The present invention relates generally to the field of rules engines that process data based on complex rules. More specifically, the present invention relates to systems and methods for generating generic expressions to perform operations on specific data or to be embedded to perform complex operations on specific data.
Large number of data elements may be created where each data element represents a discrete item, concept, class of items, etc. The data elements may be associated with a plurality of data element fields. The data elements and data element fields may have been created over time, by a different set of users, represent a wide variety of objects, etc. such that a variety of structures may be associated with the data element and/or the data element fields.
It may be necessary to apply general rules to a large number of the data elements despite the different types of data elements and/or data element fields. A user is often required to define a large number of rules to account for the wide variety of structures.
What is needed is a system and method for implementing rule creation allowing creation of embeddable generic expressions to perform operations on certain data types. What is further needed is such a system and method including a user interface configured to facilitate and manage creation of the embedded expressions.
One embodiment of the invention relates to a system for generating embedded expressions configured to generate a result. The system includes an embedded expression generation engine configured to generate a root expression, including at least one parameter. The parameter includes an assigned embedded expression configured to generate a result based on one or more input parameters. The system further includes an embedded expression user interface configured to display the root expression and associated parameters and embedded expressions and provide expression generation tools allowing the user to modify the root expression.
Another embodiment of the invention relates to a method for generating embedded expressions configured to generate a result,. The method includes receiving a selection of a root expression, the root expression including at least one parameter and designating the at least one parameter as a child node and the expression as a parent node to generate a hierarchical structure. For each parameter, the method includes receiving a selection indicating whether an embedded expression is to be assigned to the parameter, each embedded expression including at least one parameter. The method further includes displaying the hierarchical structure in a user interface
Yet another embodiment of the invention relates to a system for generating embedded expressions configured to generate a result. The system includes a memory queue configured to receive and store a listing of data elements, each data element including a plurality of data element fields and representing a good for sale in a retail environment. The system further includes an embedded expression generation engine configured to generate a root expression, including at least one parameter, the parameter having an assigned embedded expression configured to generate information related to the good for sale in a retail environment based on one or more input parameters. The system yet further includes an embedded expression user interface configured to display the root expression and associated parameters and embedded expressions and provide expression generation tools allowing the user to modify the root expression.
This summary and the following detailed description are directed to certain specific embodiments of the invention. The invention is not limited to the particular embodiments and applications described herein. The invention is defined only by the claims.
Referring to
Database 110 may be any database or other collection of data configured to store a massive number of data elements. Database 110 may be configured to implement standard database functionality, including but not limited to, storage of data elements, retrieval of data elements, data element sorting, etc. Database 110 may be implemented using RAM, ROM, one or more hard drives, or any other type of memory device. An exemplary database may be a database of a data elements where each data elements is representative of an article or type of article for sale in a retail setting. Other data elements may include entries in a table, computer records, products, a product class, etc. Each data element may be configured to include one or more data element fields. Exemplary data element fields may include information associated with the particular element. According to the exemplary embodiment, the data element fields may be information related to the article for sale such as an identification number, a description, a color, pricing information, markdown information, etc. Although a database is described, data elements may alternatively be stored in a table, a linked list, or any other large data storage system or method.
Rules processing engine 120 may be any type of processor configured to implement one or more processing rules to process data elements stored in database 110. Processing rules may be implemented as computer code including a plurality of instructions to be implemented using a computer processor. Rule engine 120 is configured to process data based on rules that can vary greatly dependent on the type of data being processed. Rules processing engine 120 may be configured to include an embedded expression processing engine 122, and an embedded expression generation user interface 124.
Embedded expression processing engine 122 may be any type of processing engine configured to generate and implement embedded expressions and drive the embedded expression generation user interface 124. An expression consists of a process which generates a result. A rule, as introduced above, may be an example of an expression. The expression may generate the result based on a provided input parameter. An expression is further configured to allow another expression to serve as the input parameter. Expressions and expression generation are described in further detail below with reference to
Referring now to
In a first step 210 an initial expression is selected, the expression selection including assignment of the expression to a parameter. According to an exemplary embodiment, the expression is a process that generates a result based on an input parameter. Assignment of an expression to a parameter can include selection of an expression from a listing of available expressions. The listing of available expressions can be generated based on the parameter, based on the application for which the rules processing engine is being implemented, based on a listing of all available expressions, etc. The expression can be selected from a drop down menu of available expressions, manually inserted by a user, otherwise selected by a user, etc. The parameter may be similarly selected according to a number of methods.
Following assignment of the parameter, one or more embedded expressions can be associated with one or more associated parameters in a step 220. Associating an expression with a parameter may be accomplished by selecting an expression associated with the parameter from a drop down menu in a user interface.
In a step 230, a determination is made whether the assignment of the expression to the parameter is valid. An expression can be assigned as long as it is, in turn, associated with an input parameter. Accordingly, an assignment binds two expressions using the input parameter of an expression and the result parameter that is the result of its assigned expression. The parameter associated with the parameter associated based on the assigned expression may be considered a child parameter.
If the assignment is invalid, the method may be configured to facilitate allowing the user to cure the deficiency in a step 240. Curing the deficiency may include selecting an input parameter, selecting an alternate expression, removing the expression, etc.
If the assignment is valid, the method may be configured to display the resultant parameter including the assigned expression having an input parameter on user interface 124 in a step 250. Displaying the resultant parameter may include displaying the parameter, the embedded expression, and the input parameter in a tree structure to facilitate understanding of the assignment.
Following successful assignment, the method may further include determining whether any additional expressions are to be assigned in a step 260. The additional expression may be assigned to the original parameter, child parameters associated with the original parameter based on an assigned expression, parameters associated the child parameters, etc.
The method may be iteratively performed as desired by the user to create a complex “tree structure” of embedded expressions including child nodes and parent nodes. The complex expressions allow the user to process a large number and type of data elements using a flexible, intuitive interface.
Referring now to
User interface 300 may be configured to include a type definition column 301, a description column 302, an optional selection box column 303, an initial value column 304, a mode column 305, an assigned value column 306, an action column 307, a detail column 308, and a status column 309. Although particular columns are shown in a particular order, it should be understood that the number of columns, the content of the columns, the organization of the columns, etc. is customizable based on user preference, desired functionality, etc. Initial value column 304, mode column 305, assigned value column 306, detail column 308, and status column 309 may be automatically populated and updated field that are populated based on information associated with the parameter and/or column. For example, status column 309 may be configured to provide visual indicia regarding whether the expression and/or column has one or more associated problems that need to be addressed by the user. For example, an expression can only be assigned as long as it has input parameters. Action column 307 may be associated with a function that can performed by the user. For example, an action associated with an expression can include an action assigning one or more parameters to the expression.
Columns 301-309 may be descriptive and/or functional depending on the particular function being performed and the purpose of the column. For example, type definition column 301 and description column 302 are informational columns configured to allow the user to understand the purpose of the expression and/or parameter associate with the column entry.
As shown in
Selection of the selectable item in action column 307 may launch an assignment action “pop up” window 310, shown in
Following selection of an expression in window 310, the complete expression including the new expression associated with the parameter may be displayed to the user in an updated interface 320, as shown in
Referring now to
Embodiments within the scope of the present description include program products comprising computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer. By way of example, such computer-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such connection is properly termed a computer-readable medium. Combinations of the above are also to be included within the scope of computer-readable media. Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions.
The invention is described in the general context of a process, which may be implemented in one embodiment by a program product including computer-executable instructions, such as program code, executed by computers in networked environments. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Computer-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps.
The present invention in some embodiments, may be operated in a networked environment using logical connections to one or more remote computers having processors. Logical connections may include a local area network (LAN) and a wide area network (WAN) that are presented here by way of example and not limitation. Such networking environments are commonplace in office-wide or enterprise-wide computer networks, intranets and the Internet. Those skilled in the art will appreciate that such network computing environments will typically encompass many types of computer system configurations, including personal computers, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. The invention may also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination of hardwired or wireless links) through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
An exemplary system for implementing the overall system or portions of the invention might include a general purpose computing device in the form of a conventional computer, including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit. The system memory may include read only memory (ROM) and random access memory (RAM). The computer may also include a magnetic hard disk drive for reading from and writing to a magnetic hard disk, a magnetic disk drive for reading from or writing to a removable magnetic disk, and an optical disk drive for reading from or writing to removable optical disk such as a CD-ROM or other optical media. The drives and their associated computer-readable media provide nonvolatile storage of computer-executable instructions, data structures, program modules and other data for the computer.
Software and web implementations of the present invention could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various database searching steps, correlation steps, comparison steps and decision steps. It should also be noted that the word “component” as used herein and in the claims is intended to encompass implementations using one or more lines of software code, and/or hardware implementations, and/or equipment for receiving manual inputs.
The foregoing description of embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principals of the invention and its practical application to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
4752877 | Roberts et al. | Jun 1988 | A |
5315508 | Bain et al. | May 1994 | A |
5400253 | O'Connor | Mar 1995 | A |
5615109 | Eder | Mar 1997 | A |
5758327 | Gardner et al. | May 1998 | A |
5870716 | Sugiyama et al. | Feb 1999 | A |
5930771 | Stapp | Jul 1999 | A |
5970490 | Morgenstern | Oct 1999 | A |
5974407 | Sacks | Oct 1999 | A |
5999914 | Blinn et al. | Dec 1999 | A |
6029139 | Cunningham et al. | Feb 2000 | A |
6064984 | Ferguson et al. | May 2000 | A |
6260024 | Shkedy | Jul 2001 | B1 |
6341351 | Muralidhran et al. | Jan 2002 | B1 |
6505093 | Thatcher et al. | Jan 2003 | B1 |
6507851 | Fujiwara et al. | Jan 2003 | B1 |
6701299 | Kraisser et al. | Mar 2004 | B2 |
6725204 | Gusley | Apr 2004 | B1 |
6868528 | Roberts | Mar 2005 | B2 |
6910017 | Woo et al. | Jun 2005 | B1 |
6980966 | Sobrado et al. | Dec 2005 | B1 |
7080030 | Eglen et al. | Jul 2006 | B2 |
7082408 | Baumann et al. | Jul 2006 | B1 |
7092929 | Dvorak et al. | Aug 2006 | B1 |
7117165 | Adam et al. | Oct 2006 | B1 |
7124098 | Hopson et al. | Oct 2006 | B2 |
7124984 | Yokouchi et al. | Oct 2006 | B2 |
7139731 | Alvin | Nov 2006 | B1 |
7197559 | Goldstein et al. | Mar 2007 | B2 |
20010019778 | Gardaz et al. | Sep 2001 | A1 |
20010032130 | Gabos et al. | Oct 2001 | A1 |
20010039517 | Kawakatsu | Nov 2001 | A1 |
20010049634 | Stewart | Dec 2001 | A1 |
20020013731 | Bright et al. | Jan 2002 | A1 |
20020023500 | Chikuan et al. | Feb 2002 | A1 |
20020026368 | Carter, III | Feb 2002 | A1 |
20020059108 | Okura et al. | May 2002 | A1 |
20020072986 | Aram | Jun 2002 | A1 |
20020073114 | Nicastro et al. | Jun 2002 | A1 |
20020078159 | Petrogiannis et al. | Jun 2002 | A1 |
20020107713 | Hawkins | Aug 2002 | A1 |
20020116241 | Sandhu et al. | Aug 2002 | A1 |
20020123930 | Boyd et al. | Sep 2002 | A1 |
20020138290 | Metcalfe et al. | Sep 2002 | A1 |
20020147668 | Smith et al. | Oct 2002 | A1 |
20020152128 | Walch et al. | Oct 2002 | A1 |
20020156772 | Chau et al. | Oct 2002 | A1 |
20020184116 | Tam et al. | Dec 2002 | A1 |
20030023500 | Boies et al. | Jan 2003 | A1 |
20030028393 | Coulston et al. | Feb 2003 | A1 |
20030028437 | Grant et al. | Feb 2003 | A1 |
20030046120 | Hoffman et al. | Mar 2003 | A1 |
20030046195 | Mao | Mar 2003 | A1 |
20030050852 | Liao et al. | Mar 2003 | A1 |
20030074269 | Viswanath | Apr 2003 | A1 |
20030120686 | Kim et al. | Jun 2003 | A1 |
20030126024 | Crampton et al. | Jul 2003 | A1 |
20030144916 | Mumm et al. | Jul 2003 | A1 |
20030149631 | Crampton et al. | Aug 2003 | A1 |
20030149674 | Good et al. | Aug 2003 | A1 |
20030158791 | Gilberto et al. | Aug 2003 | A1 |
20030167265 | Corynen | Sep 2003 | A1 |
20030171998 | Pujar et al. | Sep 2003 | A1 |
20030172007 | Helmolt et al. | Sep 2003 | A1 |
20030200150 | Westcott et al. | Oct 2003 | A1 |
20030208365 | Avery et al. | Nov 2003 | A1 |
20030229502 | Woo | Dec 2003 | A1 |
20040010463 | Hahn-Carlson et al. | Jan 2004 | A1 |
20040098358 | Roediger | May 2004 | A1 |
20040122689 | Dailey et al. | Jun 2004 | A1 |
20040162763 | Hoskin et al. | Aug 2004 | A1 |
20040172321 | Vemula et al. | Sep 2004 | A1 |
20040186765 | Kataoka | Sep 2004 | A1 |
20040186783 | Knight et al. | Sep 2004 | A1 |
20040210489 | Jackson et al. | Oct 2004 | A1 |
20040220861 | Morciniec et al. | Nov 2004 | A1 |
20040267674 | Feng et al. | Dec 2004 | A1 |
20050015303 | Dubin et al. | Jan 2005 | A1 |
20050055283 | Zarovinsky | Mar 2005 | A1 |
20050060270 | Ramakrishnan | Mar 2005 | A1 |
20050065965 | Ziemann et al. | Mar 2005 | A1 |
20050075915 | Clarkson | Apr 2005 | A1 |
20050075941 | Jetter et al. | Apr 2005 | A1 |
20050086122 | Cirulli et al. | Apr 2005 | A1 |
20050086125 | Cirulli et al. | Apr 2005 | A1 |
20050096122 | Nireki et al. | May 2005 | A1 |
20050096963 | Myr et al. | May 2005 | A1 |
20050102175 | Dudat et al. | May 2005 | A1 |
20050102192 | Gerrits et al. | May 2005 | A1 |
20050102227 | Solonchev | May 2005 | A1 |
20050165659 | Gruber | Jul 2005 | A1 |
20050171825 | Denton et al. | Aug 2005 | A1 |
20060020512 | Lucas et al. | Jan 2006 | A1 |
20060036507 | Pujar et al. | Feb 2006 | A1 |
20060112099 | Musgrove et al. | May 2006 | A1 |
20070050272 | Godlewski et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
2004-030343 | Jan 2004 | JP |
WO 9945450 | Sep 1999 | WO |
WO 0171635 | Sep 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20090030928 A1 | Jan 2009 | US |