The present invention relates generally to the field of medical imaging, and more particularly, to a system and method for echogenically enhancing nerve fibers using targeted metallic particles.
Conventional imaging technologies such as CT, MRI, and ultrasound can be categorized as structural imaging modalities. Such imaging modalities are generally able to identify anatomical structures but are not without drawbacks. For example, certain imaging modalities are not particularly helpful during nerve block procedures, as the technologies have previously not been efficient at delivering clear images of the nerve block anatomy, surrounding structures, and/or the needle location.
Recent advancements in imaging modalities, however, have provided for effective nerve block procedures to be performed using such imaging. For example, in medical imaging, selective particles have been shown to be able to target certain cell types, such as cancer cells and/or nerve bundles. More specifically, magnetic materials and/or magnetic particles are often employed in the body to enhance image contrast of such cells. The magnetic nanoparticles can be passivated by biocompatible coatings such as dextrin, citrate, olystyrene, and/or divinylbenzene. These coatings can also detoxify the particles, resulting in enhanced lifetimes in vivo. Such targeted particles have shown promise in enhancing imaging of such cells using imaging modalities.
Thus, developments in structural imaging modalities that continuously improve upon medical imaging during various medical procedures, such as nerve block procedures, would be welcomed in the art. More specifically, a system and method for echogenically enhancing nerve fibers or bundles using targeted metallic particles would be advantageous.
Objects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present invention is directed to a system for echogenically enhancing a target site within a patient during a medical procedure. The system includes an imaging system having a display for viewing the target site, a plurality of metallic particles configured to selectively target and bind to one or more locations at the target site, and a delivery mechanism for delivering the plurality of metallic particles into the patient towards the target site.
In one embodiment, the metallic particles may be selected based on their chemical or atomic structure being attracted to one or more locations at the target site. In another embodiment, the metallic particles may include metallic nanoparticles. For example, in certain embodiments, each of the metallic nanoparticles may have a diameter of from about 1 nanometer to about 100 nanometers. In further embodiments, each of the metallic particles may include any suitable metallic materials that are biocompatible in the human body, including but not limited to silver, gold, copper, or combinations thereof.
In another embodiment, a quantity of the plurality of metallic particles may be from about one thousand (1,000) to about one million (1,000,000) metallic particles. In further embodiments, any number of metallic particles may delivered into the body of the patient, including less than 1,000 particles or more than 1,000,000 particles, e.g. depending on the medical procedure and/or the target site being echogenically enhanced.
In additional embodiments, the plurality of metallic particles are configured to temporarily bind to the one or more locations at the target site for a predetermined dwell time before diffusing into the patient. More specifically, in such embodiments, the predetermined dwell time of the plurality of metallic particles may include from about one day to about two days. In further embodiments, any suitable dwell time may be sufficient for temporarily binding the metallic particles to the target site and then diffusing into the body, including less than one day or more than two days.
In particular embodiments, the delivery mechanism of the system may include at least one of a needle, a syringe, or combinations thereof. In further embodiments, the target site of the patient may include nerve cells, cancer cells, nerve sheaths, nerve bundles, nerve fibers, or any other site within the patient. In addition, the medical procedure may include a peripheral nerve block procedure. Thus, in certain embodiments, the metallic particles are configured to selectively target and bind to nerve fibers during a nerve block procedure.
In yet another embodiment, the imaging system may include a CT scanner, an MRI scanner, an ultrasound imaging system, or any other imaging system than can benefit from the echogenically-enhanced particles as described herein.
In another aspect, the present invention is directed to a method for echogenically enhancing a target site of a patient during a medical procedure. The method includes delivering, via a delivery mechanism, a plurality of metallic particles into the patient. Further, the method includes allowing the plurality of metallic particles to selectively target and bind to the target site. The method also includes viewing, via a display of an imaging system, the target site with the plurality of metallic particles bound thereto.
In one embodiment, the method also includes adjusting a quantity of the metallic particles being delivered into the patient as a function of the medical procedure. In another embodiment, the method may include selecting one or more of the plurality of metallic particles based on their chemical or atomic structure being attracted to the target site. It should also be understood that the plurality of metallic particles may have any of the additional properties and/or features as described herein.
In yet another aspect, the present invention is directed to a method for echogenically enhancing a target site of a patient during a medical procedure. The method includes delivering, via a delivery mechanism, a plurality of high-density particles into the patient. For example, in certain embodiments, the high-density particles may have a density of from about 1800 kilograms per cubic centimeter (kg/cm3) to about 22,000 kg/cm3. Further, the method includes allowing the plurality of high-density particles to selectively target and bind to the target site. The method also includes viewing, via a display of an imaging system, the target site with the plurality of high-density particles bound thereto. It should be understood that the method may further include any of the additional method steps/or features as described herein.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference will now be made in detail to one or more embodiments of the invention, examples of the invention, examples of which are illustrated in the drawings. Each example and embodiment is provided by way of explanation of the invention, and is not meant as a limitation of the invention. For example, features illustrated or described as part of one embodiment may be used with another embodiment to yield still a further embodiment. It is intended that the invention include these and other modifications and variations as coming within the scope and spirit of the invention.
Referring now to the drawings,
Additionally, as shown in
As used herein, the term “processor” refers not only to integrated circuits referred to in the art as being included in a computer, but also refers to a controller, a microcontroller, a microcomputer, a programmable logic controller (PLC), an application specific integrated circuit, a field-programmable gate array (FPGA), and other programmable circuits. The processor(s) 16 is also configured to compute advanced control algorithms and communicate to a variety of Ethernet or serial-based protocols (Modbus, OPC, CAN, etc.). Furthermore, in certain embodiments, the processor(s) 16 may communicate with a server through the Internet for cloud computing in order to reduce the computation time and burden on the local device. Additionally, the memory device(s) 18 may generally comprise memory element(s) including, but not limited to, computer readable medium (e.g., random access memory (RAM)), computer readable non-volatile medium (e.g., a flash memory), a floppy disk, a compact disc-read only memory (CD-ROM), a magneto-optical disk (MOD), a digital versatile disc (DVD) and/or other suitable memory elements. Such memory device(s) 18 may generally be configured to store suitable computer-readable instructions that, when implemented by the processor(s) 16, configure the processor(s) 16 to perform the various functions as described herein.
Thus, as shown in
Referring now to
More specifically, the metallic particles 54 may be selected based on their chemical or atomic structure being attracted to one or more locations at the target site 42. For example, as shown in
In additional embodiments, the metallic particles 54 as described herein may have any suitable size. For example, in certain embodiments, the particles 54 may correspond to nanoparticles. As used herein, the term ‘nanoparticles’ generally refers to extremely small particles that have a diameter of from about 1 nanometer to about 100 nanometers.
It should be understood that any suitable quantity of the particles 54 may be injected into the patient so as to enhance the echogenic properties of the target site 42. For example, in certain embodiments, from about one thousand (1,000) to about one million (1,000,000) of the particles 54 may be injected or delivered into the patient and can be determined based on the procedure and/or the anatomical structure or surrounding tissue of the target site 42. In additional embodiments, any number of the particles 54 may delivered into the patient, including less than 1,000 particles or more than 1,000,000 particles, e.g. depending on the medical procedure and/or the properties of the target site 42.
Still referring to
Referring now to
In one embodiment, the method 100 may also include adjusting a quantity of the particles 54 being delivered into the patient as a function of the medical procedure. In another embodiment, the method 100 may include selecting one or more of the plurality of particles 54 based on their chemical or atomic structure being attracted to the target site 42.
While various patents have been incorporated herein by reference, to the extent there is any inconsistency between incorporated material and that of the written specification, the written specification shall control. In addition, while the disclosure has been described in detail with respect to specific embodiments thereof, it will be apparent to those skilled in the art that various alterations, modifications and other changes may be made to the disclosure without departing from the spirit and scope of the present disclosure. It is therefore intended that the claims cover all such modifications, alterations and other changes encompassed by the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/056340 | 10/11/2016 | WO | 00 |