In contrast to business-to-consumer markets where product prices are usually set by the business and are not negotiated with a customer, prices for products in business-to-business markets are usually determined through negotiations between the business and the customer. In such circumstances, a customer often approaches a salesperson with a request for a price quote on one or more specific products. The salesperson, knowing certain attributes about the customer and the order, will respond with an offer price. The customer can then either accept or reject the offer. If the offer is accepted, an order is recorded within the company's transaction database. If the offer is rejected, usually no data about the rejected offer is recorded by the salesperson or added to the company's sales transaction database. As a result, the company's transaction database does not capture any information regarding the rejected offers. Therefore, the data recorded when an offer is accepted by a customer in a business-to-business market is often described as win-only transaction data.
Businesses must make a number of important decisions based upon their expectation of how customers will respond to price offers and changes in price offers. These decisions are sometimes built upon demand models which help predict a customer's response or sensitivity to price changes, also known as elasticity. Elasticity of demand provides a measure of the change in quantity demanded of a good or service based on changes in its price and is often used in demand models. Such predictions can help a business determine the optimal price for a product. In modeling customer behavior, businesses often employ mathematical models in the form of a parametric demand models. These parametric demand models are motivated by microeconomic theory and describe the behavior of customers under certain assumptions. In order to apply a parametric demand model, transaction data is typically used to estimate the parameters of the model. Such an approach is only useful if the sales process which generates transaction data conforms to the assumptions of the demand model. Since business-to-business markets are characterized by negotiations between the sales person and the customer, the application of business-to-consumer models are often found to be unreliable because they fail to incorporate the negotiation aspect of the market.
In addition, unlike business-to-consumer markets in which transaction data is usually plentiful, business-to-business markets are often characterized by a fewer number of sales transactions, even though a larger total number of goods may be included in those transactions. As a result of the fewer number of transactions, the amount of data used to estimate the demand model parameters in business-to-business markets is often sparse, which leads to unreliable estimates of elasticity. Using unreliable demand model parameters to determine an optimal pricing strategy can lead to pricing recommendations that result in a lost sale and therefore have a negative financial impact on a business. Therefore, it is important that any estimate of elasticity be reliable, where we define reliability as being resistant to sparse data and outlier transactions.
Accordingly, the present invention relates to a system and method for efficiently estimating reliable elasticities to be used in a demand model for predicting customer demand for a product in a business-to-business market.
The present invention relates to a system and method for efficiently estimating the sensitivity, or elasticity, of customer demand to changes in price in a business-to-business market environment. It provides a computer-implemented product pricing system and method for optimizing product pricing recommendations. More particularly, the present invention is a computer implemented system and method for efficiently estimating reliable elasticities in a business-to-business market. It includes a system and method for calculating customer demand, segmenting markets using win-only transaction data, and efficiently providing a reliable estimate of elasticity based on a market segment hierarchy, estimated customer demand model parameters and the uncertainty in the estimated customer demand model parameters. It uses this reliable estimate of elasticity in a price optimization algorithm that computes product price recommendations by market segment.
Although other types of demand models may be used, the present method uses a parametric demand model, and a corresponding offer model which is referred to herein as the Joint Demand Model or JDM. The Joint Demand Model describes win-only transaction data more completely than models employed in business-to-consumer markets as the model incorporates the negotiation aspect of business-to-business markets. The particular embodiment of the Joint Demand Model in the present invention lends itself to an efficient method and system for estimating the demand model's parameters, as well as calculating the estimation error of the parameters. The estimation error can then be used within a weighting scheme based on a hierarchical model in order to produce a reliable estimate of elasticity.
Further, the computer implemented system described in the present invention addresses computational inefficiencies in using traditional parameter estimation techniques in estimating the parameters of the Joint Demand Model. More specifically, the present invention uses a moment matching technique as the mathematical foundation of the numerically efficient algorithm for estimating the parameters of the Joint Demand Model. In addition, the method calculates the parameter estimation error, and provides a methodology for using the estimation error to improve the reliability of the elasticity estimates using a hierarchical weighting scheme.
One embodiment of a joint demand model is set forth in U.S. patent application Ser. No. 12/276,033, incorporated by reference in its entirety herein, which discloses a computer implemented method for jointly computing one or more pricing recommendations for a business using both a demand and offer distribution model.
The present invention comprises a computer-implemented method for determining optimized product pricing recommendations. The method is implemented by computer-executable instructions being executed by a computer processor. Sales transaction data stored in memory for one or more products is inputted. The sales transaction data comprises observed win-only sales transactions for a business. Market segments that have similar responses to product price changes are computed by ranking market segment attributes using price sensitivity data and the sales transaction data. Using the market segment ranking, the market segments are grouped into a market segment hierarchy. A set of estimated model parameters is computed for each market segment in the market segment hierarchy. Using a moment matching algorithm, the market segments, the sales transaction data and the estimated model parameters, a customer demand model with customer demand model parameters is computed for the market segment in the market segment hierarchy and storing the customer demand model parameters in a data storage system. An estimation error for the customer demand model parameters is computed for the market segment in the market segment hierarchy and stored. Initial demand elasticity for the market segment in the market segment hierarchy is computed using the customer demand model parameters. A reliable elasticity estimate for the market segment is computed at a lowest level in the market segment hierarchy using the computed initial demand elasticity and customer demand model parameter estimation error. Optimized price recommendations are computed using a price optimizer algorithm that includes the reliable elasticity estimate and the optimized price recommendations are displayed to a user.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings wherein:
In this particular embodiment of the joint demand model, the buyer is assumed to accept an offer if the offered price is less than the buyer's willingness to pay. The willingness-to-pay of the population of customers is assumed to be distributed according to the logistic distributions. The probability density function of willingness-to-pay distribution can be represented as follows.
Where p is the price and the demand model parameter p0 represents the mean of the willingness-to-pay distribution and parameter b is proportional to the inverse standard deviation of the willingness-to-pay distribution.
The particular embodiment of the joint demand model 410 assumes an offer model 450 distributed according to a truncated logistic distribution, with the same demand model parameters b and p0 as the assumed willingness-to-pay distribution. This assumption implies that the salesperson has some knowledge about the willingness-to-pay of the population of customers. In addition, the lower truncation is meant to represent a floor price, where perhaps the cost to produce the product is greater than the price offered.
The combination of the logistic willingness to pay distribution and the lower truncated logistic offer distribution can be represented by the following probability density function.
There are several ways to estimate the demand model parameters b, p0, and p1 using win-only data which is assumed to conform to the implied transaction density. Some methods are more numerically efficient than others. For instance, the maximum likelihood approach can be applied, but a closed form solution to the maximum likelihood optimization problem is unknown and the method results in a computationally intensive process. The moment matching technique is another traditional parameter estimation technique. Unfortunately, a closed form solution to the inverse moments formulas are unknown. Fortunately, a JDM parameter table generator 430 can be used to pre-generate a JDM parameter lookup table 440 which is based on the moment matching technique. The JDM parameter lookup table can then be used to find the demand model parameters b, p0, and p1 which match the sample moments, such as the sample mean and sample variance, of the observed win-only transaction data. The use of a lookup table results in a much more computationally efficient method than the maximum likelihood approach, where the particular embodiment described assumes that the lower truncation point p1 is known.
Since a closed form solution for the moments of the assumed transaction density is unknown, another technique must be applied for populating the JDM parameter lookup table. One such technique is the use of Monte Carlo simulation. In this particular embodiment, the joint demand model lookup table generator 430 generates transaction data according to the joint demand model 410 where the parameters b, p0, and p1 are known. The sample mean and sample variance of the generated transaction data can be used to approximate the true moments implied by the parameters b, p0, and p1, where the precision of the approximation is proportional to the number of transactions generated. In addition, the estimation error associated with the b and p0 parameters can be determined for a given number of transactions.
As we progress from the trunk node 835 to the leaf node, at each level of the hierarchy structure, the transaction data is separated to become more granular, but will also become more sparse. As a result, there is less transaction data available for each successively lower node in the tree. For example, the trunk node automotive parts 835 would include all transaction data, but as one moves one level down to the product group nodes 815, the transaction data is split into spark plugs 840 and brake pads 845. As we traverse from the trunk node 835 to the leaf nodes 840-875, there is a tradeoff between the amounts of transaction data available at a node versus the level of segmentation granularity at each node. Elasticities are estimated at each level using the elasticity estimator described in
To estimate a reliable elasticity at the lowest level of the segmentation hierarchy, a weighted average can be calculated along each traverse of the tree from trunk node to leaf node at the lowest level of the segmentation hierarchy. The weighting scheme used must balance the tradeoff between confidence and specificity. The functions below represent once such embodiment of the two weighting rules.
In addition, embodiments of the present invention further relate to computer storage products with a computer-readable medium that have computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts. Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media such as optical disks; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (ASICs), programmable logic devices (PLDs) and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher level code that are executed by a computer using an interpreter.
Although the present invention has been described in detail with reference to certain preferred embodiments, it should be apparent that modifications and adaptations to those embodiments might occur to persons skilled in the art without departing from the spirit and scope of the present invention.
This application is a continuation in part of U.S. application Ser. No. 12/276,033, filed on Nov. 21, 2008, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12276033 | Nov 2008 | US |
Child | 13523263 | US |