None.
None.
None.
This invention relates to welding. More particularly, the invention is related to a system and method for electroslag welding vertically aligned workpieces, in particular spliced vertical box columns.
My U.S. Pat. No. 6,297,472, issued Oct. 2, 2001, discloses and claims a welding system and method including a distributed welding control system that allows a welding operator to program automated welding cycles for various welding operations, and that is particularly useful for installing stiffener plates onto structural beams. In U.S. Pat. No. 6,297,472, the welding system includes a welding fixture with a pair of opposing, positionally adjustable welding shoes, and lock screws for attaching a workpiece such as an I-beam. A rotary straight wire feeder removes the cant and helix from welding wire as it is fed to the welding torch. The welding torch is attached to the power cables coming from the welding power supply and is a receptacle for the consumable guide tube. Wire feed conduits are attached to the wire feeder on one end and the welding torch on the other. During the welding operation, welding wire is feed from the wire feeder, through the wire feed conduits to the welding torch. The wire then travels through the welding torch to the consumable guide tube and is attached to the output of the welding torch. The consumable guide tube and the welding wire carry the welding current to the molten weld puddle at the bottom of the weld cavity.
My U.S. patent application Ser. No. 10/731,414, filed Dec. 9, 2003 and related U.S. Letters Pat. No. 7,429,716, discloses and claims a modular welding system for performing quick, easy and high quality welds. The modular welding system of application Ser. No. 10/731,414, and related U.S. Letters Pat. No. 7,429,716 issued Sep. 30, 2008, includes a basic component system and a modular fixture component system. The basic component system provides the basic components necessary to perform a quality weld efficiently. The modular component system interfaces with the basic component system and provides a particular welding fixture assembly that performs a particular type of weld. More particularly, a stiffener type modular component system and a butt/tee type modular system fixture system are disclosed and claimed. The modular welding system of application Ser. No. 10/731,414, and related U.S. Letters Pat. No. 7,429,716, easily may be integrated with the basic components of the system and method for electroslag welding spliced box columns for high-rise building fabrication and erection.
My U.S. Pat. No. 7,038,159, issued May 2, 2006, discloses and claims a system and method for electroslag butt-welding expansion joint rails comprising a distributed welding control system. The method includes defining a weld cavity with a first expansion joint rail, a second expansion joint rail, a plurality of gland shoes, and a pair of butt shoes, and can be adapted for welding an expansion joint rail to a support beam. The system and method of U.S. Pat. No. 7,038,159 easily may be integrated with the basic components of the system and method for electroslag welding spliced box columns for high-rise building fabrication and erection.
My U.S. Pat. No. 7,148,443, issued Dec. 12, 2006, discloses and claims a consumable guide tube including a thin first elongate strip, a second elongated strip, and a plurality of insulators. An embodiment of Pat. No. 7,148,443 includes a thin first elongate strip that is a low carbon cold-rolled steel strip, and a second elongated strip which is a low carbon hot-rolled steel strip. The guide tube of Pat. No. 7,148,443 can also be configured to include two or more longitudinal channels, and easily is adaptable to the system and method for electroslag welding spliced box columns for high-rise building fabrication and erection.
My U.S. patent application Ser. No. 11/591,190, filed Oct. 30, 2006, discloses and claims a consumable guide tube including a thin first elongate strip, a second elongated strip, and a plurality of insulator modules. An embodiment of application Ser. No. 11/591,190 includes a thin first elongate strip that has a front face and a back face. The front face has at least one longitudinal channel. The second elongated strip has is a front face and a back face and the front face is of the second elongated strip is configured to be coupled to the front face of the thin first elongated strip. A plurality of insulator modules are deposited on the back face of the thin first elongated strip and on the back face of the second elongated strip. Preferably, the thin first elongated strip is a low carbon cold rolled steel strip, and the second elongated strip is a low carbon hot rolled steel strip. The guide tube of application Ser. No. 11/591,190 can also be configured to include two or more longitudinal channels. The guide tube of U.S. patent application Ser. No. 11/591,190 can also be configured to include two or more longitudinal channels, and easily is adaptable to the system and method for electroslag welding spliced box columns for high-rise building fabrication and erection.
The following disclosure provides a system and method for electroslag welding vertically aligned work-pieces for structures with unlimited multiple floor levels, in particular spliced box columns. An embodiment includes a distributed control system having a plurality of controller modules and a common bus connecting each controller module. Each controller module includes at least one operator control panel module. The system includes at least one welding torch configured to receive at least one consumable guide tube that is placed into the welding cavity. The welding torch is coupled to the welding fixture adjacent to each centerline. The system also includes first and second elongated, parallel rotating shafts according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. No. 11/202,020, which are herein incorporated; first and second linear actuators according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. No. 10/731,414 and related U.S. Letters Pat. No. 7,429,716, which are herein incorporated. These actuators are movably mounted on the rotating shafts and include an assembly for longitudinally translating the linear actuators along the shafts as the shafts rotate according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. No. 10/731,414 and related U.S. Letters Pat. No. 7,429,716, which are herein incorporated. The system also includes an assembly for sensing movement of the linear actuators according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. No. 10/731,414 and related U.S. Letters Pat. No. 7,429,716, which are herein incorporated, and a protective housing assembly for enclosing the rotating shafts, the actuators, the longitudinally translating assembly, and the sensing assembly, for oscillating each welding torch with the cavity.
The welding system and method including a distributed welding control system allows the combination and use of features of my several above cited patents and/or patent applications, as more particularly incorporated and described herein, to allow a welding operator to program automated welding cycles for various welding operations, and is particularly useful for splicing vertical aligned structural box columns having an acute angle gap between the columns. A disclosed embodiment of the welding system and method includes a forty-five degree angle gap between the spliced box columns.
My system and method for electroslag welding spliced vertical columns as disclosed in my pending U.S. Non-provisional patent application Ser. No. 12/212,019, filed Sep. 17, 2008 (the “'019 Application”), is incorporated herein for all purposes.
On-site erection of buildings is accomplished by stacking one vertical support column on top of another and welding the two stacked columns together. For spliced vertical columns, the bottom column flanges are cut square, and the web is generally beveled,
The generally accepted practice is for welding the top of a bottom box column flange to the bottom of the top box column flange is an acute angle bevel,
The thicker the box column flanges, the more weld passes that are needed to join the two box column flanges and column webs together. For box columns that are two inches thick, 16 man-hours to 30 man-hours are generally necessary to generate the number of weld passes to join the two flanges and two webs that make up a box column.
The system and method for electroslag welding spliced vertical box columns allows welding of the two flanges on the box column simultaneously and the two webs on the box column simultaneously. The typical welding time takes approximately 30 minutes to 45 minutes to weld the two flanges, and 30 minutes to 45 minutes to weld the two webs that make up the square box column. This rapid welding system and method can result in a building being welded much faster, allowing for completion and occupancy of the building in a much shorter time period than using multi-pass gas shielded or gasless flux cored wire welding processes.
The system and method for electroslag welding spliced vertical box columns is applicable to box beam column architecture for high-rise building fabrication and architecture.
The system and method for electroslag welding spliced vertical box columns is particularly suited to modular welding systems using distributed control for performing quick, easy and high quality welds.
Other features, advantages, and objects of the system and method for electroslag welding spliced vertical box columns will become apparent with reference to the following description and accompanying drawings.
These together with other objects of the system and method for electroslag welding spliced vertical box columns, along with the various features of novelty which characterize the invention, are described with particularity in the claims attached to and forming a part of this disclosure. For a better understanding of the system and method for electroslag welding spliced vertical box columns, its operating advantages and the specific objects attained by its uses, reference should be made to the attached drawings and descriptive materials in which there are illustrated preferred embodiments of the invention.
These and other features, aspects, and advantages of the system and method for electroslag welding spliced vertical box columns will become better understood with regard to the following description, appended claims, and accompanying drawings as further described.
Referring more specifically to the drawings, for illustrative purposes the VertaSlag™ (electroslag) welding system and method used in structures with unlimited multiple floor levels is embodied generally in
Referring to the drawings, the entire length of the two spliced box columns are not shown for clarity. Instead, only the spliced box column ends are depicted, and it will be recognized by those skilled in the art that each spliced box column between the bottom floor and the top floor consist of at least two spliced box column sections.
Referring now to
Each pair of vertical box column workpieces, 500 and 510, to be spliced and 660 and 670 include internal plate steel backup bars 700, to maintain vertical alignment of the box column workpiece pairs, box column flange ends, 500 and 510, and web plates, 670 and 680, until the welding process is completed, in the same manner and arrangement as depicted for system 400 in
A welding torch 780 is configured to receive at least one consumable guide tube which is placed into each welding cavity 640. The welding torch 780 is coupled to the welding fixture adjacent to each center line and is connected to apparatus for oscillating the welding torch about the center line within each welding cavity 640. The apparatus for oscillating the welding torch about the center line within each welding cavity 640 includes assembly for longitudinally translating the linear actuators along the shafts, assembly for sensing movement of the linear actuators; and a protective housing for enclosing the shafts, motor, and lead screw mechanism that drive the actuator cover plate.
An embodiment of the system provides a gap 620 oriented at a forty-five degree angle between paired vertical box column flange workpieces, 500 and 510 and column web workpieces 660 and 680.
Another embodiment of the system further includes at least one distributed control system 200 and a plurality of control modules 210 according to U.S. Letters Pat. Nos. 6,297,472 and 7,038,154, and pending U.S. Non-provisional Utility patent application Ser. Nos. 10/731,141, 11/591,1907 and 12/212,019, which are herein incorporated, whereby each welding fixture 412 is associated with at least one movable portable platform to carry the wire feeders and welding wire from building column-to column, and using the wire feeder to pull wire from the wire source and push the wire down a flexible conduit assemblies to the welding torch assembly, down the consumable guide tube to the welding puddle.
A further embodiment of the system includes flux dispensing means 470 according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. Nos. 10/731,141, 11/591,190, and 12/212,019, which are herein incorporated, for providing flux to a welding site adjacent each welding torch.
Another embodiment of the system includes welding shoes 530, with at least one sump 760 for each of the two flange weld cavities 640 and one sump 760 for each of the two web weld cavities 640 adjacent to the bottom portion of each welding shoe 530 pair, and at least one run-off tab 770 adjacent to the top portion of each welding shoe 530 pair. Each pair of welding shoes 530 includes copper having means for temperature control of the shoes. Embodiments of the system include at least one welding shoe pair 530 having the welding shoe temperature controlled by circulating either air or water.
An embodiment of the system includes at least one distributed control system 200. Each distributed control system 200 includes a plurality of controller modules 210 and a common bus connecting each of the plurality of controller modules, wherein each controller module includes at least one operator control panel module.
The preferred embodiment of a welding system, in which at least one pair of vertically aligned box column flange workpieces, 500 and 510, and vertically aligned box column web workpieces, 670 and 680, are brought together so that a forty-five degree angled gap 620 having a gap center line exists between the box column workpieces, 500 and 510, and 670 and 680 comprises: (a) at least one stationary welding fixture 412, each fixture comprising assembly 720 for releasably coupling a pair of opposing welding shoes 530 to at least one workpiece end, whereby the opposing welding copper shoes 530 are placed on the outside of each welding gap and one set of steel backup bars 620 are placed on the inside to form a welding cavity 640 between the workpieces and the shoes, and whereby the coupling assembly 720 further symmetrically positions the welding shoes 530 adjacent the cavity 640; (b) at least one welding torch 780 configured to receive at least one consumable guide tube which is placed into the welding cavity 640, the welding torch coupled to the welding fixture 412 adjacent to each center line; and (c) apparatus comprising: a rotating ball lead screw and nut to drive and move the welding torch within the welding cavity 640 according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. Nos. 10/731,141, 11/591,190, and 12/212,019, which are herein incorporated; first and second linear actuators (not shown) according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. Nos. 10/731,141, 11/591,190, and 12/212,019, which are herein incorporated, the actuators movably mounted on the rotating shafts; means for longitudinally translating the linear actuators along the shafts as the shafts rotate (not shown) according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. Nos. 10/731,141, 11/591,190, and 12/212,019, which are herein incorporated; means for sensing movement of the linear actuators (not shown) according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. Nos. 10/731,141, 11/591,190, and 12/212,019, which are herein incorporated; and protective housing means for enclosing the rotating shafts, the actuators, the longitudinally translating means, and the sensing means, for oscillating each welding torch with the cavity.
The preferred embodiment welding system includes at least one-movable portable platform to carry the wire feeders and welding-wire from building column to column, and using the wire feeder to pull wire from the wire source and push the wire down a flexible conduit assemblies to the welding torch assembly, down the consumable guide tube to the welding puddle.
Yet another embodiment of the system further comprises at least one welding wire (not shown) according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. No. 11/202,020, which are herein incorporated. The welding wire includes a metal core wire with metal powder chemistry in the core of the wire to form the correct chemistry for the weld to have sufficient physical strength to meet or exceed any and all of the applicable welding codes for this type of welding operation.
A more detailed description of the consumable guide system is provided in U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. No. 11/591,190, which both are hereby incorporated by reference.
The preferred embodiment welding system further includes at least one flux dispenser 470, each flux dispenser including: a hopper (not shown) according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. No. 11/202,020, which are herein incorporated; a rotating belt positioned below the hopper (not shown) according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. Nos. 10/731,141, 11/591,190, and 12/212,019, which are herein incorporated; a belt block (not shown) according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. Nos. 10/731,141, 11/591,190, and 12/212,019, which are herein incorporated, and having a recessed area housing the rotating belt; and at least one drop tube (not shown) according to U.S. Letters Pat. No. 7,148,443 and pending U.S. Non-provisional Utility patent application Ser. Nos. 10/731,141, 11/591,190, and 12/212,019, which are herein incorporated, and associated with a lower portion of the recessed area.
The preferred embodiment welding system further includes at least one welding shoe bottom clamping assembly comprising: at least one strong back 480; first and second pairs of welding shoes 530; assembly for positionally adjusting the first pair of welding shoes relative to each other; means for positionally adjusting the second pair of welding shoes relative to each other; and assembly for positionally adjusting the first pair of welding shoes relatively to the second pair of welding shoes.
The preferred embodiment welding system further includes a distributed control system 200, the distributed control system includes a plurality of control modules 210,
The method of electroslag welding at least two vertical metal substrates or box column workpieces, 500 and 510, and corresponding web members, 670 and 680, having inside and outside surfaces used in structures with unlimited multiple floor levels includes the steps of:
The method of electroslag welding at least two vertical metal substrates or box column workpieces, 500 and 510 and 670 and 680, having inside and outside surfaces used in structures with unlimited multiple floor levels further includes the step of:
The method of electroslag welding at least two vertical metal substrates or box column workpieces, 500 and 510 and 670 and 680, having inside and outside surfaces used in structures with unlimited multiple floor levels further includes the step of:
An embodiment of this method of electroslag welding at least two vertical metal substrates or box column workpieces, 500 and 510 and 670 and 680, having inside and outside surfaces for use in structures with unlimited multiple floor levels the first substrate 500 and 670 includes a vertically aligned box column having top surfaces angled 45 degrees to a horizontal plane perpendicular to the first substrate alignment and the second substrate 510 and 680 includes a vertically aligned box column having bottom surfaces angled 45 degrees to a horizontal plane perpendicular to the second substrate alignment, such that the first substrate top surface and the second substrate bottom surface define gaps 620 between the box column substrate members, 500 and 510 and 670 and 680.
The method of electroslag welding at least two vertical metal substrates or box column workpiece members, 500 and 510, and 670 and 680, having inside and outside surfaces useful in structures with unlimited multiple floor levels includes the step of:
The method of electroslag welding at least two vertical metal substrates having inside and outside surfaces useful in structures with unlimited multiple floor levels further includes the step of:
A more detailed description of the modular distributed control system is provided in U.S. Letters Pat. No. 7,038,159 and pending U.S. Non-provisional Utility patent application Ser. No. 10/731,414, now U.S. Letters Pat. No. 7,429,716, all of which are hereby incorporated by reference.
With respect to the above description then, it is to be realized that the optimum dimensional relationships for the components of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly, manufacture, and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.
Therefore, the foregoing is considered as illustrative only of the principles of the invention. Additionally, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and further, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.