio receiver. The receiver, which can be hand-held or mounted to a vehicle such as an aircraft, receives coded signals from a number of earth-orbiting satellite transmitters. Each received signal indicates the position of its satellite transmitter and its transmission time, which enables the receiver (using an internal clock) to approximate signal transit times and estimate the distances to the transmitters. These distances are referred to as “pseudoranges.” In practice, a processor associated with the receiver uses at least four of these pseudoranges to estimate the position (e.g., latitude, longitude and altitude) of the receiver and the associated vehicle with a technique known as trilateration. The accuracy of these position solutions depends on certain factors such as, for example, atmospheric conditions and the performance of the individual satellite transmitters. A satellite navigation system similar to the GPS is the Russian-operated Global Navigation Satellite System (GLONASS).
In recent years, the GPS has been extended for use with aircraft during the more critical portions of a flight (e.g., landings). These satellite-based precision landing systems are ground-augmented, differential systems that typically include two-to-four ground-based GPS receivers, a ground-based differential correction processor (DCP), and a correction-data transmitter. These components are located near the aircraft landing areas involved. The ground-based GPS receivers determine sets of pseudoranges based on signals received from at least four satellite transmitters. These pseudorange measurements are forwarded to the ground-based DCP, which uses the pseudoranges and known positions of the ground receivers to produce an error correction factor. The correction-data transmitter transmits the error correction factor to approaching aircraft, which use this correction data to increase the accuracy of the position estimates provided by onboard GPS receivers. A civilian version of such a satellite-based precision landing system is the GPS-based Local Area Augmentation System (LAAS), and a military version is the Joint Precision Approach and Landing System (JPALS).
Essentially, GPS receivers perform two types of measurements. One such measurement is code-based, whereby the receiver tracks the code modulation of the GPS signal to determine the pseudorange. The other measurement is carrier-based, whereby the receiver tracks the carrier phase of the GPS signal. Notably, phase measurements of the carrier signal typically have much less noise than code-based measurements. Consequently, a carrier phase smoothing process has been developed for use in GPS receivers, which combines the code-based pseudorange measurements with the integral of the carrier phase measurements in order to mitigate the noise inherent in the code-based pseudorange tracking process. Essentially, carrier-smoothing is used in GPS receivers for certain precision applications (e.g., LAAS, JPALS, etc.) in order to eliminate as much high frequency noise as possible from the pseudorange measurements involved.
GPS receivers track the code-modulated signals using delay lock loops (DLLs), and the carrier phase signals are tracked with phase lock loops (PLLs). Carrier-smoothing of the code-based pseudorange measurements is typically performed by coupling data from the carrier phase tracking loops to the code-based tracking portion of the system. Typically, each pseudorange value from the receiver is smoothed with its own smoothing filter. Notably, the Hatch filter is a known smoothing filter that is used in GPS receivers for smoothing code-based pseudorange measurements with continuous carrier phase data.
A significant problem with existing carrier-smoothing filters used in airborne GPS-based precision landing systems (e.g., LAAS, JPALS, etc.) and similar precision applications is that the filters can take up to 5 minutes to stabilize. Consequently, carrier-smoothing of the code-based pseudorange measurements in existing GPS receivers is not available for precision applications until after the smoothing filters stabilize. Thus, for precision position determination applications, the existing GPS receivers are performance limited and essentially unavailable for use for a significant period of time after the smoothing filters are initialized. Note that the period of unavailability is associated with the time constant of the smoothing filter. This association drives designers to use shorter time constants, which degrades the smoothing. Consequently, there is a need for a technique that allows the use of potentially longer time constants without meaningfully degrading availability. Therefore, given the substantive, continuing need to improve the precision and performance of airborne landing systems and similar precision position determination applications, it would be advantageous to provide a system and method that enables an airborne GPS-based precision landing system or similar precision application to begin operating with appropriate performance parameters without having to wait for the carrier-smoothing filters in the GPS receivers to stabilize. As described in detail below, the present invention provides such a system and method.
The present invention provides an improved system and method for dynamically estimating the output variances of carrier-smoothing filters used, for example, in GPS receivers. By accurately estimating the output variances of the carrier-smoothing filters as they transition from initialization to steady-state operation, it is possible to calculate any required protection levels without having to wait for the filters to fully stabilize. In accordance with a preferred embodiment of the present invention, a system for estimating output variances of a carrier-smoothing filter for use in a satellite navigation system receiver is provided, which includes a plurality of smoothing filters associated with a navigation processing unit in a satellite navigation receiver. One or more processors associated with the navigation processing unit executes an algorithm for each smoothing filter, which provides a method for dynamically calculating an output variance for a respective smoothing filter as it transitions in response to new input variance values. The method also predicts the settling point of the output variance for that smoothing filter given a set of pseudorange and carrier-phase values to be applied. Therefore, using the novel output variance prediction method of the present invention, precision navigation applications such as, for example, airborne GPS-based precision landing system applications can begin operations with suitable calculated protection level values without having to wait for the smoothing filters to stabilize. Thus, in accordance with the present invention, such precision landing systems are available for use as soon as the required protection level values are reached.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
With reference now to the figures,
For this example embodiment, receiver 100 includes a passive band-pass pre-filter and preamplifier unit 102, which filters and preamplifies the Radio Frequency (RF) signals received from a plurality of satellite transmitters. The preamplified RF signals are coupled to a down-converter and analog-to-digital (A/D) conversion unit 104, which converts the RF signals to an Intermediate Frequency (IF) and then converts these analog signals to digital form. Typically, these digital signals are coupled to a Digital Signal Processor (DSP) 106, which performs suitable digital signal processing to enhance the digital data received. For this example embodiment, the digital data is coupled from DSP 106 to a navigation processing unit 108, which executes suitable algorithms (e.g., implemented in software) to generate position, velocity and time information. As such, one or more microprocessors 110 (e.g., implemented with one or more Power PC-based microprocessors) can be used in association with navigation processing unit 108 and/or DSP 106, in order to execute suitable algorithms (e.g., implemented in software) that perform carrier phase smoothing of the code-based pseudorange measurement data generated in receiver 100, and dynamically estimates the output variances of carrier-smoothing filters used, in accordance with teachings of the present invention.
For this example embodiment, smoothing filter 200 is implemented as an algorithm (e.g., software executed by microprocessor 110 in
Specifically, referring now to
where ts is the sample interval, and 100 seconds is a predetermined, fixed time constant value. Thus, assuming that a sampling interval into filter 200 is 1.0 second, a variance reduction ratio for filter 200 is 0.005025 for the raw pseudorange input (ρ) and 0.985025 for the accumulated phase input (φACC). These variance reduction ratio values were obtained using a MATLAB simulation by summing the impulse response of each filter channel used. Thus, the steady-state variance for filter 200 may be represented as:
σstable2=(0.005025)σρ2+(0.985025)σφ2 (2)
For this example embodiment, a closed-form solution for the transient variance of smoothing filter 200 may be derived in terms of the input signal variances and the filter coefficient/sampling interval as the filter settles down (stabilizes) from initialization to steady state. The resulting equation for that closed-form solution can be used to validate the values shown above in equation (2). As such, at step 302 of the method, filter 200 may be represented as:
Sn=αρn+β(φn−φn−1+Sn−1) (3)
where Sn=the current output term, Sn−1=the previous output term (prior sample time), ρn=the current pseudorange input value, φn=the current accumulated carrier phase input value, φn−1=the previous accumulated carrier phase input value, α=the filter gain as defined above in equation (1), and β is defined as 1−α (to simplify terms in the derivation to follow). Next, at step 304, the output terms Sn−1, Sn−2, may be defined as:
Sn31 1=αρn−1+β(φn−1−φn−2+Sn−2)
Sn−2=αρn−2+β(φn−2−φn−3+Sn−3) (4)
At step 306, these terms are then substituted into the filter equation (3):
Sn=αρn+βαρn−1+β2αρn−2+βφn+(β2−β)φn−1+(β3−β2)φn−2−β3φn−3+β3Sn−3 (5)
At step 308, by inspection, equation (5) can be generalized for a sample interval of n=0 to N:
Sn=α(ρn+βρn−1+β2ρn−2+ . . . +βNρ0)+β(φn+(β−1)φn−1+(β2−β)φn−2+ . . . +(βN−βN−1)φ0)+βNS0 (6)
where S0=the initial value of the fed-back output term (initialized to ρ0), ρ0=the initial pseudorange value, and φ0=the initial accumulated phase input value. Assuming that the input processes are stationary (e.g., σφ2 and σρ2 do not change during the sample interval n=0 to N), then equation (6) can be factored again, and at step 310, a generalized equation for the total variance of the filter is:
σS
where σρ2=σρ
At this point, the total variance equation (7) can be simplified by recognizing that the power series terms may be expressed as closed forms (at step 312):
σS
The two power series terms can then be reduced to standard forms:
By substitution, the value of k1 has a closed solution of
This value can be simplified further by substituting (1−α) for β to obtain:
Also, the k2 term can be simplified to k2=2αk1. At step 314, substituting this new term for k2 into equation (8) above produces:
σS
The incremental expression for the variance σS
σS
As such, the derivation of this equation (10) was originally predicated on the assumption that the variance values are constant over the sample interval. However, in practicality, this assumption is valid for σρ2, but it does not hold up for transients in σφ2 because the output of the filter has forcing inputs from both σφ
Thus, at step 318, the final equation to be used for calculating σS
σS
Notably, equation (11) was thoroughly tested in MATLAB evaluations that produced excellent results across wide variations in filter gain as well as injected transient values of σρ2 and σφ2. As such, the final steady-state variance of the stable filter (200) can be determined by returning to equation (9) and continuing the derivation by allowing the value of n→∞. At step 320, as n→∞, the initial feedback variance term, σS
Consequently, reducing equation (12) slightly, at step 322, the steady-state variance of the output of the smoothing filter 200, defined as a function of the input variances and the filter gain coefficient, becomes:
As such, in accordance with a preferred embodiment of the present invention, a novel method is provided for dynamically calculating an output variance for a smoothing filter as it transitions in response to new input variance values. The method also predicts the settling point of the output variance for that smoothing filter given a set of pseudorange and carrier-phase values to be applied. Therefore, using the novel output variance prediction method of the present invention, precision navigation applications such as, for example, airborne GPS-based precision landing system applications can begin operations with suitable calculated protection level values without having to wait for the smoothing filters to stabilize. Consequently, such precision landing systems are available for use as soon as the required protection level values are reached.
It is important to note that while the present invention has been described in the context of a fully functioning navigation system, those of ordinary skill in the art will appreciate that the processes of the present invention are capable of being distributed in the form of a computer readable medium of instructions and a variety of forms and that the present invention applies equally regardless of the particular type of signal bearing media actually used to carry out the distribution. Examples of computer readable media include recordable-type media, such as a floppy disk, a hard disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmission-type media, such as digital and analog communications links, wired or wireless communications links using transmission forms, such as, for example, radio frequency and light wave transmissions. The computer readable media may take the form of coded formats that are decoded for actual use in a particular navigation system.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. These embodiments were chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
3137459 | Smith et al. | Jun 1964 | A |
3603994 | Williams et al. | Sep 1971 | A |
3975731 | Latham et al. | Aug 1976 | A |
4578678 | Hurd | Mar 1986 | A |
4737794 | Jones | Apr 1988 | A |
4807256 | Holmes et al. | Feb 1989 | A |
5018218 | Peregrim et al. | May 1991 | A |
5296861 | Knight | Mar 1994 | A |
5323322 | Mueller et al. | Jun 1994 | A |
5343212 | Rose et al. | Aug 1994 | A |
5450448 | Sheynblat | Sep 1995 | A |
5459473 | Dempster et al. | Oct 1995 | A |
5471217 | Hatch et al. | Nov 1995 | A |
5563917 | Sheynblat | Oct 1996 | A |
5594453 | Rodal et al. | Jan 1997 | A |
5629708 | Rodal et al. | May 1997 | A |
5740048 | Abel et al. | Apr 1998 | A |
5751777 | Zampetti | May 1998 | A |
5774387 | Marshall | Jun 1998 | A |
5774829 | Cisneros et al. | Jun 1998 | A |
5796773 | Sheynblat | Aug 1998 | A |
5825326 | Semler et al. | Oct 1998 | A |
5828336 | Yunck et al. | Oct 1998 | A |
5831575 | Gu | Nov 1998 | A |
5883595 | Colley | Mar 1999 | A |
5937349 | Andresen | Aug 1999 | A |
5993110 | Bueno | Nov 1999 | A |
6052082 | Hassan et al. | Apr 2000 | A |
6163754 | Zhang et al. | Dec 2000 | A |
6195040 | Arethens | Feb 2001 | B1 |
6198430 | Hwang et al. | Mar 2001 | B1 |
6204808 | Bloebaum et al. | Mar 2001 | B1 |
6266009 | Hwang | Jul 2001 | B1 |
6311127 | Stratton et al. | Oct 2001 | B1 |
6311129 | Lin | Oct 2001 | B1 |
6329946 | Hirata et al. | Dec 2001 | B1 |
6345232 | Lynch et al. | Feb 2002 | B1 |
6760663 | Brenner | Jul 2004 | B2 |
6778136 | Gronemeyer | Aug 2004 | B2 |
6804313 | Skafidas et al. | Oct 2004 | B2 |
6832155 | Draganov | Dec 2004 | B2 |
6944541 | Pasturel et al. | Sep 2005 | B2 |
7117417 | Sharpe et al. | Oct 2006 | B2 |
7139354 | Izumi et al. | Nov 2006 | B2 |
7151405 | Nezami | Dec 2006 | B2 |
20010020214 | Brenner | Sep 2001 | A1 |
20020147544 | Nicosia et al. | Oct 2002 | A1 |
20030052817 | Diggelen | Mar 2003 | A1 |
20030187575 | King et al. | Oct 2003 | A1 |
20040093130 | Osder et al. | May 2004 | A1 |
20040135721 | Hoven et al. | Jul 2004 | A1 |
20040225438 | Draganov | Nov 2004 | A1 |
20050135700 | Anderson | Jun 2005 | A1 |
20050203702 | Sharpe et al. | Sep 2005 | A1 |
20050212696 | Bartone et al. | Sep 2005 | A1 |
20060047413 | Lopez et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
0 694 791 | Jan 1996 | EP |
1057583 | Feb 1967 | GB |
1 554 751 | Oct 1979 | GB |
2 208 631 | Apr 1989 | GB |
2 211 041 | Jun 1989 | GB |
WO 03-081977 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070046535 A1 | Mar 2007 | US |