System and method for enabling communications with implantable medical devices

Information

  • Patent Grant
  • 8055350
  • Patent Number
    8,055,350
  • Date Filed
    Thursday, January 21, 2010
    15 years ago
  • Date Issued
    Tuesday, November 8, 2011
    13 years ago
Abstract
A method is presented for enabling radio-frequency (RF) communications between an implantable medical device and an external device in a manner which reduces the power requirements of the implantable device by duty cycling its RF circuitry. A wakeup scheme for the implantable device is provided in which the external device transmits a data segment containing a repeating sequence of special wakeup characters and a device ID in order to establish a communications session with the implantable device. The wakeup scheme may be designed to operate using multiple communications channels.
Description
FIELD OF THE INVENTION

This invention pertains to implantable medical devices such as cardiac pacemakers and implantable cardioverter/defibrillators. In particular, the invention relates to a system and method for implementing telemetry in such devices.


BACKGROUND

Implantable medical devices (IMDs), including cardiac rhythm management devices such as pacemakers and implantable cardioverter/defibrillators, typically have the capability to communicate data with an external device (ED) via a radio-frequency telemetry link. One such external device is an external programmer used to program the operating parameters of an implanted medical device. For example, the pacing mode and other operating characteristics of a pacemaker are typically modified after implantation in this manner. Modern implantable devices also include the capability for bidirectional communication so that information can be transmitted to the programmer from the implanted device. Among the data that may typically be telemetered from an implantable device are various operating parameters and physiological data, the latter either collected in real-time or stored from previous monitoring operations.


External programmers are commonly configured to communicate with an IMD over an inductive link. Coil antennas in the external programmer and the IMD are inductively coupled so that data can be transmitted by modulating a carrier waveform which corresponds to the resonant frequency of the two coupled coils. An inductive link is a short-range communications channel requiring that the coil antenna of the external device be in close proximity to the IMD, typically within a few inches. Other types of telemetry systems may utilize far-field radio-frequency (RF) electromagnetic radiation to enable communications between an IMD and an ED over a wireless medium. Such long-range RF telemetry allows the IMD to communicate with an ED, such as an external programmer or remote monitor, without the need for close proximity.


In order for a substantial portion of the energy delivered to an antenna to be emitted as far-field radiation, the wavelength of the driving signal should not be very much larger than the length of the antenna. Far-field radio-frequency communications with an antenna of a size suitable for use in an implantable device therefore requires a carrier in the frequency range of between a few hundred MHz to a few GHz. Active transmitters and receivers for this frequency range require special RF components (typically including SiGe or GaAs semiconductor devices) that consume a significant amount of power (typically tens of milliwatts). Implantable medical devices, however, are powered by a battery contained within the housing of the device that can only supply a limited amount of continuous power before it fails. When the battery fails in an implantable device, it must be replaced which necessitates a re-implantation procedure. Power conservation is thus an important design objective in wireless telemetry systems for implantable medical devices.


It is also common in clinical settings for there to be multiple implantable and/or external devices present in an area so that communication over the wireless medium is possible between the multiple devices. Access to the medium among the multiple devices must be controlled in this situation in order for a communications session between any pair of devices to be established. It would also be desirable for there to be the possibility of multiple communications sessions between different devices occurring concurrently. Providing a means by which communications may be rapidly established with an IMD in this environment within the constraints imposed by power conservation considerations, however, is problematic. Also, in either the home or the clinic, there are external sources of RF energy which may interfere with communication between the ED and IMD, and this problem must also be dealt with.


SUMMARY

The present invention relates to a telemetry system for enabling radio-frequency (RF) communications between an implantable medical device and an external device in a multiple device environment in a manner which reduces the power requirements of the implantable devices. Each of the implantable devices is programmed to power up its transmitter and receiver for a specified time window at periodic intervals defined by the wakeup timer and wait for receipt of special wakeup characters transmitted by the external device. In order to wakeup and establish communications with only one selected implantable device among a plurality of such devices that are within range, an identification code unique to a particular implantable device is also transmitted by the external device. If the implantable device determines that its identification code has been transmitted, it then transmits an acknowledge signal and waits a specified period of time for a response from the external device. The external device and the implantable device then attempt to establish a communications session when a response to the acknowledge signal is received by the implantable device. Multiple communications channels separated in frequency may be used for narrow-band noise avoidance and to enable simultaneous communications sessions between devices. One or more of the multiple communications channels may be dedicated for use as control channels in transmitting the wakeup sequence and establishing a communications session.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a telemetry system for an implantable device and an external device.



FIG. 2 illustrates a handshaking protocol for collision avoidance.



FIG. 3 illustrates a wakeup scheme in accordance with the invention.



FIG. 4 illustrates the steps performed by the PRM/RM in establishing a communications session in the multiple channel environment.





DETAILED DESCRIPTION

Power consumption by an implantable device may be lessened by managing the duty cycle of the RF transmitting and receiving components. Long-range RF telemetry circuitry (i.e., the transmitter and receiver) typically requires power on the order of tens of milliwatts in order to operate. Implantable cardiac devices in use today, on the other hand, are usually designed to operate with average power in the microwatt range. This means that the RF telemetry circuitry must be duty cycled down in order to meet the power budget of such devices. The RF telemetry circuitry of an implantable device can either be powered up or down, referred to as awake and sleep states, respectively. Duty cycling of the implantable device's RF telemetry circuitry can be implemented by a wakeup timer which defines periodic wakeup intervals at which the implantable device powers up its RF circuitry and listens for a transmission from an external device for a specified period of time, referred to as a wakeup window. Upon acknowledging the transmission from the external device, a communications session can be established by a handshaking protocol, and data can then be transferred between the devices. In order to minimize power consumption, it is desirable for the RF circuitry of the implantable device to be powered up for as short a time as possible at each wakeup interval while still being able to reliably recognize session requests from the external device. If the implantable device recognizes a session request from the external device during its wakeup window, it remains awake long enough to establish a communications session with the external device; otherwise, the implantable device returns to a sleep state until the next wakeup interval occurs.


Described herein is a telemetry system for enabling radio-frequency (RF) communications between an implantable medical device and an external device in a multiple device environment in a manner which reduces the power requirements of the implantable device. In an exemplary system, the external device is programmed to transmit a data segment containing a repeating sequence of special wakeup characters in order to establish a communications session with the implantable device. The implantable device is programmed to power up its transmitter and receiver for a specified time window, referred to as a wakeup window, at periodic wakeup intervals defined by the wakeup timer and wait for receipt of one of the special wakeup characters transmitted by the external device. The implantable device maintains its transmitter and receiver in a powered-up state upon receipt of a special character and for as long as consecutive special wakeup characters continue to be received. In order to wakeup and establish communications with only one selected implantable device among a plurality of such devices that are within range, an identification code unique to a particular implantable device is also transmitted by the external device. In one embodiment, the identification code is included in the wakeup sequence so that a unique wakeup sequence is used to wakeup each implantable device. In another embodiment, the identification code is transmitted after one or more wakeup characters are transmitted. Once an implantable device is woken up by the wakeup characters, the device continues to receive data until it determines whether or not its identification code has been transmitted. If the implantable device determines that its identification code has been transmitted, it then transmits an acknowledge signal and waits a specified period of time for a response from the external device. When a response to the acknowledge signal is received by the implantable device, the external device and the implantable device are programmed to establish a communications session by a handshaking protocol. During a communications session, the RF transmitter and receiver of the implantable device may then either be maintained in the powered-up state for the duration of the communications session or powered down at prescribed intervals according to a defined protocol.


The controllers of the external and implantable devices may be programmed to operate their respective telemetry hardware in a manner which utilizes multiple communications channels. The multiple channels are defined with different carrier frequencies so that communications over one channel does not disturb communications over any of the other channels. By using multiple channels for data transfer, a plurality of communications sessions with different implantable devices may take place simultaneously. Also, most noise from external sources is of the narrow-band type, where the energy of the noise is confined to a particular frequency range. Examples of narrow-band noise sources include communications devices such as wireless telephones as well as many other kinds of electronic equipment which are commonly found in the home and in the clinic. When such narrow-band noise is in the same frequency range used for telemetry, it is said to be in-band and can interfere with communications between the devices. The use of multiple communications channels helps to alleviate this problem since, at any given time, only the channels at the same frequency as the in-band noise are interfered with. The devices may be programmed to test a channel for both noise and the presence of other traffic before using that channel for communications.


The wakeup scheme described above, however, requires the external device to use a channel for transmitting the wakeup sequence that is expected by the implantable device. A channel may therefore be dedicated to use for waking up and establishing communications with an implantable device, referred to as a wakeup channel or control channel, with the other channels used for data communications referred to as data channels. Once a communications session is established, the external device finds an available and non-noisy data channel and transmits the information to the implantable device so that both devices can switch to that channel for data transfer. The control channel is then freed up for use by other devices in establishing communications sessions. In another embodiment, multiple control channels are employed in order to allow for the possibility that narrow-band noise could render a single control channel unusable. The implantable device in that case may be programmed to power up its receiver and listen for wakeup characters on the different control channels. The wakeup intervals for the different control channels could be the same or different.


1. Exemplary Hardware Components



FIG. 1 shows the primary telemetry components of an external device 200 and an implantable medical device 100. In this functional block diagram, the components are shown as being identical in each device. In this exemplary embodiment, the external device and the implantable device are microprocessor-based devices each having a controller 102a or 102b that includes a microprocessor and memory for data and program storage that supervises overall device operation as well as telemetry. Code executed by the controller also implements the duty cycle management schemes to be described below. The implantable device 100 may be a cardiac rhythm management device such as a pacemaker or implantable cardioverter/defibrillator, while the external device 200 may be an external programmer or a data-gathering device such as remote monitor. A user interface 300 (e.g., a keyboard and monitor) enables a user such as a clinician to direct the operation of the external device.


A long-range RF receiver 120a or 120b and a long-range RF transmitter 110a or 110b are interfaced to the microprocessor 102a or 102b in the implantable device and the external device, respectively. Also in each device, the transmitter and receiver are coupled to an antenna 101a or 101b through a transmit/receive switch 130a or 130b. The transmit/receive switches 130a and 130b are controlled by the microprocessor and either passes radio-frequency signals from the transmitter to the antenna or from the antenna to the receiver. To effect communications between the devices, a radio-frequency carrier signal modulated with digital data is transmitted wirelessly from one antenna to the other. A demodulator for extracting digital data from the carrier signal is incorporated into each receiver, and a modulator for modulating the carrier signal with digital data is incorporated into each transmitter. The interface to the controller for the RF transmitter and receiver in each device enables data transfer. The implantable device also incorporates a means by which the controller can power up or power down the RF receiver and/or transmitter in order to manage duty cycles in the manner described below. A wakeup timer 180 for defining the RF duty cycle is also shown for the implantable device, and this timer can either be implemented in code executed by the controller or can be discrete components. FIG. 1 also shows an inductively coupled transmitter/receiver 140a or 140b and antenna 150a or 150b for the implantable and external devices by which communication may take place without concern for power consumption when the two devices are in close physical proximity to one another.


2. Description of Communications Enablement Scheme


A wireless telemetry system for implantable medical devices is generally a multiple access network in which a number of network participants share the available bandwidth of the wireless medium. A medium access control (MAC) protocol may be defined which allows each network participant to acquire exclusive access to the medium before transmitting data to an intended recipient. A collision is said to occur when two or more participants attempt to transmit at the same time. In certain networks, collisions may be detected by the sender listening to the medium when a transmission is initiated to determine if other network activity is present. If a collision is detected, the sender ceases transmitting and waits for a random or defined period before trying again. Most wireless transceivers operate in a half-duplex mode, however, and cannot simultaneously transmit and listen for ongoing network activity. MAC protocols for wireless networks therefore typically use out-of-band signaling or a handshaking protocol to minimize the probability of a collision occurring. In an example of the latter type of protocol, a four-way RTS-CTS-DS-ACK exchange as illustrated by FIG. 2 is used to avoid collisions. A network participant who desires to send a message to a particular recipient first transmits a request-to-send (RTS) frame and waits a defined period of time for a clear-to-send (CTS) frame from the intended recipient. All other network participants who hear either of the RTS or CTS frames defer their transmissions. Upon receiving the CTS response, the sender can assume that the medium has been exclusively acquired and can then begin transmission of a data segment (DS) to the recipient. If the data is received without errors, the recipient responds with an acknowledge (ACK) frame which frees the medium for access by another participant. The present invention, in various embodiments, may work in the context of any of the medium access control protocols discussed above.


A particular communications enablement scheme will now be described with reference to an external programmer or remote monitor (PRM/RM) and an implantable device (referred to as a pulse generator or PG). In this embodiment, the wakeup process works within the framework of a handshaking collision avoidance protocol as described above. In such a protocol, the PRM/RM transmits the RTS and CTS frames to cause other participants to defer their transmissions. It then transmits a data segment DS containing wakeup characters and a device ID to the particular PG it wants to communicate with. The awakened PG then transmits an ACK frame to release the medium. The wakeup process is illustrated by FIG. 3. The length of the DS message is set to a large number (e.g., 256 bytes), and contains a repeating sequence of a special n-bit (e.g., 10-bit) character reserved solely for use as a wakeup indicator. In one embodiment, the implantable device and the external device communicate by a transmission code which provides a DC balanced data stream such as 8b/10b. Such bit balanced data streams are advantageous in RF communications. In order for the special wakeup character to be invariant, the special wakeup character may be selected as a bit balanced sequence which is not changed by the transmission code.


The data segment also contains a device ID which may be either incorporated into the wakeup indicator itself by employing unique wakeup characters for each PG or may be a separate sub-segment transmitted after the wakeup characters. The PG wakes up periodically (e.g., every 20-30 seconds) and listens for a very short interval to receive a wakeup special character. If one wakeup special character is received, then the PG will stay awake long enough to receive several more wakeup special characters. In one embodiment, the wakeup characters are unique to the PG, and the awakened PG knows that the PRM/RM wants to establish a communications session with it. The PG then remains awake after the data segment is finished and transmits an ACK frame to the PRM/RM. In another embodiment, the awakened PG waits for a device ID which occurs later in the data segment, and it goes back to a sleep state if the device ID does not match its own. Otherwise, the PG remains awake after the data segment and responds with an ACK frame. After transmitting the ACK frame, the PG then stays awake for an extended period of time in order to receive a response from the PRM/RM. The PRM having successfully received this ACK message proceeds to perform a connection process which will contend for message traffic within the protocol framework in order to establish a communications session with the PG.


The communications scheme just described enables a PRM/RM to establish a communications session with a selected one among a plurality of PG's using a single communications channel which is shared among the PG's. In further modification, the communications system utilizes multiple communications channels separated in frequency. One of the channels is dedicated for use as a control or wakeup channel with the other channels used as data channels for continuing communications sessions established over the wakeup channel. FIG. 4 illustrates the steps performed by the PRM/RM in establishing a communications session in the multiple channel environment. The PG's are configured to periodically wake up and listen for wakeup characters on the wakeup channel in the manner described above. At step S1, the PRM/RM waits until it determines that the wakeup channel is available (e.g., by receiving an ACK frame from some other device on the channel or by determining that there is no traffic on the channel). At step S2, it transmits the RTS-CTS-DS sequence over the wakeup channel, where the DS frame includes the device ID of the PG it wants to communicate with as described above. At step S3, the PRM/RM waits for an ACK from the PG. If no ACK is received after a specified period of time, a time out is declared and the device returns to step S1 to transmit another wakeup sequence. Otherwise, after receiving the ACK frame, the PRM/RM at step S4 vies for access to the wakeup channel in order to respond to the PG and establish a communications session. At step S5, the PRM/RM then finds an available data channel and transmits the data channel ID to the PG over wakeup channel. At step S6, the PRM/RM and PG both switch to the selected data channel for further communications.


By having multiple data channels, the system allows data communications to take place in the event narrow-band noise renders one of the channels unusable. It may also be desirable to use multiple wakeup channels so that communications sessions can be initiated with a PG in the event that narrow-band noise corrupts one of the wakeup channels. In this embodiment, the PG may be programmed to wake up and listen for wakeup characters on each of the wakeup channels. The wakeup intervals at which the PG wakes up and listens on each of the wakeup channels may be the same or different. For example, the PG may wakeup every minute to listen for wakeup characters on a primary wakeup channel and wakeup every three minutes to listen on a secondary wakeup channel. The PRM/RM would then be programmed to transmit the wakeup sequence on the primary and secondary wakeup channels either alternately or simultaneously.


Although the invention has been described in conjunction with the foregoing specific embodiments, many alternatives, variations, and modifications will be apparent to those of ordinary skill in the art. Such alternatives, variations, and modifications are intended to fall within the scope of the following appended claims.

Claims
  • 1. A method by which an external device communicates with an implantable medical device, comprising: transmitting a data segment containing a repeating sequence of special wakeup characters and a device ID from the external device in order to establish a communications session with the implantable device, wherein a transmitter and receiver of the implantable device are powered up, according to a timed duty cycle, for a specified time window at periodic intervals and waits for receipt of one of the special wakeup characters transmitted by the external device;wherein the implantable device suspends operation of the timed duty cycle and time window, maintains the transmitter and receiver in a powered-up state upon receipt of a special character prior to receipt of the device ID and prior to establishment of a communications session and for as long as consecutive special wakeup characters continue to be received, transmits an acknowledge signal to the external device if the device ID matches an ID of the implantable device, and then waits a specified period of time for a response from the external device; and,establishing the communications session when a response to the acknowledge signal is received by the implantable device.
  • 2. The method of claim 1 wherein the device ID is incorporated into the wakeup characters by using unique wakeup characters for a particular implantable device.
  • 3. The method of claim 1 wherein the device ID is included in the data segment after the wakeup characters.
  • 4. The method of claim 1 wherein the RF transmitter and receiver of the external and implantable devices may be switched among multiple communications channels separated in frequency.
  • 5. The method of claim 4 including dedicating one of the multiple channels for use as a wakeup channel for establishing a communications session and using the remaining channels for data channels for continuing established communications sessions.
  • 6. The method of claim 5 wherein the external device transmits an RTS frame, a CTS frame, and the data segment over the wakeup channel, the implantable device responds by transmitting an ACK frame over the wakeup channel.
  • 7. The method of claim 6 wherein the external device, after receiving the ACK frame from the external device over the wakeup channel, vies for access to the wakeup channel in order to respond to the implantable device and establish a communications session.
  • 8. The method of claim 7 wherein the external device, after establishing a communications session with the implantable device, finds an available data channel, transmits an ID of the data channel to the implantable device over wakeup channel, and switches to the selected data channel for further communications.
  • 9. The method of claim 1 wherein the implantable device and the external device communicate by a transmission code which provides a DC balanced data stream.
  • 10. The method of claim 9 where the transmission code is 8b/10b.
  • 11. The method of claim 1 wherein the device ID is unique to the implantable medical device.
  • 12. The method of claim 5 wherein transmitting a data segment includes transmitting the data segment when the external device detects no activity on the dedicated wakeup channel.
  • 13. The method of claim 5 wherein transmitting a data segment includes transmitting the data segment when the external device receives an ACK frame via the dedicated wakeup channel.
  • 14. The method of claim 5 wherein dedicating one of the multiple channels for use as a wakeup channel includes dedicating a plurality of the multiple channels for use as wakeup channels and using the remaining channels for data channels, and wherein powering the receiver of the implantable medical device includes powering the receiver of the implantable medical device for a specified time window at a different periodic interval for each of the wakeup channels.
  • 15. The method of claim 1 wherein transmitting a data segment containing a repeating sequence of special wakeup characters and a device ID from the external device includes transmitting a data segment containing a repeating n-bit wakeup indicator over M bytes of the data segment where n and M are integers.
  • 16. The method of claim 1 including transmitting from the external device both a request for access to a communication medium and a response to the request in order to access the communication medium.
  • 17. An implantable medical device comprising: an antenna, an RF transmitter, an RF receiver, a controller, and a wakeup timer, wherein the controller is interfaced to the transmitter and receiver and configured to: enable the transmitter and receiver to be powered up and down;operate the transmitter and receiver according to a timed duty cycle that powers up the transmitter and receiver for a specified time window at periodic intervals defined by the wakeup timer to wait for receipt of a special wakeup character repeated in a data segment and a device ID transmitted by an external device;suspend operation of the timed duty cycle and wakeup timer, and maintain the transmitter and receiver in a powered-up state upon receipt of the special wakeup character prior to receipt of the device ID and prior to establishment of a communications session and for as long as consecutive special wakeup characters continue to be received;transmit an acknowledge signal to establish a communications session when the received device ID matches an ID of the implantable device; andwait a specified period of time for a response to the acknowledge signal.
  • 18. The implantable medical device of claim 17 wherein the transmitter and receiver are configured to transmit and receive a wireless signal via multiple communications channels separated in frequency.
  • 19. The implantable medical device of claim 18 wherein the receiver is configured to receive the special wakeup character via a communication channel dedicated as a wakeup channel for establishing the communications session and to use the other channels of the multiple communication channels as data channels.
  • 20. The implantable medical device of claim 17 wherein the special wakeup character is a repeating n-bit wakeup indicator and the device ID is unique to the implantable medical device.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Division of U.S. application Ser. No. 11/116,108, filed on Apr. 27, 2005, now issued as U.S. Pat. No. 7,664,553, which is incorporated herein by reference in its entirety.

US Referenced Citations (198)
Number Name Date Kind
3914586 McIntosh Oct 1975 A
4341982 Lahti et al. Jul 1982 A
4404972 Gordon et al. Sep 1983 A
4441498 Nordling Apr 1984 A
4486739 Franaszek et al. Dec 1984 A
4519401 Ko et al. May 1985 A
4542535 Bates et al. Sep 1985 A
4543954 Cook et al. Oct 1985 A
4562841 Brockway et al. Jan 1986 A
4731814 Becker et al. Mar 1988 A
4799059 Grindahl et al. Jan 1989 A
4944299 Silvian Jul 1990 A
4945909 Fearnot et al. Aug 1990 A
5025808 Hafner Jun 1991 A
5113869 Nappholz et al. May 1992 A
5171977 Morrison Dec 1992 A
5230003 Dent et al. Jul 1993 A
5287384 Avery et al. Feb 1994 A
5292343 Blanchette et al. Mar 1994 A
5300093 Koestner et al. Apr 1994 A
5314453 Jeutter May 1994 A
5342408 deCoriolis et al. Aug 1994 A
5350411 Ryan et al. Sep 1994 A
5350412 Hoegnelid et al. Sep 1994 A
5370666 Lindberg et al. Dec 1994 A
5394433 Bantz et al. Feb 1995 A
5476488 Morgan et al. Dec 1995 A
5486200 Lindemans Jan 1996 A
5532708 Krenz et al. Jul 1996 A
5562713 Silvian Oct 1996 A
5568510 Tam Oct 1996 A
5579876 Adrian et al. Dec 1996 A
5593430 Renger Jan 1997 A
5617871 Burrows Apr 1997 A
5630835 Brownlee May 1997 A
5650759 Hittman et al. Jul 1997 A
5683432 Goedeke et al. Nov 1997 A
5694952 Lidman et al. Dec 1997 A
5697958 Paul et al. Dec 1997 A
5725559 Alt et al. Mar 1998 A
5729680 Belanger et al. Mar 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grevious et al. May 1998 A
5766232 Grevious et al. Jun 1998 A
5807397 Barreras Sep 1998 A
5843139 Goedeke et al. Dec 1998 A
5861019 Sun et al. Jan 1999 A
5870391 Nago Feb 1999 A
5881101 Furman et al. Mar 1999 A
5887022 Lee Mar 1999 A
5895485 Loechel et al. Apr 1999 A
5940384 Carney et al. Aug 1999 A
6009350 Renken Dec 1999 A
6031863 Jusa et al. Feb 2000 A
6044485 Dent et al. Mar 2000 A
6088381 Myers, Jr. Jul 2000 A
6093146 Filangeri Jul 2000 A
6115583 Brummer et al. Sep 2000 A
6115634 Donders et al. Sep 2000 A
6115636 Ryan Sep 2000 A
6130905 Wakayama Oct 2000 A
6155208 Schell et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6167312 Goedeke Dec 2000 A
6169925 Villaseca et al. Jan 2001 B1
6219580 Faltys et al. Apr 2001 B1
6223083 Rosar Apr 2001 B1
6240317 Villaseca et al. May 2001 B1
6263246 Goedeke et al. Jul 2001 B1
6336900 Alleckson et al. Jan 2002 B1
6336903 Bardy Jan 2002 B1
6381492 Rockwell et al. Apr 2002 B1
6385318 Oishi May 2002 B1
6388628 Dettloff et al. May 2002 B1
6416471 Kumar et al. Jul 2002 B1
6424867 Snell et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6443891 Grevious Sep 2002 B1
6456256 Amundson et al. Sep 2002 B1
6456875 Wilkinson et al. Sep 2002 B1
6463329 Goedeke Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin Oct 2002 B1
6472991 Schulman et al. Oct 2002 B1
6482154 Haubrich et al. Nov 2002 B1
6490487 Kraus et al. Dec 2002 B1
6505072 Linder et al. Jan 2003 B1
6527729 Turcott Mar 2003 B1
6531982 White et al. Mar 2003 B1
6535763 Hiebert et al. Mar 2003 B1
6535766 Thompson et al. Mar 2003 B1
6562000 Thompson et al. May 2003 B2
6562001 Lebel et al. May 2003 B2
6564104 Nelson et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6574503 Ferek-Petric Jun 2003 B2
6574509 Kraus et al. Jun 2003 B1
6574510 Von Arx et al. Jun 2003 B2
6585644 Lebel et al. Jul 2003 B2
6600952 Snell et al. Jul 2003 B1
6602191 Quy Aug 2003 B2
6622043 Kraus et al. Sep 2003 B1
6622050 Thompson Sep 2003 B2
6631296 Parramon et al. Oct 2003 B1
6648821 Lebel et al. Nov 2003 B2
6659948 Lebel et al. Dec 2003 B2
6675045 Mass et al. Jan 2004 B2
6687546 Lebel et al. Feb 2004 B2
6763269 Cox Jul 2004 B2
6768730 Whitehill Jul 2004 B1
6801807 Abrahamson Oct 2004 B2
6804559 Kraus et al. Oct 2004 B1
6809701 Amundson et al. Oct 2004 B2
6868288 Thompson Mar 2005 B2
6897788 Khair et al. May 2005 B2
6970735 Uber, III et al. Nov 2005 B2
6978181 Snell Dec 2005 B1
6985773 Von Arx et al. Jan 2006 B2
6993393 Von Arx et al. Jan 2006 B2
7013178 Reinke et al. Mar 2006 B2
7069086 Von Arx Jun 2006 B2
7110823 Whitehurst et al. Sep 2006 B2
7155290 Von et al. Dec 2006 B2
7177700 Cox Feb 2007 B1
7218969 Vallapureddy et al. May 2007 B2
7274642 Sako et al. Sep 2007 B2
7280872 Mosesov et al. Oct 2007 B1
7289853 Campbell et al. Oct 2007 B1
7319903 Bange et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7359753 Bange et al. Apr 2008 B2
7519430 Arx et al. Apr 2009 B2
7539489 Alexander May 2009 B1
7573422 Harvey et al. Aug 2009 B2
7623922 Bange et al. Nov 2009 B2
7787953 Vallapureddy et al. Aug 2010 B2
20010012955 Goedeke et al. Aug 2001 A1
20010047125 Quy Nov 2001 A1
20020019606 Lebel et al. Feb 2002 A1
20020046276 Coffey et al. Apr 2002 A1
20020049480 Lebel et al. Apr 2002 A1
20020065509 Lebel et al. May 2002 A1
20020065539 Von Arx et al. May 2002 A1
20020065540 Lebel et al. May 2002 A1
20020109621 Khair et al. Aug 2002 A1
20020115912 Muraki et al. Aug 2002 A1
20020123672 Christophersom et al. Sep 2002 A1
20020143372 Snell et al. Oct 2002 A1
20020147388 Mass et al. Oct 2002 A1
20020183806 Abrahamson et al. Dec 2002 A1
20030028902 Cubley et al. Feb 2003 A1
20030050535 Bowman, IV et al. Mar 2003 A1
20030083719 Shankar et al. May 2003 A1
20030097157 Wohlgemuth et al. May 2003 A1
20030114891 Hiebert et al. Jun 2003 A1
20030114897 Von Arx et al. Jun 2003 A1
20030114898 Von Arx et al. Jun 2003 A1
20030146835 Carter Aug 2003 A1
20030149459 Von Arx et al. Aug 2003 A1
20030187484 Davis et al. Oct 2003 A1
20030216793 Karlsson et al. Nov 2003 A1
20030220673 Snell Nov 2003 A1
20040030260 Von Arx Feb 2004 A1
20040047434 Waltho Mar 2004 A1
20040102815 Balczewski et al. May 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040167587 Thompson Aug 2004 A1
20040176811 Von Arx et al. Sep 2004 A1
20040176822 Thompson et al. Sep 2004 A1
20040260363 Arx et al. Dec 2004 A1
20050204134 Von Arx et al. Sep 2005 A1
20050222933 Wesby Oct 2005 A1
20050240245 Bange et al. Oct 2005 A1
20050245992 Persen et al. Nov 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050283209 Katoozi et al. Dec 2005 A1
20050288738 Bange et al. Dec 2005 A1
20060025834 Von Arx et al. Feb 2006 A1
20060029100 Dove Feb 2006 A1
20060030901 Quiles et al. Feb 2006 A1
20060030902 Quiles et al. Feb 2006 A1
20060030903 Seeberger et al. Feb 2006 A1
20060030904 Quiles Feb 2006 A1
20060071756 Steeves Apr 2006 A1
20060116744 Von Arx et al. Jun 2006 A1
20060161222 Haubrich et al. Jul 2006 A1
20060161223 Vallapureddy et al. Jul 2006 A1
20060195161 Li Aug 2006 A1
20060195162 Arx et al. Aug 2006 A1
20060247736 Roberts Nov 2006 A1
20070049983 Freeberg Mar 2007 A1
20070100396 Freeberg May 2007 A1
20070185550 Vallapureddy et al. Aug 2007 A1
20080015655 Bange et al. Jan 2008 A1
20080015656 Bange et al. Jan 2008 A1
20080114412 Bange et al. May 2008 A1
20080215121 Bange et al. Sep 2008 A1
Foreign Referenced Citations (11)
Number Date Country
1308184 May 2003 EP
1495783 Jan 2005 EP
WO-9500202 Jan 1995 WO
WO-9819400 May 1998 WO
WO-9912302 Mar 1999 WO
WO-03053515 Jul 2003 WO
WO-2005099816 Oct 2005 WO
WO-2005099817 Oct 2005 WO
WO-2006020546 Feb 2006 WO
WO-2006020549 Feb 2006 WO
WO-2006116004 Nov 2006 WO
Related Publications (1)
Number Date Country
20100121414 A1 May 2010 US
Divisions (1)
Number Date Country
Parent 11116108 Apr 2005 US
Child 12691364 US