System and method for enabling multi-modal communication

Information

  • Patent Grant
  • 11653282
  • Patent Number
    11,653,282
  • Date Filed
    Wednesday, November 11, 2020
    4 years ago
  • Date Issued
    Tuesday, May 16, 2023
    a year ago
Abstract
Systems and methods for a multi-tenant communication platform. At a multi-tenant communication platform, and responsive to authentication of a communication request provided by an external system, a routing address record of the communication platform is determined that matches a communication destination of the communication request. The matching routing address record associates the communication destination with a plurality of external communication providers. At least one communication provider associated with the matching routing address record is selected, and a request to establish communication with the communication destination is provided to each selected communication provider. The communication request specifies the communication destination and account information.
Description
TECHNICAL FIELD

This invention relates generally to the telecommunication field, and more specifically to a new and useful system and method for enabling multi-modal communication in the telecommunication field.


BACKGROUND

Mobile internet has brought about a wide variety of modes of communication. Mobile phone devices are capable of telephony communication such as SMS, MMS, and PSTN voice calls, as well as IP based communication such as client application messaging and VoIP. Despite the numerous modes of communication, communication applications are limited to the initial mode of established communication. Additionally, the internet and the growth of internet enabled mobile devices have led to the expansion and wide adoption of over the top (OTT) communication as an alternative to communicating through channels provided by traditional telecommunication entities, such as phone service providers. The use of OTT entities can fragment the communication channels so that only those within an OTT provider can communicate. Thus, there is a need in the telecommunication field to create a new and useful system and method for enabling multi-modal communication. This invention provides such a new and useful system and method.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is schematic representation of a system of a first preferred embodiment;



FIG. 2 is a communication flow diagram of a method sending an asynchronous message;



FIG. 3 is a communication flow diagram of a method establishing a synchronous communication session;



FIG. 4 is a communication flow diagram of a method enforcing an urgency parameter of a request;



FIG. 5 is a communication flow diagram of a method for responding to responses from a destination;



FIG. 6 is a schematic representation of a method for enrolling routing options of a preferred embodiment;



FIGS. 7 and 8 are communication flow diagrams of a method for enrolling routing options of a preferred embodiment;



FIG. 9 is a schematic representation of an embodiment;



FIG. 10 is a chart view of a method of an embodiment;



FIGS. 11A and 11B are chart views of a method of an embodiment; and



FIG. 12 is an architecture diagram of an embodiment.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.


1. System for Enabling Multi-Modal Communication


As shown in FIG. 1, a system 100 for enabling multi-modal communication of a preferred embodiment can include a communication system 110 with a plurality of routing options 112 a content conversion engine 114, a routing system 120 that includes a plurality of routing option profiles 122, and an endpoint information repository 130. The system functions to enable transparent multi-modal communication through a communication platform. The multi-modal communication is preferably transparent to users of the system in that an entity requesting communication expresses communication intent, and the system appropriately establishes the communication with a desired endpoint using a suitable transport protocol. Additionally, the system can manage full-duplex multi-modal communication—message and communication session responses can be similarly transparently managed by the system.


In one preferred embodiment, the system can additionally or alternatively function to facilitate communication through one or more OTT communication providers. An OTT entity is preferably a third party communication platform. The OTT entity preferably communicates is an internet protocol (IP) communication, and may use proprietary communication protocols. OTTs are preferably application operable on mobile devices and personal computing devices. An OTT entity can provide instant message communication; picture, video, audio, and media sharing; synchronous voice, video, screen sharing and other forms of media communication; and/or any suitable form of communication. Such OTT entities may provide additional services in connection to or in addition to communication. For example, an OTT entity may be a social network, primarily an instant messaging service, time-limited media sharing apps, a gaming application, conferencing systems, team/enterprise applications, and/or any suitable type of application with an aspect of communication. The system is preferably configured to operate alongside or as an alternative layer to communicating within the OTT system. The system preferably allows at least one direction of communication with at least one OTT entity. For example, communication can be established inbound to the OTT platform, but the communication may additionally or alternatively be received from the OTT and delivered to another destination.


The system is preferably integrated with a multitenant communication platform that provides communication services to developer applications and services. The system is preferably implemented in combination with a telephony platform such as the one described in patent application Ser. No. 12/417,630 filed 2 Apr. 2009, entitled “System and Method for Processing Telephony Sessions”, which is hereby incorporated in its entirety by this reference. The telephony platform preferably includes application execution in connection to communications sessions and/or messages; the telephony platform may additionally or alternatively provide an application programming interface (API) as an alternative for interacting with communication functionality of the telephony platform. The telephony platform is preferably a multitenant telephony platform that allows multiple accounts to configure telephony applications for use on the platform. The telephony can be designed for one or more mediums of communication. The telephony platform can additionally be a cloud hosted platform as a service system. The telephony platform can be a server, a server cluster, a collection of components on a distributed computing system, or any suitable network accessible computing infrastructure. The system may alternatively be used in combination with a text or multi-media based messaging system, a video or voice chat system, a screensharing system, and/or any suitable communication platform.


The communication system 110 of a preferred embodiment functions to receive communication requests and establish communications as regulated by input of the routing system 120 and the communication cost service 130. The communication service 110 can comprise of one or more services that establish communication through various channels and over varying protocols of the plurality of routing options 112.


The communication system 110 preferably includes a communication request input to receive communication requests. A communication request preferably specifies a communication destination. The communication destination can be a communication endpoint such as a telephone number, a short code phone number, a SIP address, a communication account identifier, and/or any suitable communication endpoint. The communication request additionally will include an origin identifier. In a first variation, the origin identifier will be the communication endpoint that will be connected or that will be indicated as the sender. The communication endpoint can be some variety of communication endpoints as described above. In some cases, proxy communication endpoints can be established if the endpoints of the legs of the communication do not use compatible forms of endpoints. The communication endpoint of the origin can be the same type or a different type of communication endpoint as the communication destination. The origin identifier can be explicitly included in the communication request or the origin identifier can be associated with an account associated with the communication request. A communication medium may be implicit for the communication system such as in the situation where only one medium is available, but the communication medium may alternatively be specified in the request. The medium can specify a general form of the communication, such as voice, video, text, synchronous, and/or asynchronous. The medium can alternatively specify particular protocols of communication such as SMS, MMS, PSTN, SIP, an OTT communication identity (e.g., an application or social network name), and the like. In appropriate communication requests, frequently asynchronous communication requests, the content of the communication may be included in the request. For example, the text for an SMS message is preferably included in the communication request. In other variations, the communication request is for establishing a synchronous communication session between the source and the destination such as in a voice or video call where communication can occur between at least two communication endpoints in real-time. Additionally a request can include an urgency property, which determines communication guarantees and TTL (Time to live) procedures of an established communication.


The communication request is preferably received using an application programming interface (API). More preferably the communication request is received through a representational state transfer (REST) API, Restful (i.e., having characteristics of a REST API) can include the characteristics of having a uniform interface separating client and servers, the client-server communication is stateless where all information to process a client request is transferred in the request; cacheable requests if specified, interoperability with a layered service infrastructure, and/or a uniform interface between clients and servers. The API can be exposed externally such that requests directly originate from outside entities. The API can alternatively be an internal API used during operation of the telephony platform.


The communication request can alternatively be received from an incoming communication through a supported communication transport protocol. Preferably the communication platform acts as a proxy or register for a number of endpoints, such that communications initiated outside the communication platform and directed at endpoints registered by the platform are routed to the communication platform for handling. The communication platform can include mappings of endpoints to applications, other destination endpoints, or use any suitable logic to determine a content and destination of a communication. Processing of incoming communications can be used to enable two-way transformation of communications between at least two endpoints.


The plurality of routing options 112 of a preferred embodiment functions to service communications from the system to a t least one destination endpoint. The plurality or routing options 112 preferably includes a set of different communication services that target different transport protocols. For example, the plurality of routing options 112 can include an SMS service, MMS service, a push notification service, an IP messaging service, proprietary third party OTT messaging service, proprietary third party OTT communication service, PSTN service, SIP voice service, Video communication service, screensharing service, fax service, email service, and/or any suitable communication service. Each of the communication services can include dedicated communication service instances for different routing options (e.g., different carriers, regions, and the like). Alternatively, a communication service can use multiple different routing options when communicating. The routing options can be used in transmitting messages, receiving messages, managing synchronous communication sessions, or performing any suitable operation of a given transport protocol. Depending on the message medium and possibly the origin and destination endpoints, the routing options may be different channel protocols directed at different service provider destinations. For an SMS message, the routing options may be SMPP connections to various service provider destinations. The routing options of an MMS message can be SMTP connections to various service provider destinations (for MM4) or alternatively they can be various service resources accessed over HTTP/SOAP (for MM7). A voice call can have routing options including PSTN channels of different carriers, SIP, and other protocols. The routing options preferably include various commercial relationships between the service provider and the communication platform. The routing options can additionally span multiple mediums/transport protocols. For example, a message router may be configured to selectively transmit a message using a routing option selected from SMS routing options, proprietary push notification routing options (e.g., Apple or Google push notifications) and application messaging routing options (e.g., message sent to a Whatsapp user).


The content conversion engine 114 of a preferred embodiment functions to transform content from a first form suitable for a first protocol to a second form suitable for a second form. The content conversion engine can include various media processing services, routines, and modules. The content conversion engine 114 can be a standalone service of a platform or alternatively integrated within a variety of other components such as the various routing option services 112. The content conversion engine 114 can include various media processing components such as a media transcoding engine, text-to-speech (TTS) service, speech recognition engine, and other suitable media processing services. The content conversion engine 114 can additionally include content formatting services that ensure content is suitable for communication over a selected routing option. Different routing options can have different rules such as character limits, media size limits, metadata information, security tokens, and other suitable communication properties. The formatting services can translate content to a format suitable for a message. For example, text content may require being split in to multiple messages for delivery over SMS. The content conversion engine 114 can transform content media prior to delivery to a destination. For asynchronous messages, the media is transformed and then transmitted. In synchronous communication the content conversion engine 114 could stream the converted media content such as down sampling an inbound audio stream and routing to an endpoint with a communication channel with lower bandwidth.


The routing system 120 functions to generate at least one possible routing option for the outbound routing of the communication service 110. The routing system 120 receives routing requests from the communication system 110. The routing system 120 is configured to process the request and use properties of the request to generate at least one selected/recommended routing option. More preferably the routing system generates a set of at least two routing options and returns the list to the communication system no. The set or list of routing options can be prioritized or include parameters that can be used to select a desired routing option. The routing system 120 preferably includes a routing table. The routing table includes a list of available routing option profiles 122. In one variation, a routing option profile in the routing table preferably includes an assigned priority and a weight. The priority and weight may be assigned for different communication parameters. For example, the prefix of a destination phone number is preferably associated with various routing options each having a priority and weight. The routing table can include additionally or alternative parameters associated with the different routing options such as quality score, regional associations (e.g., related country codes or area codes or geographic proximity), quota prioritizations, internal cost (e.g., cost to the platform), effective internal cost (e.g., cost to transmit requested content considering transforming the content into multiple messages), and/or any suitable parameter used in selecting a routing option. The quota prioritization parameter can be used to prioritize a routing option in response to a contractual obligation. Some routing options can be maintained through contractual obligations of meeting a quota of communications (e.g., number of calls, number of messages, rate of communication). This quota prioritization parameter can be dynamically updated or fixed based on the communication restriction. The quota prioritization can be used to positively count towards the selection of that routing option (e.g., if a system wants to meet a certain quota of messages) or alternatively negative impact selection (e.g., if a system wants to avoid going over a limit). The relative properties for the associated routing options are used to generate a route priority list. The routing priority list is a customized list of routing options prioritized for a particular communication request. Multiple routing options are prioritized in order of preference. The listed routing options may not have indicated preference and be a sub-set of the full set of routing options.


The routing option profiles 122 functions to characterize different channels of communication available to the communication platform. As mentioned above a routing option can exist for large variety of transport protocols such as the communication protocols for SMS messaging, MMS messaging, push notifications, an IP messaging, proprietary third party OTT messaging or synchronous communication, PSTN voice, SIP voice, video communication service, screensharing, faxing, email, and/or any suitable communication protocol. The routing options can include parameters that can be used in selecting a routing option based on content type and/or urgency properties. When translating between different modes of communication, the different transport protocols can have different prioritization. For example, media messaging is preferably sent through a routing option with similar media support. The routing system 120 may additionally include a routing table interface such that an administrator or client device may update the parameters used to determine the communication routing. Routing options can preferably be added, removed, or updated. In one exemplary use case, an administrator may need to update the routing options based on contract changes with various carriers. In another exemplary use case, communication performance may unexpectedly drop for a carrier. An administrator could easily edit the routing table such that communications avoid that carrier until the issue is resolved. In yet another use case, communication quality of a used routing option is measured and used to update a quality parameter of a routing option. In another variation, the routing table interface is an application programming interface (API) such that parameters of the routing table may be automatically updated.


In one variation, an account can configure routing option profiles, which function to define routing options and routing option preferences for particular accounts and/or subsets of communication within an account. Various routing options may be configured for an endpoint. A phone number may be able to do voice calls, SMS messages, MMS messages, VoIP calls, or communicate using a third party OTT service. Various OTT entities may be registered for an endpoint, and since most of the OTT registration is achieved organically based on user activity, there will not be a uniform set of options across all endpoints. Additionally, a given account (e.g., one of an OTT provider) will want to allow communication originating from the outside OTT entity to be terminated in particular OTT services. For example social network A may not want messages to automatically rerouted to social network B if social network A is not registered. A routing option profile can exist for a particular routing option. The routing option profile identifies approved (or conversely prohibited) routing options for communications relating to a particular routing option. Additionally, the set of approved routing options can be prioritized so that communication can default to the next highest priority if the first routing option is not suitable for a particular communication. For example, an OTT entity may want the communication to first be completed using the OTT service, but if that is not available MMS is used, then SMS, then finally a second selected OTT entity. In this example, a third OTT entity may not be part of the routing profile, and accordingly communication will not be terminated in the third OTT for the subset of communications related to the routing option profile. Additionally, the routing option profile can specify different options for different forms of communication. For example, text messages may be defined to prioritize the routing options in one manner, while media messages prioritize routing options in a second manner. The routing option profile can be set for each account. Preferably each OTT entity will have an OTT account within the system, within which an administrator can set the routing option profile. Additionally, non-OTT accounts can set routing option profiles to define how communications are routed.


The information repository 130 functions to store and manage information about communication endpoints. A communication endpoint preferably has a record stored in a database or distributed through several database tables. An endpoint record may include various properties of a communication endpoint such as a unique identifier of the telephony endpoint, the direct inbound address (e.g., the phone number or short code), alternative endpoint identifiers (e.g., list of associated OTT services), carrier, origin properties, a cleanliness/quality score, capability properties (e.g., SMS, MMS, Fax, etc.), status (e.g., mobile, landline, client application type, toll free, etc.), screen resolution and display capabilities, language, service plan (e.g., do they get free SMS/MMS messages), activity patterns (e.g., when is the communication, who does the endpoint communicate with, what does the endpoint communicate, etc.), presence information for one or more routing options, and/or other suitable properties of a telephony endpoint. Origin properties can include NPs (e.g., area code), NXX (e.g., three digit vanity digits of a number), ISO country codes, region properties and/or any suitable origin properties. The records may include various sets of information depending on the information that is collected.


The information repository 130 is preferably updated with each OTT that registers or establishes a new connection with an endpoint. Preferably, a phone number is used as a primary endpoint identifier, an OTT entity will create associations between a user and phone numbers of a device.


2. Method for Enabling Multi-Modal Communication


As shown in FIGS. 2 and 3, a method S100 for enabling multi-modal communication of a preferred embodiment can include maintaining routing options of at least two transport protocols Silo, receiving a communication request S120, selecting routing option S130, transforming content of communication request to compatible form of the selected routing option S140, and transmitting content to a destination endpoint on the selected routing option S150. The method functions to normalize communication to be automatically communicate according to communication intent. The method can be used in transmitting an outbound communication, but is preferably implemented in two communication conversations/sessions so that responses to communications are similarly transformed to an appropriate transport protocol. The method is preferably used to unify communication across a plurality of communication protocols. Some exemplary communication transport protocols can include SMS, MMS, Fax, email, IP messaging, push notifications, PSTN voice, SIP voice, SIP video, IP based synchronous communication, and/or any suitable form of communication. As shown in FIG. 2, the method can be applied to asynchronous communication, but the method can additionally or alternatively be applied to asynchronous communication as shown in FIG. 3 or a hybrid of synchronous and asynchronous transport protocols. In addition to unifying modes of communication the method can unify different destination endpoints of a user.


In one implementation, the method is used by developers, applications, and services to express communication intentions, such as intended content of a message or intended mode of a communication session. For example, an application can specify an image and text that should be delivered to an endpoint. The method operates to deliver the content of the intended media, possibly transforming the final delivered format to conform to an appropriate mode of communication with the destination.


Block S110, which includes maintaining routing options of at least two transport protocols, functions to manage at least two different modes of communication. The modes of communication are preferably divided into multiple routing options. The routing options can include different transport protocols, but can additionally include different carriers, suppliers of a communication channel, regional routing options of a transport protocol, or any suitable route variation. Information relating to the routing options can be stored in a table or database of routing option profiles. The routing option profiles can be used in selecting preferred, optimal, or otherwise capable routing options when communicating.


Block S120, which includes receiving a communication request, functions to obtain an instruction for sending or establishing an outbound communication. The communication request is preferably received at a communication service, which as described can be a server or machine that establish a communication or at least direct a secondary service to establish a communication. The communication service may be specifically configured for a particular medium or mode of communication such as Public Switch Telephone Network (PSTN) calls, Session Initiation Protocol (SIP) voice or video calls, Short Message Service (SMS) messages, Multimedia Messaging Service (MMS) messages, IP based messaging, push notifications, proprietary communication protocols, and/or any suitable communication medium. The communication service may be used for a plurality of communication mediums. A communication request can include communication properties, which can include at least one destination endpoint, one originating endpoint, communication content, and/or other properties of the communication. The communication request can additionally include control properties such as a max price parameter, a quality limit, and/or other properties used to gate or control communication.


In one implementation, the communication request can indicate communication intent. As opposed to specific communication instructions (e.g., send a SMS message to this endpoint originating from this endpoint), the communication request can include intended communication content that indicates generalized objectives of the communication. The intended communication content can specify raw message content or medium of communication. In the case of asynchronous communication, the request of communication intent can include content intended for delivery and the intended destination entity. The final form of the content, whether the transmitted content is text, a graphic, a video, a link to an external resource, an audio message, and/or any suitable medium is not exclusively determined through the request as long as the content is delivered. Similarly, the exact destination endpoint is not strictly defined as long as the message is delivered to the intended entity. In the case of synchronous communication, the mode of communication can similarly be generalized. The communication request can include a specified mode of communication, which can place limits on the suitable routing options. The possible modes can include a voice session mode (where synchronous audio should be transmitted between at least two endpoints), a video session mode (where video and/or audio should be transmitted between at least two endpoints), and synchronous message transmission mode (where text, images, videos, and/or other media can be delivered to a destination). A voice session mode can result in a voice session (e.g., PSTN or SIP based), a video session with only audio, or any synchronous form of communication through which audio can be transmitted. A video session can be a video session or alternatively downgraded to just audio. An asynchronous message transmission mode can result in any executed communication that transmits desired content. Synchronous communication mediums can similarly be used when in an asynchronous message transmission mode.


Upon receiving a communication request, at least a subset of information from the communication request is sent to the routing service. Preferably, the subset of information sent to the routing service is sent in the form of a routing request. The subset of information includes communication properties specified in the communication request of block S110. Additionally, at least a subset of information from the communication request may be sent to a communication cost service. Preferably, the subset of information is sent to the communication cost service in the form of a cost request. The routing request and the cost request preferably include at least the destination of the communication. The routing request and/or cost request may additionally or alternatively include content of the communication, account information for the entity sending the communication request, the originating endpoint, the mode or medium of communication, and/or any suitable information. The routing request and the cost request are preferably sent in parallel but may alternatively be sent sequentially or in any suitable manner. The routing request and the cost request can be independent in that how a communication is routed and the attributed costs of that communication do not directly rely on each other. One expected benefit is that the quality of communication can be increased while simulating a simplified cost model to user accounts. As described below, a maximum cost parameter specified in a communication request can be accommodated after initially fulfilling the requests.


In one variation, the communication properties include a specified transport mode of communication. The specified transport mode can be a set of modes of communication permitted and/or blocked for the communication request. The set of operational transport modes can include a synchronous voice session mode of communication, a synchronous video session mode of communication, an asynchronous message transmission mode of communication and/or specific permitted/prohibited transport protocols (e.g., SMS, MMS, push, etc.). A specified transport mode can restrict, modify, or otherwise impact the selection of routing options.


Block S130, which includes selecting routing option, functions to determine a routing option of a communication. The communication request is preferably processed through a sequence of heuristics that can be used to select appropriate routing option. Selecting a routing option can include identifying one or more routing option capable of completing the communication request and identified according to a priority heuristic. In one variation, a single routing option is selected. In an alternative embodiment, a priority list of routing options is generated, and a routing option is selected from the list. The routing option is more specifically capable of completing the communication to a communication endpoint mapped to the specified destination endpoint. The specified endpoint may not be the receiving endpoint. A secondary endpoint associated with the specified endpoint may be targeted. For example, if a phone number is specified, but IP based messaging is instead used to communication with a username endpoint, wherein the user of the phone number operates the username endpoint.


In querying routing options, the intended communication content can be analyzed to identify suitable transport protocols. The routing options of suitable transport protocols can then be filtered according destination endpoint and intended content and/or intended mode of communication. A destination can be identified as including an associated carrier, a country/regional location property, and/or device capabilities. Routing options having been reduced to routings options capable of communication intended content and capable of delivering to the intended destination can then be further filtered according to availability. Some routing options can be suffering from down time or quality issues at any given time—such routing options are preferably not considered for selection.


Selection heuristics can consider many factors. The heuristics can consider content and mode of communication of a routing option, reliability of a routing option, feature capability of a routing option, urgency compliant features, price of communication, user presence information, user preference of communication, user history of communication, and/or any suitable factor that impacts an appropriate routing option.


A first heuristic can give weight to a routing option based on the involved content transformations. Different transport protocols can be given different preference depending on the original form of content. For example, sending a text message would give preference to a routing option involving an SMS with text over a routing option involving transforming the text to text-to-speech audio and playing over a PSTN phone call. The medium of intended content is preferably preserved, but the medium of content can be transformed depending on available routing options and/or other heuristic priorities.


A second heuristic can give weight to routing options according to quality scores, reliability, communication confirmation, and other suitable reliability and urgency compliance features. In one variation, a communication request can be accompanied by a TTL limit. The TTL limit can define a time window in which a message is delivered. Different routing options can have varying time to delivery predictions, and the routing option can be selected to satisfy the TTL restriction. Additionally, a communication request can include different confirmation requirements. A request may specify that an acknowledgment confirm the message was transmitted successfully or similarly that the message was read by the end user. Different transport protocols will have varying capabilities or mechanisms to provide such verification or acknowledgment. If a requested feature is not support by a routing option, that routing option may not be considered.


A third heuristic can give weight to routing options that have not satisfied a communication quota or contractual obligation. A quota can be set for a time frame, and a routing option has the target of satisfying the quota in that time frame. For example, an SMS routing option can have a quota of five thousand messages in a month. Selection of a routing option within a priority list or prioritization within the list can be based on satisfying the quota. For example, a routing option further from a quota can be prioritized above a routing option that has satisfied a quota, surpassed a quota, or does not include a quota as shown in FIG. 6. Additionally, a quota can be weighted to indicate importance of the quota. For example, some routing options may have a more important quota goal (e.g., a routing option will be cancelled by a carrier), and other routing options may have less important quota goal (e.g., special discounting pricing isn't provided if not satisfied). Various rules and properties can be encoded into a routing option to facilitate relative prioritization/selection of routing options. One exemplary use of a quota includes a routing option using a particular network carrier that was negotiated at an internal cost rate that has a minimum number of communications that should be met. Another exemplary use of a quota may include regulating a routing option with a rate limit of SMS messages sent in a minute allowed over a network carrier of a second routing option.


A fourth heuristic can give weight to routing options with lower internal cost (e.g., payment to outside partners and/or operational cost). A related heuristic can include calculating effective internal cost of a routing option. The effective internal cost is the predicted cost to the communication cost to the platform. In some cases, communicating over a first transport protocol has different communication limits compared to a second transport protocol and as a result a routing option of the first transport protocol may require transmitting the intended content in one form (e.g., in a single message) and the routing option of the second transport protocol may require transmitting the intended content in a second form (e.g., split into two or more messages). The effective internal cost can be the number of messages to transmit the intended content multiplied by the internal cost of an individual message transmitted on the routing option as shown in FIG. 7. The cost can be a financial cost and is frequently dependent on the specific routing option. The difference between the communication cost and the effective internal cost can be the profit of the platform for an individual communication. The priority heuristic is preferably in place to increase profits across a plurality of communications.


A fifth heuristic can give weight to routing options with particular feature capabilities (e.g., message confirmation, no message size restrictions, multimedia support). A feature heuristic can be enforced if specified content specifies a desired delivered format.


A sixth heuristic can give considers presence information of the destination. A presence service can be integrated into the platform and provide availability of a user across multiple devices and/or protocols. For example, a user may be accessible through a phone voice session, SMS and MMS on the phone, push notifications on the phone, and through an IP protocol of an application on a second browser device. Presence information can indicate if any of those channels are active, prioritization/preference of the channels.


A seventh heuristic can consider communication history and/or destination preference. Preference of a destination can be inferred from communication. Modes of communication used to initiate outbound communication from an endpoint can be considered indicators of user preference. Alternatively, a user profile can be configured with prioritization of endpoints and/or protocols.


These factors and other suitable prioritization factors can be combined in any suitable manner to form a prioritization heuristic used in ranking routing options.


In one variation, selecting routing option can use an account defined routing profile that defines the prioritization of routing options. In the case of routing options including a plurality of different OTT services, there may be various business/competitive conflicts with using particular routing options. Defined routing profile tables can facilitate selecting and prioritizing routing options from the full set of routing options. While account-defined routing profiles may be one mechanism. Routing rules may additionally be automatically determined and applied. Endpoint-to-endpoint communication can be monitored and routing channel preference can be determined. In one variation, the preference can be monitored and determined on a per-endpoint basis. For example a first endpoint may prefer communicating with a second endpoint using one OTT service and communicating with a third endpoint using a second OTT service. In a simpler implementation, the previous mode of communication of an endpoint can be monitored and used as a default routing option.


Block S140, which includes transforming content of communication request to compatible form of the selected routing option, functions to convert media content of the communication to a format suitable for transmitting. In asynchronous communication, the content is converted and then transmitted to the destination. In synchronous communication, the content can be transcoded and streamed to a destination such that the content/medium is generated in substantially realtime with the communication session. The form of the transformation is determined based on the originating format of the communication content and the selected routing option. If the routing option is the same as the originating transport protocol, transformation of content may be skipped. Transformation can include translating to a text form, generating a URI link to the content, generating an audio version of the content, generating a video version of the content, satisfying protocol restrictions (e.g., character limits, file size limits, encoding, and the like), segmenting into multiple messages, grouping multiple content into a single object, supplying unspecified metadata, and/or making any suitable transformation. Exemplary transformations may include SMS to MMS, MMS to SMS, SMS/MMS to IP push/proprietary IP/client application, SMS/MMS to email/fax, fax/email to SMS/MMS, IP messaging to SMS/MMS, Voice to SMS, Voice to MMS, SMS to voice, Voice to video, Video to voice, and/or any suitable form of transformation.


Block S150, which includes transmitting content to a destination endpoint on the selected routing option, functions to establish or execute the communication. The communication is preferably implemented on the selected routing option using the transformed content. In some variations, communication confirmation of delivery or of reading can be requested. The delivery and reading request can be fulfilled through the transport protocol of the selected routing option. As shown in FIG. 4, an urgency parameter can specify that a receipt acknowledgment be made. Subsequent communications in asynchronous and synchronous forms of communication can be processed to select an appropriate routing option, optionally using communication history to influence routing option selection. In asynchronous communication (e.g., messaging), responses can be received from the delivery endpoint. A similar process can be invoked to determine the route used to deliver the response as shown in FIG. 5, but alternatively a routing option of the communication that prompted the initial communication response can be used. In synchronous communication, the destination endpoint can be bridged with the originating endpoint.


3. Method for Enrolling Routing Options in a Communication Platform


As shown in FIG. 6, a method S200 for enrolling routing option in a communication platform can include receiving a registration request of a communication provider directed at an endpoint S210, transmitting a registration communication to the endpoint S220, receiving confirmation response of the endpoint S230, updating an endpoint repository with the communication provider information S240, and signaling to the confirmation response to the communication provider S250. The method functions to allow an OTT communication entity to register and verify an endpoint to associate with an account on the OTT. The OTT entity will preferably trigger the method when a user is registering for an account or pairing a new device to an account. After the new device is paired through the method, the OTT entity can use the additional endpoint as an additional communication option. While phone numbers may be useable as a uniform endpoint address for different modes of communication such as PSTN, SMS, MMS, and fax, OTT account identifiers exist within the ecosystem of the OTT. As OTT providers become more widely user, the communication environment can become fragmented. The method provides a common layer for OTT entities to manage the integration of multiple OTTs. The method is preferably used continually for a variety of endpoints, and eventually the method can achieve a relationship graph of endpoints and OTT providers. The method S200 can be used with the method S100 above to facilitate multi-modal routing and leveraging the addition and integration of OTT routing options with other modes of communication. In one variation, a benefit of the method can include providing endpoint information. In another variation, a benefit can provide additional measures of device verification. In another variation, the endpoint repository can be used in augmenting multi-modal or selective mode of communication.


Block S210, which includes receiving a registration request of a communication provider directed at an endpoint, functions to be prompted by an OTT provider to register an endpoint on behalf of the OTT provider. Preferably, the communication platform includes an API that includes one or more calls that facilitate requesting the registration of an endpoint. The registration request preferably includes a specified destination address to be registered. The destination address is preferably a phone number, but the destination address may alternatively by an account identifier, a username, an email address, or any suitable endpoint address. The registration address may additionally include a unique identifier within the scope of the provider, which functions to provide a mechanism for specifying an account associated within the system of the OTT provider. The registration request is preferably made on behalf of some user of the OTT service. The provider unique identifier can be a username, and email address, a random alphanumeric. The provider unique identifier can add an alternative way of specifying the platform endpoint. A provider unique identifier may not be provided and the existing endpoint identifier. For example, the phone number in combination with the name of the OTT provider can be used as a proxy for a provider unique identifier of the endpoint.


The registration request preferably additionally includes account information. The account information can include authentication token(s), an account identifier, OTT identifier, or any suitable source information. The OTT will preferably initiate the registration API call when a customer attempts to pair a phone number or other communication endpoint with an account on the OTT. For example, within an account page on an OTT provider, a user can enter a phone number and submit the number. The OTT provider will preferably send the API request to the communication platform to complete the registration. From the user standpoint, the communication platform is transparent. After submitting the phone number, the user will preferably receive a communication on his or her phone, which the user will be able confirm. The communication platform can alternatively provide alternative interfaces to the OTT providers. For example, an embeddable UI can be provided for facilitating registration user interface. The UI can be embedded in the OTT website or application (e.g., as an iframe) to facilitate receiving registration.


Block S220, which includes transmitting a registration communication to the endpoint, functions to deliver a message or communicate with the endpoint. Preferably the communication platform has at least one routing option available for routing to the destination endpoint. In the variation where the destination endpoint is a phone number, a SMS or MMS message can be delivered to the device. Alternatively, an automated voice call can be delivered over PSTN, SIP, or an alternative VoIP communication protocol (e.g., WebRTC). The registration communication preferably includes a code or an alternative identifier. In one variation, the registration communication will include a 6 digit pin that can be entered within an application, website, or any suitable interface. The entering of the pin codes signals successful delivery of the registration communication and that the owner of the endpoint is confirming the registration. In another variation, the registration communication includes a unique URI. When the delivered, the user can click the link to confirm the registration. Since the URI is unique, access of the resource can signal confirmation of the registration. Alternatively, the URI may display options to confirm or deny the registration. In another variation, the registration communication is a message specifying response options. The message could be a text message, an image, a video, or any suitable media message. In another variation, transmitting a registration communication includes making a voice or video call. The voice or video call can be used to receive confirmation or some form of a response during the call (e.g., through DTMF or voice recognition).


Block S230, which includes receiving confirmation response of the endpoint, functions to determine the results of the registration with the endpoint. The confirmation response preferably includes confirmation of pairing the endpoint with the OTT. The user will preferably be expecting the communication and will know that confirming will complete the process. In one variation, the confirmation response is received in response to the registration communication from the destination endpoint. For example, the conformation response is an SMS or MMS message reply. The message reply can include a response such as “YES” or “NO” to indicate if the endpoint should or should not be registered in association with the request. The confirmation response may alternatively be made during the registration communication if the registration communication is a synchronous communication. In the variation where a pincode is entered in an interface, the interface could be one created and provided by the OTT provider or any suitable outside provider. An API call is preferably provided to inform the communication platform of the user response. The OTT provider (or outside provider) can use the API call to inform the communication platform.


The method can additionally include verifying a device through an endpoint repository, which functions to use existing endpoint information to add an additional layer in registration. The OTT provider may not have access to information outside of their own platform, but the multi-modal communication aspect of the communication platform can enable insights to be pulled from previous registrations and/or communications. The communication platform will preferably retain information about various endpoints in the endpoint repository. In some cases an endpoint may already be registered with other OTT entities or otherwise be known within the communication platform due to prior communication interactions. The past history of a known endpoint can be used in confirming registration. In one variation, automatic verification of a destination endpoint may be enabled if the endpoint is already confirmed through another OTT. In another variation, the verifying of the device may use fraud detection heuristics or other triggers to prevent confirmation of the registration.


Block S240, which includes updating an endpoint repository with the communication provider information, functions to record the registration of an endpoint with a new OTT entity. The endpoint repository will preferably include a set of records for different endpoints. Each endpoint will preferably include a parameter or parameters that define the set of routing options. The set of routing options preferably include the OTT entities that have registered with the endpoint. An OTT registration can indicate that the user of the endpoint has paired an account of the OTT with the phone. In some situations, this registration can be a signal that an application of the OTT is used by the user or at least has been used by the user.


The endpoint repository is additionally used beyond just registration but in facilitating and tracking communication through the OTT entity. The endpoint repository can be updated and maintained to signal different aspects of the endpoint and related OTT entities and other routing options. Preferably the endpoint repository will store information relating to the history of each OTT entity such as a registration timestamp, time of last communication through the OTT entity on the communication platform, preference rating of an OTT entity (e.g., order ranking of OTT entities or routing options according to frequency of use). The endpoint repository can additionally be used in synchronizing changes amongst OTT entities. In one variation, a change of registration of one OTT entity may be applied to other OTT registrations. For example, if a user gets a new phone number and updates the registration for a first OTT provider, then the method may include notifying a second OTT provider previously registered of the phone number change, automatically migrating the updated number for the second OTT provider, invalidating the registration of the second OTT provider until re-registered, and/or any suitable action.


Block S250, which includes signaling the confirmation response to the communication provider, functions to update the communication provider of the registration result. The signaling of the confirmation response preferably includes a confirmation that the endpoint successfully completed registration or that the registration was not successfully confirmed. Unsuccessful confirmation may simply be a denial of registration, but the denial or error response may additionally include a reason such as cancelation (e.g., user changes his mind) or fraud reporting (e.g., user did not initiate the registration and flags the request). The signaling can be performed in a variety of approaches. In a first variation, the confirmation response is included in a response to the registration request API call as shown in FIG. 7. In another variation, the confirmation response is posted or submitted to a specified resource of the OTT provider. In yet another variation, a resource in the communication platform is updated, and the OTT provider can poll the resource to obtain the status as shown in FIG. 8. For example, the registration request API call may trigger a response from the communication platform that includes a resource identifier (e.g., a URI). The OTT entity can poll the resource identifier until the confirmation response is obtained. Prior to receiving a confirmation response, the resource identifier can return a ‘pending’ response or an alternative response to indicate that the registration process is still in progress.


The method can additionally include providing endpoint information of the endpoint repository, which functions to enable access, use, and interaction with the endpoint repository. Providing endpoint information preferably includes providing API access to at least a portion of the information of the endpoint repository. The API access preferably includes public API access that is usable by customers/users. The API access may alternatively or additionally be private used within the communication platform. In one variation, an API call can query a specific endpoint and retrieve information about OTT registration with the number. As discussed above, the usage relating to each OTT may additionally be accessible. A portion of the API may be opened publically so that any entity can check if a particular endpoint is registered with a specific OTT entity. In another variation, some or all the information may be limited to OTT associated accounts in the communication platform. The OTT entity can have a special account set up (e.g., the account used to submit the registration requests). In one variation, the OTT entity can query all the phone numbers registered for the OTT entity. After registration, an OTT entity can additionally update registration such as canceling/terminating registration.


4. Multi-Tenant Communication Platform


As shown in FIG. 9, a multitenant communication platform 900 includes a system 901 for enabling multi-modal communication. In some embodiments, the system 901 includes a communication system 910, a routing system 920, and an endpoint information repository 930. In some embodiments, the system 901 includes a communication profile repository 916.


In some implementations, the communication system 910 includes a communication API module 911 and a content converter 917. In some implementations, the content converter 917 is similar to the content converter 114 of FIG. 1.


In some implementations, the routing system 920 includes a routing address record determination module 914 and a communication provider selection module 915.


In some implementations, the endpoint information repository includes a registration API module 912.


As shown in FIG. 9, the communication platform 900 is communicatively coupled with external systems 921, 922 and 923, communications providers 931 and 932, and devices 943 and 944. The device 943 includes a device endpoint 953, and the device 944 includes a device endpoint 954. The external system 921 includes an application server 961. The external system 922 includes a device 941 that has a device endpoint 951. The external system 923 includes an application server 962 and a device 942, and the device 942 includes a device endpoint 952. The device 942 is communicatively coupled with the application server 962.


In some implementations, the communication system 910 is similar to the communication system 110 of FIG. 1, the routing system 920 is similar to the routing system 120 of FIG. 1, and the endpoint information repository 930 is similar to the endpoint information repository 130 of FIG. 1.


The multitenant communication platform 900 provides communication services to developer applications and services. In some implementations, the communication platform 900 is a telephony platform such as the one described in patent application Ser. No. 12/417,630 filed 2 Apr. 2009, entitled “System and Method for Processing Telephony Sessions”, which is hereby incorporated in its entirety by this reference. The telephony platform preferably includes application execution in connection to communications sessions and/or messages; the telephony platform may additionally or alternatively provide an application programming interface (API) as an alternative for interacting with communication functionality of the telephony platform. The telephony platform is preferably a multitenant telephony platform that allows multiple accounts to configure telephony applications for use on the platform. The telephony can be designed for one or more mediums of communication. The telephony platform can additionally be a cloud hosted platform as a service system. The telephony platform can be a server, a server cluster, a collection of components on a distributed computing system, or any suitable network accessible computing infrastructure.


In some implementations, the system 901 is used in combination with a text or multi-media based messaging system, a video or voice chat system, a screensharing system, and/or any suitable communication platform.


Multi-Tenant


The communication platform 900 is multitenant meaning that the communication platform 900 can be used for the processing of communication requests for accounts (of the communication platform 900) for a plurality of external systems.


Components


As shown in FIG. 9, the system 901 includes the following components: the communication system 910, the routing system 920, the endpoint information repository 930, the profile repository 916, the communication API module 911, the content converter 917, the routing address record determination module 914, the communication provider selection module 915, and the registration API module 912.


In the example embodiment of FIG. 9, the components (e.g., 910, 920, 930, 911, 912, 914, 915, 916, and 917 of FIG. 9) include instructions that are executed by any combination of one or more processing units. In the example embodiment, each processing unit includes one or more processors communicatively coupled to one or more of a RAM, ROM, and machine-readable storage medium; the one or more processors of the processing unit receive instructions stored by the one or more of a RAM, ROM, and machine-readable storage medium via a bus; and the one or more processors execute the received instructions. In some embodiments, the processing unit is an ASIC (Application-Specific Integrated Circuit). In some embodiments, the processing unit is a SoC (System-on-Chip). In some embodiments, one processing unit includes the components of the system 901. In some embodiments, a plurality of processing units include the components of the system 901. In some embodiments, the one or more processing units are included in one or more server devices.


5. Method for a Multi-Tenant Communication Platform


As shown in FIG. 10, a method 1000 for a multi-tenant communication platform (e.g., 900 of FIG. 9) in accordance with an example embodiment includes, at a multi-tenant communication platform, and responsive to authentication of a communication request (e.g., 1099 of FIG. 10) provided by an external system (e.g., external systems 921-923 of FIG. 9), the communication request specifying a communication destination and account information: determining a routing address record (e.g., the routing address records 1081-1083) of the communication platform that matches the communication destination of the communication request, the matching routing address record associating the communication destination with a plurality of external communication providers (e.g., the communication providers 931 and 932 of FIG. 9) (process Slow); selecting at least one communication provider associated with the matching routing address record (process S1020); and providing a request to establish communication with the communication destination to each selected communication provider (process S1030).


In the example embodiment of FIG. 10, the method of FIG. 10 is implemented in the multi-tenant communication platform 900 of FIG. 9. In some implementations, the communication system 910 performs the processes Sion and S1030, and the routing system 920 performs the processes S1010, S1020 and S1012. In some embodiments, the method of FIG. 10 is implemented in any suitable type of multi-tenant communication platform.


In some implementations, each communication provider includes at least one of an SMS service provider, MMS service provider, push notification service provider, IP messaging service provider, proprietary third party OTT messaging service provider, proprietary third party OTT communication service provider, PSTN service provider, SIP voice service provider, Video communication service provider, screensharing service provider, fax service provider, and email service provider.


Process S1010, which includes determining a routing address record of the communication platform that matches the communication destination of the communication request, is performed responsive to process S1011 (“YES” at S1011 of FIG. 10), which functions to authenticate a communication request (e.g., the communication request 1099 of FIG. 10) provided by an external system (e.g., one of the external systems 921, 922 and 923 of FIG. 9). In some embodiments, the communication request (e.g., the communication request 1099) specifies a communication destination and account information.


In some implementations, the account information includes an account identifier of the external system and an authentication token associated with the account identifier. In some implementations, authentication of the communication request includes authenticating the communication request by using the authentication token, and determining that the communication request is permitted for an account identified by the account identifier. In some implementations, a communication system of the communication platform 900 (e.g., the communication system 910 of FIG. 9) performs the authentication of the communication request.


In some implementations, in a case where the communication request is not authenticated, the communication request is denied (“NO” at process Sion). In some implementations, the communication request is not authenticated if authentication conditions are not satisfied. In some implementations, authentication conditions include at least one of the authentication token being valid, the communication request being permitted for the account identified by the account identifier (e.g., as specified by account permissions stored at the communication platform 900), the authentication token being a valid authentication token for the account identifier, and the communication request being a valid communication request. In some implementations, in a case where the communication request is not authenticated (“NO” at process Sion), the communication platform 900 provides the external system with a notification that the communication request has been denied.


Process S1010, which includes determining a routing address record of the communication platform that matches the communication destination of the communication request, functions to control the communication system 901 (of FIG. 9) to determine the matching routing address record from among a plurality of routing address records (e.g., the routing address records 1081-1083 of FIG. 10) stored at the communication platform 900 in an endpoint information repository (e.g., the endpoint information repository 930 of FIG. 9).


In some implementations, each routing address record stored at the communication platform 900 associates a communication destination with at least one external communication provider. In some implementations, each routing address record stored at the communication platform 900 associates a communication destination with a plurality of external communication providers. In some implementations, at least one routing address record stored at the communication platform 900 associates a communication destination with a plurality of external communication providers.


In some implementations, at least one of a routing address identifier and a deterministic endpoint address specified in a routing address record associates the routing address record with a communication destination. In some implementations, deterministic endpoint addresses include at least one of a phone number, an email address, an IP address, and an account identifier of a communication provider. In some implementations, communication destinations include at least one of a phone number, an email address, an IP address, and an account identifier of a communication provider In some implementations, a routing address identifier includes at least one of a phone number prefix (e.g., “(415) 555-XXXX”), an e-mail domain (e.g., “@domain.com”), and the like. In some implementations, a routing address record specifying a routing address identifier is associated with all communication destinations that match the routing address identifier (e.g., a prefix of the communication destination matches the routing address identifier). In some implementations, a routing address record specifying a deterministic endpoint address is associated with the communication destination that matches the deterministic endpoint address (e.g., the communication destination is specified in the routing address record).


In some implementations, each communication provider (e.g., the communication providers 931 and 932 of FIG. 9) specified in a routing address record of the communication platform 900 is a communication provider that has registered with the communication platform 900 (e.g., as described below for FIGS. 11A and 11B).


In some implementations, each communication provider specified in a routing address record (of the platform 900) that specifies a deterministic endpoint address is a communication provider that has registered with the communication platform 900 for the communication destination and that has been confirmed by a device endpoint (e.g., the device endpoints 951-954 of FIG. 9) associated with the communication destination (e.g., as described below for FIGS. 11A and 11B).


In some implementations, each routing address record stored at the communication platform 900 is one of a global routing address record and an account routing address record. Each account routing address record specifies an account identifier for an account of the communication platform 900.


In some implementations, determining the matching routing address record from among the plurality of routing address records stored in the endpoint information repository includes: accessing the plurality of routing address records (e.g., the routing address records 1081-1083 of FIG. 10) stored in the endpoint information repository (e.g., 930 of FIG. 9), and for each accessed routing address record, determining whether the routing address record matches the communication destination and the account identifier (of the account information) of the communication request (e.g., the communication request 1099 of FIG. 10). In some implementations, in a case where a routing address record that matches both of the communication destination and the account identifier is not identified, then a determination is made as to whether a global routing address record that matches the communication destination is stored at the communication platform 900.


In some implementations, determining the matching routing address record from among the plurality of routing address records stored in the endpoint information repository includes: accessing the plurality of routing address records (e.g., the routing address records 1081-1083 of FIG. 10 stored in the endpoint information repository (e.g., 930 of FIG. 9), and for each accessed routing address record, determining whether the routing address record matches the communication destination of the communication request (e.g., the communication request 1099 of FIG. 10). In a case where the routing address record specifies a routing address identifier, a determination is made as to whether the routing address identifier matches the communication destination. In a case where the routing address record specifies a deterministic endpoint address, a determination is made as to whether the communication destination that matches the deterministic endpoint address (e.g., the communication destination is specified in the routing address record).


In some implementations, determining the matching routing address record from among the plurality of routing address records stored in the endpoint information repository includes: first determining whether at least one routing address record exists that specifies a deterministic endpoint address that matches the communication destination. In a case where a routing address record that specifies a deterministic endpoint address that matches the communication destination is not identified, a second determination is made as to whether a routing address record exists that specifies a routing address identifier that matches the communication destination.


In some implementations, determining the matching routing address record from among the plurality of routing address records stored in the endpoint information repository includes: accessing the plurality of routing address records (e.g., the routing address records 1081-1083 of FIG. 10 stored in the endpoint information repository (e.g., 930 of FIG. 9), and determining routing address records that specify a deterministic endpoint address. For each routing address record that specifies a deterministic endpoint address, a determination is made as to whether the deterministic endpoint address matches the communication destination of the communication request (e.g., the communication request 1099 of FIG. 10). In a case where a matching routing address record that specifies a deterministic endpoint address is not determined, routing address records that specify a routing address identifier are identified from among the stored routing address records. For each routing address record that specifies a routing address identifier, a determination is made as to whether the routing address identifier matches the communication destination of the communication request.


In some implementations, in a case where a matching routing address record is not determined (“NO” at S1010), the communication request having the unmatched communication destination is processed by performing at least one of error handling and default routing (process S1012). In some implementations, in a case where a matching routing address record is not determined (“NO” at S1010), the communication platform 900 provides the external system with a notification that the communication request has been denied. In some implementations, in a case where a matching routing address record is not determined (“NO” at S1010), the communication platform 900 selects a default communication provider and proceeds to the process S1030 which includes providing a request to establish communication with the communication destination to the default communication provider, in a manner described below for the process S1030 of FIG. 10. In some implementations, in a case where a matching routing address record is not determined (“NO” at S1010), the communication platform 900 determines a plurality of default communication providers, and processing proceeds to the process S1020 which includes selecting at least one communication provider from the plurality of default communication providers, in a manner described below for the process S1020 of FIG. 10.


Process 1020 is performed responsive to determination of a routing address record of the communication platform that matches the communication destination of the communication request (“YES” at S1010). In some implementations, process 1020 is performed responsive to determination of a routing address record that matches the communication destination and that is associated with a plurality of communication providers. In some implementations, in a case where the matching routing address record determined at the process S1020 is associated with one communication provider, the process 1020 is not performed.


Process S1020, which includes selecting at least one communication provider associated with the matching routing address record, functions to control the routing system 920 to select at least one communication provider specified in the matching routing address record. In some implementations, selection of at least one communication provider specified in the matching routing address record is performed based on a communication profile. In some implementations, selection of at least one communication provider specified in the matching routing address record is performed based on a communication profile in a case where the matching routing address record specifies a plurality of communication providers.


In some implementations, the communication profile is at least one of a global communication profile and an account communication profile that is associated with the account identifier that identifies an account at the communication platform 900 that is associated with the external system. In some implementations, the account communication profile is generated based on the communication request (e.g., the communication request 1099 of FIG. 10. In some implementations, the account communication profile is included in the communication request (e.g., the communication request 1099 of FIG. 10. In some implementations, the account communication profile is generated based on an API of the communication platform 900 (e.g., an API of the communication API module 911, an API of the profile repository 916 of FIG. 9, and the like). In some implementations, the account communication profile is provided via an API of the communication platform 900 (e.g., an API of the communication API module 911, an API of the profile repository 916 of FIG. 9, and the like).


In some implementations, selection of at least one communication provider specified in the matching routing address record includes accessing a communication profile stored in the profile repository 916 of FIG. 9, and using the accessed communication profile to select the at least one communication provider. In some implementations, accessing a communication profile stored in the profile repository 916 includes: determining whether the profile repository includes an account communication profile that specifies the communication platform 900 account identifier of the external system that is provided in the communication request (e.g., 1099 of FIG. 10); in a case where the profile repository 916 includes an account communication profile that specifies the account identifier of the external system, the account communication profile is used to select the at least one communication provider; and in a case where the repository 916 does not include an account communication profile that specifies the account identifier of the external system, a global communication profile of the platform 900 is used to select the at least one communication provider.


In some implementations, selection of at least one communication provider specified in the matching routing address record includes accessing an account communication profile from the communication request (e.g., 1099), and using the accessed account communication profile to select the at least one communication provider.


In some implementations, the communication profile specifies at least a priority and a weight for at least one communication provider. In some implementations, the priority and weight for each communication provider specified in the communication profile are used during selection of one or more communication providers from communication providers specified in the matching routing address record.


In some embodiments, the communication profile specifies parameters associated with the different communication providers, such as quality score, regional associations (e.g., related country codes or area codes or geographic proximity), quota prioritizations, internal cost (e.g., cost to the platform), effective internal cost (e.g., cost to transmit requested content considering transforming the content into multiple messages), and/or any suitable parameter used in selecting a communication provider.


In some embodiments, the quota prioritization parameter is used to prioritize a communication provider in response to a contractual obligation. Some communication providers can be maintained through contractual obligations of meeting a quota of communications (e.g., number of calls, number of messages, rate of communication). This quota prioritization parameter can be dynamically updated or fixed based on the communication restriction. The quota prioritization can be used to positively count towards the selection of the associated communication provider (e.g., if a system wants to meet a certain quota of messages) or alternatively negative impact selection (e.g., if a system wants to avoid going over a limit).


In some implementations, the relative properties for the associated communication providers are used to generate a communication provider priority list. In some implementations, the communication provider priority list is a customized list of communication providers prioritized for a particular communication request. Multiple communication provider are prioritized in order of preference. In some implementations, the listed communication providers may not have indicated preference and be a sub-set of the full set of communication providers.


In some implementations, an external system having an account at the communication platform 900 can configure communication profiles, which function to define communication providers and communication provider preferences for particular accounts and/or subsets of communication within an account of the communication platform 900.


In some implementations, communication providers, (e.g., OTT's) may be registered for a communication destination, and since most of the communication provider registration is achieved organically based on user activity, there will not be a uniform set of options across all communication destinations. Additionally, an external system (e.g., of a communication provider, such as, for example, an OTT provider) having an account at the communication platform 900 can configure a communication profile for its account at the platform 900 to allow communication originating from the external system to be terminated in particular communication provider services. For example social network A (having an account at the communication platform 900) may not want messages to automatically rerouted to social network B if social network A is not registered. In some implementations, a communication profile can exist for a particular communication provider. In some implementations, a communication profile identifies approved (or conversely prohibited) communication providers for communications relating to a particular communication provider. Additionally, the set of approved communication providers can be prioritized so that communication can default to the next highest priority if the first communication provider is not suitable for a particular communication. For example, an OTT communication provider may want the communication to first be completed using the OTT communication provider, but if that is not available an MMS communication provider is used, then an SMS communication provider, then finally a second selected OTT communication provider. In this example, a third OTT communication provider may not be part of the communication profile, and accordingly communication will not be terminated in the third OTT for the subset of communications related to the communication profile. In some implementations, the communication profile can specify different options for different forms of communication. For example, text messages may be defined to prioritize the communication providers in one manner, while media messages prioritize communication providers in a second manner. The communication profile can be set for each account of the communication platform 900. Preferably each OTT communication provider will have an OTT account within the communication platform 900, within which an administrator can set the communication profile. Additionally, non-OTT accounts at the communication platform 900 can set communication profiles to define how communications are routed.


Process S1030, which includes providing a request to establish communication with the communication destination to each selected communication provider, functions to control the communication platform 900 to provide the request to establish communication with each selected communication provider (e.g., the communication providers 931 and 932 of FIG. 9) in accordance with the communication request (e.g., the communication request 1099 of FIG. 10). In some implementations, each communication provider (e.g., the communication providers 931 and 932) receiving the request from the communication platform 900 establishes communication with at least one device (e.g., the devices 943 and 944) corresponding to the communication destination of the communication request (e.g., the communication request 1099 of FIG. 10). In some implementations, each communication provider (e.g., the communication providers 931 and 932) receiving the request from the communication platform 900 establishes communication with at least one device endpoint (e.g., the device endpoints 953 and 954) of a device (e.g., the devices 943 and 944) corresponding to the communication destination of the communication request.


In some implementations, the communication API module 911 of the communication system 910 of FIG. 9 receives the communication request from the external system, and the external system provides the communication request via an API request. In some implementations, the process S1010 is performed by the determination module 914 of the routing system 920. In some implementations, the process S1020 is performed by the selection module 915 of the routing system 920. In some implementations, the content converter 917 of the communication system 910 converts content of the communication request based on selection of the at least one communication provider at the process S1020. In some implementations, the content converter 917 of the communication system 910 converts content in a manner similar to that described above for the content converter 114 of FIG. 1.


6. Generating Routing Address Records


In some embodiments, the communication platform 900 generates each routing address record by, performing a process in accordance with FIGS. 11A and 11B. For each communication provider 1101 (e.g., the communication providers 931 and 932 of FIG. 9), the communication platform 900 transmits a registration communication 1106 to a device endpoint 1102 (e.g., the device endpoints 953-954 of FIG. 9) associated with the communication destination responsive to a registration request 1103 that identifies the communication provider 1101 and the device endpoint 1102 associated with the communication destination (process S1101).


In some implementations, the communication provider 1101 provides the registration request 1103 to the communication platform 900 by using the registration API module 912 of the endpoint information repository 930 of FIG. 9.


The communication platform 900 specifies the communication provider 1101 in the routing address record (stored by the endpoint information repository 930) in association with at least one of the communication destination and the corresponding device endpoint 1102 responsive to an endpoint conformation response 1104 provided by at least one of the device endpoint 1102 and the communication provider 1101 (process S1102). The communication platform 900 provides a registration confirmation response 1105 to the communication provider 1101 responsive to the endpoint confirmation response 1104 received by the communication platform 900 (process S1103). In the implementation shown in FIG. 11A, the device endpoint 1102 provides the endpoint conformation response 1104 to the communication platform 900. In the implementation shown in FIG. 11A, the device endpoint 1102 provides the endpoint conformation response 1104 to the communication provider 1101, and the communication provider 1101 provides the endpoint conformation response 1104 to the communication platform 900.


Thus, the communication platform 900 confirms a communication provider for each communication destination registered for the communication provider in accordance with the process described above for FIGS. 11A and 11B. In accordance with the process described above for FIGS. 11A and 11B, the communication platform 900 specifies the confirmed communication provider 1101 in the routing address record that corresponds to the registration request 1103 to register the communication provider 1101 for the communication destination.


In some implementations, responsive to the confirmation response (e.g., 1105) provided by the communication platform to the communication provider at the process S1103, the communication provider associates the communication destination with a user account of a user of the communication provider, and the communication provider stores the association at the communication provider.


The process of FIGS. 11A-11B functions to allow a communication provider to register and verify an endpoint (e.g., 1102) to associate with an account on the communication provider. The communication provider will preferably trigger the process of FIG. 11A or 11B when a user is registering for an account at the communication provider or pairing a new device to an account at the communication provider. After the new device endpoint 1102 is paired through the registration process, the communication platform 900 can use the communication provider 1101 as an additional communication provider available for establishing communication with the device endpoint 1102.


In some implementations, the registration request 1103 includes account information of an account of the communication platform 900. The account information can include authentication token(s), an account identifier, communication provider identifier, or any suitable source information. The communication provider 1101 will preferably initiate the registration API call when a customer attempts to pair a phone number or other communication endpoint with an account on the communication provider 1101. For example, within an account page on a communication provider 1101, a user can enter a phone number and submit the number. The communication provider 1101 will preferably send the API request to the communication platform 900 to complete the registration. From the user standpoint, the communication platform 900 is transparent. After submitting the phone number, the user will preferably receive a communication on his or her phone, which the user will be able confirm. The communication platform 900 can alternatively provide alternative interfaces to the communication providers. For example, an embeddable UI can be provided for facilitating registration user interface. The UI can be embedded in the communication provider 1101 website or application (e.g., as an iframe) to facilitate receiving registration.


In some implementations, the process Slim functions to deliver a message or communicate with the device endpoint 1102. Preferably the communication platform 900 has at least one communication provider available for establishing communication with the device endpoint 1102. In implementations in which the device endpoint 1102 is a phone number, a SMS or MMS message can be delivered to the device endpoint 1102. Alternatively, an automated voice call can be delivered over PSTN, SIP, or an alternative VoIP communication protocol (e.g., WebRTC).


In some implementations, the registration communication 1106 includes a code or an alternative identifier. In some implementations, the registration communication 1106 includes a 6 digit pin that can be entered within an application, website, or any suitable interface. The entering of the pin codes signals successful delivery of the registration communication 1106 and that the owner of the device endpoint 1102 is confirming the registration. In some implementations, the registration communication 1106 includes a unique URI. When the delivered, the user can click the link to confirm the registration. Since the URI is unique, access of the resource can signal confirmation of the registration. Alternatively, the URI may display options to confirm or deny the registration. In some implementations, the registration communication 1106 is a message specifying response options. The message could be a text message, an image, a video, or any suitable media message. In some implementations, transmitting a registration communication 1106 includes making a voice or video call. The voice or video call can be used to receive confirmation or some form of a response during the call (e.g., through DTMF or voice recognition).


In some implementations, the process 1102 functions to determine the results of the registration with the device endpoint 1102. The confirmation response 1104 preferably includes confirmation of pairing the device endpoint 1102 with the communication provider 1101. The user will preferably be expecting the communication 1106 and will know that confirming will complete the process. In some implementations, the confirmation response 1104 is received from the device endpoint 1102 in response to the registration communication 1106. For example, the conformation response 1104 is an SMS or MMS message reply. The message reply can include a response such as “YES” or “NO” to indicate if the endpoint should or should not be registered in association with the request. The confirmation response 1104 may alternatively be made during the registration communication 1106 if the registration communication is a synchronous communication. In implementations in which a pincode is entered in an interface, the interface could be one created and provided by the communication provider 1101 or any suitable outside provider. An API call is preferably provided to inform the communication platform 900 of the user response. The communication provider (or outside provider) can use the API call to inform the communication platform 900 (e.g., as shown in FIG. 11B).


The registration process can additionally include verifying a device through an endpoint repository (e.g., the endpoint information repository 930 of FIG. 9), which functions to use existing endpoint information to add an additional layer in registration. The communication provider 1101 may not have access to information outside of their own platform, but the multi-modal communication aspect of the communication platform 900 can enable insights to be pulled from previous registrations and/or communications. The communication platform 900 will preferably retain information about various endpoints in the endpoint repository 930. In some cases an endpoint may already be registered with other communication providers or otherwise be known within the communication platform 900 due to prior communication interactions. The past history of a known endpoint can be used in confirming registration. In some implementations, automatic verification of a device endpoint (e.g., 1102) may be enabled if the endpoint is already confirmed through another communication provider. In some implementations, the verifying of the device may use fraud detection heuristics or other triggers to prevent confirmation of the registration.


In some implementations, the process S1102 functions to record the registration of an endpoint (e.g., 1102) with a new communication provider (e.g., 1101). The endpoint repository 930 will preferably include a set of records for different endpoints. Each endpoint record will preferably include a parameter or parameters that define the set of communication providers. The set of communication providers preferably include the communication providers that have registered with the endpoint. A communication provider registration can indicate that the user of the endpoint has paired an account of the communication provider with the phone. In some situations, this registration can be a signal that an application of the communication provider is used by the user or at least has been used by the user.


In some implementations, the endpoint repository 930 is used beyond registration but in facilitating and tracking communication through the communication provider. The endpoint repository 930 can be updated and maintained to signal different aspects of the endpoint and related communication providers. In some implementations, the endpoint repository 930 stores information relating to the history of each communication provider such as a registration timestamp, time of last communication through the communication provider on the communication platform 900, preference rating of an communication provider (e.g., order ranking of communication providers according to frequency of use). In some implementations, the endpoint repository 930 is used in synchronizing changes amongst communication providers. In some implementations, a change of registration of one communication provider may be applied to other communication provider registrations. For example, if a user gets a new phone number and updates the registration for a first communication provider, then the process may include notifying a second communication provider previously registered of the phone number change, automatically migrating the updated number for the second communication provider, invalidating the registration of the second communication provider until re-registered, and/or any suitable action.


In some implementations, the process S1103 functions to update the communication provider 1101 of the registration result. In some implementations, the signaling of the confirmation response includes a confirmation that the endpoint 1102 successfully completed registration or that the registration was not successfully confirmed. Unsuccessful confirmation may simply be a denial of registration, but the denial or error response may additionally include a reason such as cancelation (e.g., user changes his mind) or fraud reporting (e.g., user did not initiate the registration and flags the request). The signaling can be performed in a variety of approaches. In a first variation, the confirmation response 1105 is included in a response to the registration request API call 1103. In another variation, the confirmation response 1105 is posted or submitted to a specified resource of the communication provider 1101. In yet another variation, a resource in the communication platform 900 is updated, and the communication provider 1101 can poll the resource to obtain the status. For example, the registration request API call 1103 may trigger a response from the communication platform 900 that includes a resource identifier (e.g., a URI). The communication provider 1101 can poll the resource identifier until the confirmation response is obtained. Prior to receiving a confirmation response, the resource identifier can return a ‘pending’ response or an alternative response to indicate that the registration process is still in progress.


In some implementations, the registration process includes providing endpoint information of the endpoint repository 930, which functions to enable access, use, and interaction with the endpoint repository 930 (e.g., via the API module 912). Providing endpoint information preferably includes providing API access to at least a portion of the information of the endpoint repository 930. The API access preferably includes public API access that is usable by customers/users. The API access may alternatively or additionally be private used within the communication platform 900. In one variation, an API call can query a specific endpoint and retrieve information about communication provider registration with the endpoint. As discussed above, the usage relating to each communication provider may additionally be accessible. A portion of the API may be opened publically so that any entity can check if a particular endpoint is registered with a specific communication provider. In another variation, some or all the information may be limited to communication provider associated accounts in the communication platform 900. The communication provider can have a special account set up (e.g., the account used to submit the registration requests). In one variation, the communication provider can query all the phone numbers registered for the communication provider. After registration, a communication provider can additionally update registration such as canceling/terminating registration.


7. Method for a Multi-Tenant Communication Platform


A method for a multi-tenant communication platform (e.g., 900 of FIG. 9) in accordance with an example embodiment includes, at a multi-tenant communication platform (e.g., the platform 900 of FIG. 9): receiving a request (e.g., the communication request 1099 of FIG. 10) to establish communication, the request being provided by an external system (e.g., the external systems 921-923) and specifying a communication destination and an account identifier of the external system; determining whether the account identifier is a valid account identifier of an account that is permitted to establish communication by using the communication platform. Responsive to a determination that the account identifier is a valid account identifier of an account that is permitted to establish communication by using the communication platform: at least one communication provider (e.g., the communication providers 931 and 932) is determined for the communication destination based on an a routing address record (e.g., the routing address records 1081-1083 of FIG. 10) matching the communication destination. The matching routing address record associates the communication destination with one or more communication providers, and the routing address record is stored at the communication platform (e.g., in the endpoint information repository 930 of FIG. 9). Each communication provider (e.g., the providers 921-923) is external to the communication platform 900. One or more of the determined at least one communication provider is selected, and a request to establish communication with the communication destination is provided to each selected communication provider. The communication platform 900 generates the matching routing address record based on registration information (e.g., request 1103 and response 1104 of FIGS. 11A and 11B) provided to the communication platform for the communication destination by each determined communication provider. The communication destination matches at least one of a routing address identifier and a deterministic endpoint address specified in the matching routing address record.


In some embodiments, the methods disclosed herein are implemented in the multi-tenant communication platform 900 of FIG. 9. In some embodiments, the methods are implemented in any suitable type of multi-tenant communication platform.


8. System Architecture



FIG. 12 is an architecture diagram of a system (e.g., the system 901 of the communication platform 900 of FIG. 9) according to an implementation in which the system 901 is implemented in a server device. In some implementations, the communication system is implemented in a plurality of devices. In some implementations, the communication system 910, the routing system 920, the endpoint information repository 930, and the profile repository 916 are implemented in separate devices (e.g., server devices). In some implementations, two or more of the communication system 910, the routing system 920, the endpoint information repository 930, and the profile repository 916 are implemented in same devices (e.g., a server device).


The bus 1201 interfaces with the processors 1201A-1201N, the main memory (e.g., a random access memory (RAM)) 1222, a read only memory (ROM) 1204, a processor-readable storage medium 1205, a display device 1207, a user input device 1208, and a network device 1211.


The processors 1201A-1201N may take many forms, such as ARM processors, X86 processors, and the like.


In some implementations, the system 901 includes at least one of a central processing unit (processor) and a multi-processor unit (MPU).


The processors 1201A-1201N and the main memory 1222 form a processing unit 1299. In some embodiments, the processing unit includes one or more processors communicatively coupled to one or more of a RAM, ROM, and machine-readable storage medium; the one or more processors of the processing unit receive instructions stored by the one or more of a RAM, ROM, and machine-readable storage medium via a bus; and the one or more processors execute the received instructions. In some embodiments, the processing unit is an ASIC (Application-Specific Integrated Circuit). In some embodiments, the processing unit is a SoC (System-on-Chip). In some embodiments, the processing unit includes one or more of the communication system 910, the routing system 920, the endpoint information repository 930, and the profile repository 916.


The network adapter device 1211 provides one or more wired or wireless interfaces for exchanging data and commands between the system 901 and other devices, such as devices of the external systems 921-932, the communication providers 931 and 932, and the devices 943 and 944. Such wired and wireless interfaces include, for example, a universal serial bus (USB) interface, Bluetooth interface, Wi-Fi interface, Ethernet interface, near field communication (NFC) interface, and the like.


Machine-executable instructions in software programs (such as an operating system, application programs, and device drivers) are loaded into the memory 1222 (of the processing unit 1299) from the processor-readable storage medium 1205, the ROM 1204 or any other storage location. During execution of these software programs, the respective machine-executable instructions are accessed by at least one of processors 1201A-1201N (of the processing unit 1299) via the bus 1201, and then executed by at least one of processors 1201A-1201N. Data used by the software programs are also stored in the memory 1222, and such data is accessed by at least one of processors 1201A-1201N during execution of the machine-executable instructions of the software programs.


The processor-readable storage medium 1205 is one of (or a combination of two or more of) a hard drive, a flash drive, a DVD, a CD, an optical disk, a floppy disk, a flash storage, a solid state drive, a ROM, an EEPROM, an electronic circuit, a semiconductor memory device, and the like. The processor-readable storage medium 1205 includes an operating system 1212, software programs 1213, device drivers 1214, the communication system 910, the routing system 920, the endpoint information repository 930, and the profile repository 916.


CONCLUSION

The system and methods of the preferred embodiment and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the communication system. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions.


As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims
  • 1. A method comprising: receiving, through an application programming interface (API), an inbound communication request, the inbound communication request identifying a communication endpoint;analyzing the inbound communication request to identify a transport protocol;selecting a routing option of the transport protocol, the routing option mapping the communication endpoint to a destination endpoint;responsive to receiving communication content associated with the communication request, transforming the communication content to a format that is compatible with the selected routing option of the transport protocol and a mode of communication associated with the selected routing option; andtransmitting the transformed communication content to the destination endpoint on the selected routing option.
  • 2. The method of claim 1, wherein selecting the routing option comprises selecting the routing option based, at least in part, on reliability of the selected routing option.
  • 3. The method of claim 1, wherein selecting the routing option comprises selecting the routing option based, at least in part, on involved content transformations of a set of a routing options.
  • 4. The method of claim 1, further comprising: receiving an endpoint registration request through a registration API, in response to a user initiating a pairing of the communication endpoint with the destination endpoint of an account of a third party communication platform; and updating an endpoint repository database that pairs the destination endpoint of a third party communication platform with the communication endpoint.
  • 5. The method of claim 4, wherein selecting the routing option of the transport protocol comprises selecting the routing option from a set of routing options according to a set of priority heuristics, wherein the routing option specifies the destination endpoint and destination transport protocol.
  • 6. The method of claim 5, wherein the set of routing options comprises of at least one routing option for each of: a Short Message Service (SMS) message service provider, a Multimedia Messaging Service (MMS) message service provider, and an Internet Protocol (IP) message service provider.
  • 7. The method of claim 5, wherein the set of routing options comprises of at least two distinct over-the-top routing options.
  • 8. The method of claim 5, wherein the set of routing options comprises of at least one routing option that specifies an asynchronous transport protocol and one routing option that specifies a synchronous transport protocol.
  • 9. A non-transitory computer-readable storage medium comprising computer-readable instructions that, when executed by one or more processors of a machine, cause the machine to perform operations comprising: receiving, through an application programming interface (API), an inbound communication request, the inbound communication request identifying a communication endpoint;analyzing the inbound communication request to identify a transport protocol;selecting a routing option of the transport protocol, the routing option mapping the communication endpoint to a destination endpoint;responsive to receiving communication content associated with the inbound communication request, transforming the communication content to a format that is compatible with the selected routing option of the transport protocol and a mode of communication associated with the selected routing; andtransmitting the transformed communication content to the destination endpoint on the selected routing option.
  • 10. The non-transitory computer-readable storage medium of claim 9, the operations further comprising: receiving an endpoint registration request through a registration API, in response to a user initiating a pairing of the communication endpoint with the destination endpoint of an account of a third party communication platform; and updating an endpoint repository database that pairs the destination endpoint of a third party communication platform with the communication endpoint.
  • 11. The non-transitory computer-readable storage medium of claim 10, wherein selecting the routing option of the transport protocol comprises selecting the routing option from a set of routing options according to a set of priority heuristics, wherein the routing option specifies the destination endpoint and destination transport protocol.
  • 12. The non-transitory computer-readable storage medium of claim 11, wherein the set of routing options comprises at least one routing option for each of: a Short Message Service (SMS) message service provider, a Multimedia Messaging Service (MMS) message service provider, and an Internet Protocol (IP).
  • 13. The non-transitory computer-readable storage medium of claim 11, wherein the set of routing options comprises at least two distinct over-the-top routing options.
  • 14. The non-transitory computer-readable storage medium of claim 11, wherein the set of routing options comprises at least one routing option that specifies an asynchronous transport protocol and one routing option that specifies a synchronous transport protocol.
  • 15. A system comprising: a communication system comprising a communication router configured with a set of communication interfaces for a set of routing options;wherein the set of routing options comprises routing options for at least two transport protocols;wherein the communication system comprises of at least one computer-readable medium that stores instructions that when executed by at least one computer processor cause the communication system to: receive, through an application programming interface (API), an inbound communication request, the inbound communication request identifying a communication endpoint,analyze the inbound communication request to identify a transport protocol,select a routing option of the transport protocol, the routing option mapping the communication endpoint to a destination endpoint;responsive to receiving communication content associated with the inbound communication request, transform the communication content to a format that is compatible with the selected routing option of the transport protocol and a mode of communication associated with the selected routing option; andtransmit the transformed communication content to the destination endpoint on the selected routing option.
  • 16. The system of claim 15, wherein the communication system is further configured to receive an endpoint registration request through a registration API, in response to a user initiating a pairing of the communication endpoint with the destination endpoint; and update an endpoint repository database that pairs the destination endpoint of a third-party communication platform with the communication endpoint.
  • 17. The system of claim 16, wherein configuration to select the selected routing option of the transport protocol comprises configuration to select the routing option from the set of routing options according to a set of priority heuristics, wherein the routing option specifies the destination endpoint and a destination transport protocol.
  • 18. The system of claim 15, wherein the set of routing options comprises at least one routing option for each of: a Short Message Service (SMS) message service provider, a Multimedia Messaging Service (MMS) message service provider, and an Internet Protocol (IP) message service provider.
  • 19. The system of claim 15, wherein the set of routing options comprises at least two distinct over-the-top routing options.
  • 20. The system of claim 15, wherein the set of routing options comprises at least one routing option that specifies an asynchronous transport protocol and one routing option that specifies a synchronous transport protocol.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of co-pending U.S. patent application Ser. No. 16/546,019, field 20 Aug. 2019, which is a continuation of co-pending U.S. patent application Ser. No. 15/871,833, filed 15 Jan. 2018, which is a continuation of co-pending U.S. patent application Ser. No. 14/944,869, filed 18 Nov. 2015, which is a continuation of co-pending U.S. patent application Ser. No. 14/690,252, filed 17 Apr. 2015, now issued as U.S. Pat. No. 9,226,217, which claims the benefit of U.S. Provisional Application Ser. No. 61/980,749, filed on 17 Apr. 2014, which are incorporated in their entireties by this reference.

US Referenced Citations (872)
Number Name Date Kind
5274700 Gechter et al. Dec 1993 A
5526416 Dezonno et al. Jun 1996 A
5581608 Jreij et al. Dec 1996 A
5598457 Foladare et al. Jan 1997 A
5633914 Rosa May 1997 A
5867495 Elliott et al. Feb 1999 A
5934181 Adamczewski Aug 1999 A
5978465 Corduroy et al. Nov 1999 A
6026440 Shrader et al. Feb 2000 A
6034946 Roginsky et al. Mar 2000 A
6094681 Shaffer et al. Jul 2000 A
6138143 Gigliotti et al. Oct 2000 A
6185565 Meubus et al. Feb 2001 B1
6192123 Grunsted et al. Feb 2001 B1
6206564 Adamczewski Mar 2001 B1
6223287 Douglas et al. Apr 2001 B1
6232979 Shochet May 2001 B1
6269336 Ladd et al. Jul 2001 B1
6317137 Rosasco Nov 2001 B1
6363065 Thornton et al. Mar 2002 B1
6373836 Deryugin et al. Apr 2002 B1
6425012 Trovato et al. Jul 2002 B1
6426995 Kim et al. Jul 2002 B1
6430175 Echols et al. Aug 2002 B1
6434528 Sanders Aug 2002 B1
6442159 Josse et al. Aug 2002 B2
6445694 Swartz Sep 2002 B1
6445776 Shank et al. Sep 2002 B1
6459913 Cloutier Oct 2002 B2
6463414 Su et al. Oct 2002 B1
6493558 Bernhart et al. Dec 2002 B1
6496500 Nance et al. Dec 2002 B2
6501739 Cohen Dec 2002 B1
6501832 Saylor et al. Dec 2002 B1
6507875 Mellen-Garnett et al. Jan 2003 B1
6571245 Huang et al. May 2003 B2
6574216 Farris et al. Jun 2003 B1
6577721 Vainio et al. Jun 2003 B1
6600736 Ball et al. Jul 2003 B1
6606596 Zirngibl et al. Aug 2003 B1
6614783 Sonesh et al. Sep 2003 B1
6625258 Ram et al. Sep 2003 B1
6625576 Kochanski et al. Sep 2003 B2
6636504 Albers et al. Oct 2003 B1
6662231 Drosset et al. Dec 2003 B1
6704785 Koo et al. Mar 2004 B1
6707811 Greenberg et al. Mar 2004 B2
6707889 Saylor et al. Mar 2004 B1
6707899 Saito et al. Mar 2004 B2
6711129 Bauer et al. Mar 2004 B1
6711249 Weissman et al. Mar 2004 B2
6738738 Henton May 2004 B2
6757365 Bogard Jun 2004 B1
6765997 Zirngibl et al. Jul 2004 B1
6768788 Langseth et al. Jul 2004 B1
6771955 Imura et al. Aug 2004 B2
6778653 Kallas et al. Aug 2004 B1
6785266 Swartz Aug 2004 B2
6788768 Saylor et al. Sep 2004 B1
6792086 Saylor et al. Sep 2004 B1
6792093 Barak et al. Sep 2004 B2
6798867 Zirngibl et al. Sep 2004 B1
6801604 Maes et al. Oct 2004 B2
6807529 Johnson et al. Oct 2004 B2
6807574 Partovi et al. Oct 2004 B1
6819667 Brusilovsky et al. Nov 2004 B1
6820260 Flockhart et al. Nov 2004 B1
6829334 Zirngibl et al. Dec 2004 B1
6831966 Tegan et al. Dec 2004 B1
6834265 Balasuriya Dec 2004 B2
6836537 Zirngibl et al. Dec 2004 B1
6842767 Partovi et al. Jan 2005 B1
6850603 Eberle et al. Feb 2005 B1
6870830 Schuster et al. Mar 2005 B1
6873952 Bailey et al. Mar 2005 B1
6874084 Dobner et al. Mar 2005 B1
6885737 Gao et al. Apr 2005 B1
6888929 Saylor et al. May 2005 B1
6892064 Qi et al. May 2005 B2
6895084 Saylor et al. May 2005 B1
6898567 Balasuriya May 2005 B2
6912581 Johnson et al. Jun 2005 B2
6922411 Taylor Jul 2005 B1
6928469 Duursma et al. Aug 2005 B1
6931405 El-shimi et al. Aug 2005 B2
6934858 Woodhill Aug 2005 B2
6937699 Schuster et al. Aug 2005 B1
6940953 Eberle et al. Sep 2005 B1
6941268 Porter et al. Sep 2005 B2
6947417 Laursen et al. Sep 2005 B2
6947727 Brynielsson Sep 2005 B1
6947988 Saleh et al. Sep 2005 B1
6961330 Cattan et al. Nov 2005 B1
6964012 Zirngibl et al. Nov 2005 B1
6970915 Partovi et al. Nov 2005 B1
6977992 Zirngibl et al. Dec 2005 B2
6981041 Araujo et al. Dec 2005 B2
6985862 Strom et al. Jan 2006 B2
6993658 Engberg et al. Jan 2006 B1
6999576 Sacra Feb 2006 B2
7003464 Ferrans et al. Feb 2006 B2
7006606 Cohen et al. Feb 2006 B1
7010586 Allavarpu et al. Mar 2006 B1
7020685 Chen et al. Mar 2006 B1
7039165 Saylor et al. May 2006 B1
7046778 Martin et al. May 2006 B2
7058042 Bontempi et al. Jun 2006 B2
7058181 Wright et al. Jun 2006 B2
7062709 Cheung Jun 2006 B2
7065637 Nanja Jun 2006 B1
7076037 Gonen et al. Jul 2006 B1
7076428 Anastasakos et al. Jul 2006 B2
7080049 Truitt et al. Jul 2006 B2
7085727 Vanorman Aug 2006 B2
7089310 Ellerman et al. Aug 2006 B1
7092370 Jiang et al. Aug 2006 B2
7099442 Da Palma et al. Aug 2006 B2
7103003 Brueckheimer et al. Sep 2006 B2
7103171 Annadata et al. Sep 2006 B1
7106844 Holland Sep 2006 B1
7110513 Halpern et al. Sep 2006 B2
7110514 Brown et al. Sep 2006 B2
7111163 Haney Sep 2006 B1
7136932 Schneider Nov 2006 B1
7140004 Kunins et al. Nov 2006 B1
7142662 Rodenbusch et al. Nov 2006 B2
7143039 Stifelman et al. Nov 2006 B1
7197331 Anastasakos et al. Mar 2007 B2
7197461 Eberle et al. Mar 2007 B1
7197462 Takagi et al. Mar 2007 B2
7197544 Wang et al. Mar 2007 B2
D540074 Peters Apr 2007 S
7225232 Elberse May 2007 B2
7227849 Rasanen Jun 2007 B1
7231035 Walker et al. Jun 2007 B2
7245611 Narasimhan et al. Jul 2007 B2
7260208 Cavalcanti Aug 2007 B2
7266181 Zirngibl et al. Sep 2007 B1
7269557 Bailey et al. Sep 2007 B1
7272212 Eberle et al. Sep 2007 B2
7272564 Phillips et al. Sep 2007 B2
7277851 Henton Oct 2007 B1
7283515 Fowler Oct 2007 B2
7283519 Girard Oct 2007 B2
7286521 Jackson et al. Oct 2007 B1
7287248 Adeeb Oct 2007 B1
7289453 Riedel et al. Oct 2007 B2
7296739 Mo et al. Nov 2007 B1
7298732 Cho Nov 2007 B2
7298830 Guedalia et al. Nov 2007 B2
7298834 Homeier et al. Nov 2007 B1
7308085 Weissman Dec 2007 B2
7308408 Stifelman et al. Dec 2007 B1
7324633 Gao et al. Jan 2008 B2
7324942 Mahowald et al. Jan 2008 B1
7328263 Sadjadi Feb 2008 B1
7330463 Bradd et al. Feb 2008 B1
7330890 Partovi et al. Feb 2008 B1
7340040 Saylor et al. Mar 2008 B1
7349714 Lee et al. Mar 2008 B2
7369865 Gabriel et al. May 2008 B2
7370329 Kumar et al. May 2008 B2
7373660 Guichard et al. May 2008 B1
7376223 Taylor et al. May 2008 B2
7376586 Partovi et al. May 2008 B1
7376733 Connelly et al. May 2008 B2
7376740 Porter et al. May 2008 B1
7383572 Rolfe Jun 2008 B2
7395050 Tuomi et al. Jul 2008 B2
7412525 Cafarella et al. Aug 2008 B2
7418090 Reding et al. Aug 2008 B2
7426750 Cooper et al. Sep 2008 B2
7428302 Zirngibl et al. Sep 2008 B2
7431202 Meador et al. Oct 2008 B1
7440898 Eberle et al. Oct 2008 B1
7447299 Partovi et al. Nov 2008 B1
7454459 Kapoor et al. Nov 2008 B1
7457249 Baldwin et al. Nov 2008 B2
7457397 Saylor et al. Nov 2008 B1
7473872 Takimoto Jan 2009 B2
7486780 Zirngibl et al. Feb 2009 B2
7496054 Taylor Feb 2009 B2
7496188 Saha et al. Feb 2009 B2
7496651 Joshi Feb 2009 B1
7500249 Kampe et al. Mar 2009 B2
7505951 Thompson et al. Mar 2009 B2
7519359 Chiarulli et al. Apr 2009 B2
7522711 Stein et al. Apr 2009 B1
7536454 Balasuriya May 2009 B2
7542761 Sarkar Jun 2009 B2
7552054 Stifelman et al. Jun 2009 B1
7565547 Matta et al. Jul 2009 B2
7571226 Partovi et al. Aug 2009 B1
7577847 Nguyen et al. Aug 2009 B2
7606868 Le et al. Oct 2009 B1
7613287 Stifelman et al. Nov 2009 B1
7623648 Oppenheim et al. Nov 2009 B1
7630900 Strom Dec 2009 B1
7631310 Henzinger Dec 2009 B1
7644000 Strom Jan 2010 B1
7657433 Chang Feb 2010 B1
7657434 Thompson et al. Feb 2010 B2
7668157 Weintraub et al. Feb 2010 B2
7672275 Yajnik et al. Mar 2010 B2
7672295 Andhare et al. Mar 2010 B1
7675857 Chesson Mar 2010 B1
7676221 Roundtree et al. Mar 2010 B2
7685280 Berry et al. Mar 2010 B2
7685298 Day et al. Mar 2010 B2
7715547 Ibbotson et al. May 2010 B2
7716293 Kasuga et al. May 2010 B2
7742499 Erskine et al. Jun 2010 B1
7756507 Morper et al. Jul 2010 B2
7764955 Mangal et al. Jul 2010 B1
7779065 Gupta et al. Aug 2010 B2
7809125 Brunson et al. Oct 2010 B2
7809791 Schwartz et al. Oct 2010 B2
7875836 Imura et al. Jan 2011 B2
7882253 Pardo-Castellote et al. Feb 2011 B2
7920866 Bosch et al. Apr 2011 B2
7926099 Chakravarty et al. Apr 2011 B1
7929562 Petrovykh Apr 2011 B2
7936867 Hill et al. May 2011 B1
7946913 Yacenda May 2011 B2
7949111 Harlow et al. May 2011 B2
7962644 Ezerzer et al. Jun 2011 B1
7979555 Rothstein et al. Jul 2011 B2
7983404 Croak et al. Jul 2011 B1
7992120 Wang et al. Aug 2011 B1
8023425 Raleigh Sep 2011 B2
8024567 Han Sep 2011 B2
8024785 Andress et al. Sep 2011 B2
8045689 Provenzale et al. Oct 2011 B2
8046378 Zhuge et al. Oct 2011 B1
8046823 Begen et al. Oct 2011 B1
8069096 Ballaro et al. Nov 2011 B1
8078483 Hirose et al. Dec 2011 B1
8081744 Sylvain Dec 2011 B2
8081958 Soderstrom et al. Dec 2011 B2
8082576 Flynn et al. Dec 2011 B2
8103725 Gupta et al. Jan 2012 B2
8126128 Hicks, III et al. Feb 2012 B1
8126129 Mcguire Feb 2012 B1
8130750 Hester Mar 2012 B2
8130917 Helbling et al. Mar 2012 B2
8139730 Da Palma et al. Mar 2012 B2
8145212 Lopresti et al. Mar 2012 B2
8149716 Ramanathan et al. Apr 2012 B2
8150918 Edelman et al. Apr 2012 B1
8156213 Deng et al. Apr 2012 B1
8165116 Ku et al. Apr 2012 B2
8166185 Samuel et al. Apr 2012 B2
8166299 Kemshall Apr 2012 B2
8169936 Koren et al. May 2012 B2
8175007 Jain et al. May 2012 B2
8185619 Maiocco et al. May 2012 B1
8190670 Gavrilescu et al. May 2012 B2
8196133 Kakumani et al. Jun 2012 B2
8204479 Vendrow et al. Jun 2012 B2
8214868 Hamilton et al. Jul 2012 B2
8218457 Malhotra et al. Jul 2012 B2
8233611 Zettner Jul 2012 B1
8238533 Blackwell et al. Aug 2012 B2
8243889 Taylor et al. Aug 2012 B2
8244822 Lowry et al. Aug 2012 B1
8249552 Gailloux et al. Aug 2012 B1
8266327 Kumar et al. Sep 2012 B2
8295272 Boni et al. Oct 2012 B2
8301117 Keast et al. Oct 2012 B2
8302175 Thoursie et al. Oct 2012 B2
8306021 Lawson et al. Nov 2012 B2
8315198 Corneille et al. Nov 2012 B2
8315369 Lawson et al. Nov 2012 B2
8315620 Williamson et al. Nov 2012 B1
8319816 Swanson et al. Nov 2012 B1
8326805 Arous et al. Dec 2012 B1
8335852 Hokimoto Dec 2012 B2
8346630 Mckeown Jan 2013 B1
8355394 Taylor et al. Jan 2013 B2
8411669 Chen et al. Apr 2013 B2
8413247 Hudis et al. Apr 2013 B2
8416923 Lawson et al. Apr 2013 B2
8417817 Jacobs Apr 2013 B1
8429827 Wetzel Apr 2013 B1
8438315 Tao et al. May 2013 B1
8447025 Shaffer et al. May 2013 B2
8462670 Chien Jun 2013 B2
8462920 Gonen et al. Jun 2013 B2
8467502 Sureka et al. Jun 2013 B2
8477926 Jasper et al. Jul 2013 B2
8503639 Reding et al. Aug 2013 B2
8503650 Reding et al. Aug 2013 B2
8504818 Rao et al. Aug 2013 B2
8509068 Begall et al. Aug 2013 B2
8532686 Schmidt et al. Sep 2013 B2
8533857 Tuchman et al. Sep 2013 B2
8542805 Agranovsky et al. Sep 2013 B2
8543665 Ansari et al. Sep 2013 B2
8547962 Ramachandran et al. Oct 2013 B2
8549047 Beechuk et al. Oct 2013 B2
8565117 Hilt et al. Oct 2013 B2
8572391 Golan et al. Oct 2013 B2
8576712 Sabat et al. Nov 2013 B2
8577803 Chatterjee et al. Nov 2013 B2
8582450 Robesky Nov 2013 B1
8582737 Lawson et al. Nov 2013 B2
8594626 Woodson et al. Nov 2013 B1
8601136 Fahlgren et al. Dec 2013 B1
8611338 Lawson et al. Dec 2013 B2
8613102 Nath Dec 2013 B2
8621598 Lai et al. Dec 2013 B2
8649268 Lawson et al. Feb 2014 B2
8656452 Li et al. Feb 2014 B2
8667056 Proulx et al. Mar 2014 B1
8675493 Buddhikot et al. Mar 2014 B2
8688147 Nguyen et al. Apr 2014 B2
8694025 Dupray et al. Apr 2014 B2
8695077 Gerhard et al. Apr 2014 B1
8713693 Shanabrook et al. Apr 2014 B2
8728656 Takahashi et al. May 2014 B2
8737593 Lawson et al. May 2014 B2
8737962 Ballai et al. May 2014 B2
8738051 Nowack et al. May 2014 B2
8745205 Anderson et al. Jun 2014 B2
8751801 Harris et al. Jun 2014 B2
8755376 Lawson et al. Jun 2014 B2
8767925 Sureka et al. Jul 2014 B2
8781975 Bennett et al. Jul 2014 B2
8797920 Parreira Aug 2014 B2
8806024 Toba Francis et al. Aug 2014 B1
8819133 Wang Aug 2014 B2
8825746 Ravichandran et al. Sep 2014 B2
8837465 Lawson et al. Sep 2014 B2
8838707 Lawson et al. Sep 2014 B2
8843596 Goel et al. Sep 2014 B2
8855271 Brock et al. Oct 2014 B2
8861510 Fritz Oct 2014 B1
8879547 Maes Nov 2014 B2
8903938 Vermeulen et al. Dec 2014 B2
8918848 Sharma et al. Dec 2014 B2
8924489 Bleau et al. Dec 2014 B2
8938053 Cooke et al. Jan 2015 B2
8948356 Nowack et al. Feb 2015 B2
8954591 Ganesan et al. Feb 2015 B2
8964726 Lawson et al. Feb 2015 B2
8990610 Bostick et al. Mar 2015 B2
9014664 Kim et al. Apr 2015 B2
9015702 Bhat Apr 2015 B2
9031223 Smith et al. May 2015 B2
9032204 Byrd et al. May 2015 B2
9071677 Aggarwal et al. Jun 2015 B2
9137127 Nowack et al. Sep 2015 B2
9141682 Adoc, Jr. et al. Sep 2015 B1
9160696 Wilsher et al. Oct 2015 B2
9161296 Parsons et al. Oct 2015 B2
9177007 Winters et al. Nov 2015 B2
9204281 Ramprasad et al. Dec 2015 B2
9210275 Lawson et al. Dec 2015 B2
9225840 Malatack et al. Dec 2015 B2
9226217 Malatack Dec 2015 B2
9270833 Ballai et al. Feb 2016 B2
9306982 Lawson et al. Apr 2016 B2
9307094 Nowack et al. Apr 2016 B2
9325624 Malatack et al. Apr 2016 B2
9338190 Eng et al. May 2016 B2
9344573 Wolthuis et al. May 2016 B2
9356916 Kravitz et al. May 2016 B2
9378337 Kuhr Jun 2016 B2
9398622 Lawson et al. Jul 2016 B2
9456008 Lawson et al. Sep 2016 B2
9456339 Hildner et al. Sep 2016 B1
9460169 Hinton et al. Oct 2016 B2
9596274 Lawson et al. Mar 2017 B2
9628624 Wolthuis et al. Apr 2017 B2
9632875 Raichstein et al. Apr 2017 B2
9634995 Binder Apr 2017 B2
9907010 Malatack Feb 2018 B2
10440627 Malatack Oct 2019 B2
10873892 Malatack Dec 2020 B2
20010032192 Putta et al. Oct 2001 A1
20010037254 Glikman Nov 2001 A1
20010037264 Husemann et al. Nov 2001 A1
20010038624 Greenberg et al. Nov 2001 A1
20010043684 Guedalia et al. Nov 2001 A1
20010051996 Cooper et al. Dec 2001 A1
20020006124 Jimenez et al. Jan 2002 A1
20020006125 Josse et al. Jan 2002 A1
20020006193 Rodenbusch et al. Jan 2002 A1
20020020741 Sakaguchi Feb 2002 A1
20020025819 Cetusic et al. Feb 2002 A1
20020032874 Hagen et al. Mar 2002 A1
20020035539 O'Connell Mar 2002 A1
20020057777 Saito et al. May 2002 A1
20020064267 Martin et al. May 2002 A1
20020067823 Walker et al. Jun 2002 A1
20020070273 Fujll Jun 2002 A1
20020077833 Arons et al. Jun 2002 A1
20020126813 Partovi et al. Sep 2002 A1
20020133587 Ensel et al. Sep 2002 A1
20020136391 Armstrong et al. Sep 2002 A1
20020138450 Kremer Sep 2002 A1
20020147913 Lun Yip Oct 2002 A1
20020165957 Devoe et al. Nov 2002 A1
20020169988 Vandergeest et al. Nov 2002 A1
20020176378 Hamilton et al. Nov 2002 A1
20020176404 Girard Nov 2002 A1
20020177433 Bravo et al. Nov 2002 A1
20020184361 Eden Dec 2002 A1
20020198941 Gavrilescu et al. Dec 2002 A1
20030005136 Eun Jan 2003 A1
20030006137 Wei et al. Jan 2003 A1
20030012356 Zino et al. Jan 2003 A1
20030014665 Anderson et al. Jan 2003 A1
20030018830 Chen et al. Jan 2003 A1
20030023672 Vaysman Jan 2003 A1
20030026426 Wright et al. Feb 2003 A1
20030046366 Pardikar et al. Mar 2003 A1
20030051037 Sundaram et al. Mar 2003 A1
20030058884 Kallner et al. Mar 2003 A1
20030059020 Meyerson et al. Mar 2003 A1
20030060188 Gidron et al. Mar 2003 A1
20030061317 Brown et al. Mar 2003 A1
20030061404 Atwal et al. Mar 2003 A1
20030088421 Maes et al. May 2003 A1
20030097330 Hillmer et al. May 2003 A1
20030097447 Johnston May 2003 A1
20030097639 Niyogi et al. May 2003 A1
20030103620 Brown et al. Jun 2003 A1
20030123640 Roelle et al. Jul 2003 A1
20030126076 Kwok et al. Jul 2003 A1
20030149721 Alfonso-nogueiro et al. Aug 2003 A1
20030159068 Halpin et al. Aug 2003 A1
20030162506 Toshimitsu et al. Aug 2003 A1
20030169881 Niedermeyer Sep 2003 A1
20030172272 Ehlers et al. Sep 2003 A1
20030195950 Huang et al. Oct 2003 A1
20030195990 Greenblat et al. Oct 2003 A1
20030196076 Zabarski et al. Oct 2003 A1
20030204616 Billhartz et al. Oct 2003 A1
20030204756 Ransom et al. Oct 2003 A1
20030211842 Kempf et al. Nov 2003 A1
20030221125 Rolfe Nov 2003 A1
20030231647 Petrovykh Dec 2003 A1
20030233276 Pearlman et al. Dec 2003 A1
20040008635 Nelson et al. Jan 2004 A1
20040011690 Marfino et al. Jan 2004 A1
20040044953 Watkins et al. Mar 2004 A1
20040052349 Creamer et al. Mar 2004 A1
20040054632 Remy Mar 2004 A1
20040071275 Bowater et al. Apr 2004 A1
20040073519 Fast Apr 2004 A1
20040097217 Mcclain May 2004 A1
20040101122 Da Palma et al. May 2004 A1
20040102182 Reith et al. May 2004 A1
20040117788 Karaoguz et al. Jun 2004 A1
20040122685 Bunce Jun 2004 A1
20040136324 Steinberg et al. Jul 2004 A1
20040165569 Sweatman et al. Aug 2004 A1
20040172482 Weissman et al. Sep 2004 A1
20040199572 Hunt et al. Oct 2004 A1
20040203595 Singhal Oct 2004 A1
20040205101 Radhakrishnan Oct 2004 A1
20040205689 Ellens et al. Oct 2004 A1
20040213400 Golitsin et al. Oct 2004 A1
20040216058 Chavers et al. Oct 2004 A1
20040218748 Fisher Nov 2004 A1
20040219904 De Petris Nov 2004 A1
20040228469 Andrews et al. Nov 2004 A1
20040236696 Aoki et al. Nov 2004 A1
20040240649 Goel Dec 2004 A1
20050005109 Castaldi et al. Jan 2005 A1
20050005200 Matenda et al. Jan 2005 A1
20050010483 Ling Jan 2005 A1
20050015505 Kruis Jan 2005 A1
20050021626 Prajapat et al. Jan 2005 A1
20050025303 Hostetler, Jr. Feb 2005 A1
20050038772 Colrain Feb 2005 A1
20050043952 Sharma et al. Feb 2005 A1
20050047579 Mansour Mar 2005 A1
20050060411 Coulombe et al. Mar 2005 A1
20050066179 Seidlein Mar 2005 A1
20050083907 Fishler Apr 2005 A1
20050091336 Dehamer et al. Apr 2005 A1
20050091572 Gavrilescu et al. Apr 2005 A1
20050108770 Karaoguz et al. May 2005 A1
20050125251 Berger et al. Jun 2005 A1
20050125739 Thompson et al. Jun 2005 A1
20050128961 Miloslavsky et al. Jun 2005 A1
20050135578 Ress et al. Jun 2005 A1
20050141500 Bhandari et al. Jun 2005 A1
20050147088 Bao et al. Jul 2005 A1
20050176449 Cui et al. Aug 2005 A1
20050177635 Schmidt et al. Aug 2005 A1
20050181835 Lau et al. Aug 2005 A1
20050198292 Duursma et al. Sep 2005 A1
20050228680 Malik Oct 2005 A1
20050238153 Chevalier Oct 2005 A1
20050240659 Taylor Oct 2005 A1
20050243977 Creamer et al. Nov 2005 A1
20050246176 Creamer et al. Nov 2005 A1
20050273442 Bennett et al. Dec 2005 A1
20050286496 Malhotra et al. Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060008065 Longman et al. Jan 2006 A1
20060008073 Yoshizawa et al. Jan 2006 A1
20060008256 Khedouri et al. Jan 2006 A1
20060015467 Morken et al. Jan 2006 A1
20060020799 Kemshall Jan 2006 A1
20060021004 Moran et al. Jan 2006 A1
20060023676 Whitmore et al. Feb 2006 A1
20060047666 Bedi et al. Mar 2006 A1
20060067506 Flockhart et al. Mar 2006 A1
20060080415 Tu Apr 2006 A1
20060098624 Morgan et al. May 2006 A1
20060129638 Deakin Jun 2006 A1
20060143007 Koh et al. Jun 2006 A1
20060146792 Ramachandran et al. Jul 2006 A1
20060146802 Baldwin et al. Jul 2006 A1
20060168126 Costa-Requena et al. Jul 2006 A1
20060168334 Potti et al. Jul 2006 A1
20060203979 Jennings Sep 2006 A1
20060209695 Archer, Jr. et al. Sep 2006 A1
20060212865 Vincent et al. Sep 2006 A1
20060215824 Mitby et al. Sep 2006 A1
20060217823 Hussey Sep 2006 A1
20060217978 Mitby et al. Sep 2006 A1
20060222166 Ramakrishna et al. Oct 2006 A1
20060235715 Abrams et al. Oct 2006 A1
20060256816 Yarlagadda et al. Nov 2006 A1
20060262915 Marascio et al. Nov 2006 A1
20060270386 Yu et al. Nov 2006 A1
20060285489 Francisco et al. Dec 2006 A1
20070002744 Mewhinney et al. Jan 2007 A1
20070027775 Hwang Feb 2007 A1
20070036143 Alt et al. Feb 2007 A1
20070038499 Margulies et al. Feb 2007 A1
20070042755 Singhal Feb 2007 A1
20070043681 Morgan et al. Feb 2007 A1
20070050306 McQueen Mar 2007 A1
20070064672 Raghav et al. Mar 2007 A1
20070070906 Thakur Mar 2007 A1
20070070980 Phelps et al. Mar 2007 A1
20070071223 Lee et al. Mar 2007 A1
20070074174 Thornton Mar 2007 A1
20070088836 Tai et al. Apr 2007 A1
20070091907 Seshadri et al. Apr 2007 A1
20070094095 Kilby Apr 2007 A1
20070107048 Halls et al. May 2007 A1
20070112574 Greene May 2007 A1
20070112673 Protti May 2007 A1
20070116191 Bermudez et al. May 2007 A1
20070121651 Casey et al. May 2007 A1
20070124536 Carper May 2007 A1
20070127691 Lert Jun 2007 A1
20070127703 Siminoff Jun 2007 A1
20070130260 Weintraub et al. Jun 2007 A1
20070133771 Stifelman et al. Jun 2007 A1
20070147351 Dietrich et al. Jun 2007 A1
20070149166 Turcotte et al. Jun 2007 A1
20070153711 Dykas et al. Jul 2007 A1
20070167170 Fitchett et al. Jul 2007 A1
20070192629 Saito Aug 2007 A1
20070201448 Baird et al. Aug 2007 A1
20070208862 Fox et al. Sep 2007 A1
20070232284 Mason et al. Oct 2007 A1
20070239761 Baio et al. Oct 2007 A1
20070242626 Altberg et al. Oct 2007 A1
20070255828 Paradise Nov 2007 A1
20070265073 Novi et al. Nov 2007 A1
20070286180 Marquette et al. Dec 2007 A1
20070291734 Bhatia et al. Dec 2007 A1
20070291905 Halliday et al. Dec 2007 A1
20070293200 Roundtree et al. Dec 2007 A1
20070295803 Levine et al. Dec 2007 A1
20080005275 Overton et al. Jan 2008 A1
20080025320 Bangalore et al. Jan 2008 A1
20080037715 Prozeniuk et al. Feb 2008 A1
20080037746 Dufrene et al. Feb 2008 A1
20080040484 Yardley Feb 2008 A1
20080049617 Grice et al. Feb 2008 A1
20080052395 Wright et al. Feb 2008 A1
20080091843 Kulkarni Apr 2008 A1
20080101571 Harlow et al. May 2008 A1
20080104348 Kabzinski et al. May 2008 A1
20080120702 Hokimoto May 2008 A1
20080123559 Haviv et al. May 2008 A1
20080134049 Gupta et al. Jun 2008 A1
20080139166 Agarwal et al. Jun 2008 A1
20080146268 Gandhi et al. Jun 2008 A1
20080152101 Griggs Jun 2008 A1
20080154601 Stifelman et al. Jun 2008 A1
20080155029 Helbling et al. Jun 2008 A1
20080162482 Ahern et al. Jul 2008 A1
20080165708 Moore et al. Jul 2008 A1
20080172404 Cohen Jul 2008 A1
20080177883 Hanai et al. Jul 2008 A1
20080192736 Jabri et al. Aug 2008 A1
20080201426 Darcie Aug 2008 A1
20080209050 Li Aug 2008 A1
20080212945 Khedouri et al. Sep 2008 A1
20080222656 Lyman Sep 2008 A1
20080229421 Hudis et al. Sep 2008 A1
20080232574 Baluja et al. Sep 2008 A1
20080235230 Maes Sep 2008 A1
20080256224 Kaji et al. Oct 2008 A1
20080275741 Loeffen Nov 2008 A1
20080307436 Hamilton Dec 2008 A1
20080310599 Purnadi et al. Dec 2008 A1
20080313318 Vermeulen et al. Dec 2008 A1
20080316931 Qiu et al. Dec 2008 A1
20080317222 Griggs et al. Dec 2008 A1
20080317232 Couse et al. Dec 2008 A1
20080317233 Rey et al. Dec 2008 A1
20090046838 Andreasson Feb 2009 A1
20090052437 Taylor et al. Feb 2009 A1
20090052641 Taylor et al. Feb 2009 A1
20090059894 Jackson et al. Mar 2009 A1
20090063502 Coimbatore et al. Mar 2009 A1
20090074159 Goldfarb et al. Mar 2009 A1
20090075684 Cheng et al. Mar 2009 A1
20090083155 Tudor et al. Mar 2009 A1
20090089165 Sweeney Apr 2009 A1
20090089352 Davis et al. Apr 2009 A1
20090089699 Saha et al. Apr 2009 A1
20090092674 Ingram et al. Apr 2009 A1
20090093250 Jackson et al. Apr 2009 A1
20090094674 Schwartz et al. Apr 2009 A1
20090106829 Thoursie et al. Apr 2009 A1
20090125608 Werth et al. May 2009 A1
20090129573 Gavan et al. May 2009 A1
20090136011 Goel May 2009 A1
20090170496 Bourque Jul 2009 A1
20090171659 Pearce et al. Jul 2009 A1
20090171669 Engelsma et al. Jul 2009 A1
20090171752 Galvin et al. Jul 2009 A1
20090182896 Patterson et al. Jul 2009 A1
20090193433 Maes Jul 2009 A1
20090216835 Jain et al. Aug 2009 A1
20090217293 Wolber et al. Aug 2009 A1
20090022131 Chen et al. Sep 2009 A1
20090220057 Waters Sep 2009 A1
20090222341 Belwadi et al. Sep 2009 A1
20090225748 Taylor Sep 2009 A1
20090225763 Forsberg et al. Sep 2009 A1
20090228868 Drukman et al. Sep 2009 A1
20090232289 Drucker et al. Sep 2009 A1
20090234965 Viveganandhan et al. Sep 2009 A1
20090235349 Lai Sep 2009 A1
20090241135 Wong et al. Sep 2009 A1
20090252159 Lawson Oct 2009 A1
20090262725 Chen et al. Oct 2009 A1
20090276771 Nickolov Nov 2009 A1
20090288012 Hertel et al. Nov 2009 A1
20090288165 Qiu et al. Nov 2009 A1
20090300194 Ogasawara Dec 2009 A1
20090316687 Kruppa Dec 2009 A1
20090318112 Vasten Dec 2009 A1
20100027531 Kurashima Feb 2010 A1
20100037204 Lin et al. Feb 2010 A1
20100054142 Moiso et al. Mar 2010 A1
20100070424 Monk Mar 2010 A1
20100071053 Ansari et al. Mar 2010 A1
20100082513 Liu Apr 2010 A1
20100087215 Gu et al. Apr 2010 A1
20100088187 Courtney et al. Apr 2010 A1
20100088698 Krishnamurthy Apr 2010 A1
20100094758 Chamberlain et al. Apr 2010 A1
20100103845 Ulupinar et al. Apr 2010 A1
20100107222 Glasser Apr 2010 A1
20100115041 Hawkins et al. May 2010 A1
20100138501 Clinton et al. Jun 2010 A1
20100142516 Lawson et al. Jun 2010 A1
20100150139 Lawson et al. Jun 2010 A1
20100167689 Sepehri-Nik et al. Jul 2010 A1
20100188979 Thubert et al. Jul 2010 A1
20100191915 Spencer Jul 2010 A1
20100208881 Kawamura Aug 2010 A1
20100217837 Ansari et al. Aug 2010 A1
20100217982 Brown et al. Aug 2010 A1
20100232594 Lawson Sep 2010 A1
20100235539 Carter et al. Sep 2010 A1
20100250946 Korte et al. Sep 2010 A1
20100251329 Wei Sep 2010 A1
20100251340 Martin et al. Sep 2010 A1
20100265825 Blair et al. Oct 2010 A1
20100029191 Sanding et al. Nov 2010 A1
20100281108 Cohen Nov 2010 A1
20100299437 Moore Nov 2010 A1
20100312919 Lee et al. Dec 2010 A1
20100332852 Vembu et al. Dec 2010 A1
20110026516 Roberts et al. Feb 2011 A1
20110029882 Jaisinghani Feb 2011 A1
20110029981 Jaisinghani Feb 2011 A1
20110053555 Cai et al. Mar 2011 A1
20110078278 Cui et al. Mar 2011 A1
20110081008 Lawson et al. Apr 2011 A1
20110083069 Paul et al. Apr 2011 A1
20110083179 Lawson et al. Apr 2011 A1
20110093516 Geng et al. Apr 2011 A1
20110096673 Stevenson et al. Apr 2011 A1
20110110366 Moore et al. May 2011 A1
20110014981 Koren et al. Jun 2011 A1
20110131293 Mori Jun 2011 A1
20110138453 Verma et al. Jun 2011 A1
20110143714 Keast et al. Jun 2011 A1
20110145049 Hertel et al. Jun 2011 A1
20110149950 Petit-Huguenin et al. Jun 2011 A1
20110151884 Zhao Jun 2011 A1
20110158235 Senga Jun 2011 A1
20110167172 Roach et al. Jul 2011 A1
20110170505 Rajasekar et al. Jul 2011 A1
20110176537 Lawson et al. Jul 2011 A1
20110179126 Wetherell et al. Jul 2011 A1
20110211679 Mezhibovsky et al. Sep 2011 A1
20110251921 Kassaei et al. Oct 2011 A1
20110253693 Lyons et al. Oct 2011 A1
20110255675 Jasper et al. Oct 2011 A1
20110258432 Rao et al. Oct 2011 A1
20110265168 Lucovsky et al. Oct 2011 A1
20110265172 Sharma Oct 2011 A1
20110267985 Wilkinson et al. Nov 2011 A1
20110274111 Narasappa et al. Nov 2011 A1
20110276892 Jensen-Horne et al. Nov 2011 A1
20110276951 Jain Nov 2011 A1
20110280390 Lawson et al. Nov 2011 A1
20110283259 Lawson et al. Nov 2011 A1
20110289126 Aikas et al. Nov 2011 A1
20110289162 Furlong et al. Nov 2011 A1
20110299672 Chiu et al. Dec 2011 A1
20110310902 Xu Dec 2011 A1
20110313950 Nuggehalli et al. Dec 2011 A1
20110320449 Gudlavenkatasiva Dec 2011 A1
20110320550 Lawson et al. Dec 2011 A1
20120000903 Baarman et al. Jan 2012 A1
20120011274 Moreman Jan 2012 A1
20120017222 May Jan 2012 A1
20120023531 Meuninck et al. Jan 2012 A1
20120023544 Li et al. Jan 2012 A1
20120027228 Rijken et al. Feb 2012 A1
20120028602 Lisi et al. Feb 2012 A1
20120036574 Heithcock et al. Feb 2012 A1
20120039202 Song Feb 2012 A1
20120059709 Lieberman et al. Mar 2012 A1
20120079066 Li et al. Mar 2012 A1
20120083266 Vanswol et al. Apr 2012 A1
20120089572 Raichstein et al. Apr 2012 A1
20120094637 Jeyaseelan Apr 2012 A1
20120101952 Raleigh et al. Apr 2012 A1
20120110564 Ran et al. May 2012 A1
20120114112 Rauschenberger et al. May 2012 A1
20120149404 Beattie et al. Jun 2012 A1
20120166488 Kaushik et al. Jun 2012 A1
20120017361 Bleau et al. Jul 2012 A1
20120170726 Schwartz Jul 2012 A1
20120174095 Natchadalingam et al. Jul 2012 A1
20120179646 Hinton et al. Jul 2012 A1
20120179907 Byrd et al. Jul 2012 A1
20120180021 Byrd et al. Jul 2012 A1
20120180029 Hill et al. Jul 2012 A1
20120185561 Klein et al. Jul 2012 A1
20120198004 Watte Aug 2012 A1
20120201238 Lawson et al. Aug 2012 A1
20120208495 Lawson et al. Aug 2012 A1
20120221603 Kothule et al. Aug 2012 A1
20120226579 Ha et al. Sep 2012 A1
20120239757 Firstenberg et al. Sep 2012 A1
20120240226 Li Sep 2012 A1
20120246273 Bornstein et al. Sep 2012 A1
20120254828 Aiylam et al. Oct 2012 A1
20120266258 Tuchman et al. Oct 2012 A1
20120281536 Gell Nov 2012 A1
20120288082 Segall Nov 2012 A1
20120290706 Lin et al. Nov 2012 A1
20120304245 Lawson et al. Nov 2012 A1
20120304275 Ji et al. Nov 2012 A1
20120316809 Egolf et al. Dec 2012 A1
20120321058 Eng et al. Dec 2012 A1
20120321070 Smith et al. Dec 2012 A1
20130024507 Lifshits Jan 2013 A1
20130029629 Lindholm et al. Jan 2013 A1
20130031158 Salsburg Jan 2013 A1
20130031613 Shanabrook et al. Jan 2013 A1
20130035427 Kimura et al. Feb 2013 A1
20130036476 Roever et al. Feb 2013 A1
20130047232 Tuchman et al. Feb 2013 A1
20130054517 Beechuk et al. Feb 2013 A1
20130054684 Brazier et al. Feb 2013 A1
20130058262 Parreira Mar 2013 A1
20130067232 Cheung et al. Mar 2013 A1
20130067448 Sannidhanam et al. Mar 2013 A1
20130097298 Ting et al. Apr 2013 A1
20130110658 Lyman May 2013 A1
20130132573 Lindblom May 2013 A1
20130139148 Berg et al. May 2013 A1
20130156024 Burg Jun 2013 A1
20130166580 Maharajh et al. Jun 2013 A1
20130179942 Caplis et al. Jul 2013 A1
20130201909 Bosch et al. Aug 2013 A1
20130204786 Mattes et al. Aug 2013 A1
20130212603 Cooke et al. Aug 2013 A1
20130244632 Spence et al. Sep 2013 A1
20130246944 Pandiyan et al. Sep 2013 A1
20130268676 Martins et al. Oct 2013 A1
20130325934 Fausak et al. Dec 2013 A1
20130328997 Desai Dec 2013 A1
20130336472 Fahlgren et al. Dec 2013 A1
20140013400 Warshavsky et al. Jan 2014 A1
20140025503 Meyer et al. Jan 2014 A1
20140058806 Guenette et al. Feb 2014 A1
20140064467 Lawson et al. Mar 2014 A1
20140072115 Makagon et al. Mar 2014 A1
20140073291 Hildner et al. Mar 2014 A1
20140095627 Romagnino Apr 2014 A1
20140101058 Castel et al. Apr 2014 A1
20140101149 Winters et al. Apr 2014 A1
20140105372 Nowack et al. Apr 2014 A1
20140106704 Cooke et al. Apr 2014 A1
20140122600 Kim et al. May 2014 A1
20140123187 Reisman May 2014 A1
20140126715 Lum et al. May 2014 A1
20140129363 Lorah et al. May 2014 A1
20140153565 Lawson et al. Jun 2014 A1
20140185490 Holm et al. Jul 2014 A1
20140254600 Shibata et al. Sep 2014 A1
20140258481 Lundell Sep 2014 A1
20140269333 Boerjesson Sep 2014 A1
20140274086 Boerjesson et al. Sep 2014 A1
20140282473 Saraf et al. Sep 2014 A1
20140289391 Balaji et al. Sep 2014 A1
20140304054 Orun et al. Oct 2014 A1
20140317640 Harm Oct 2014 A1
20140037251 Fausak et al. Dec 2014 A1
20140355600 Lawson et al. Dec 2014 A1
20140372508 Fausak et al. Dec 2014 A1
20140372509 Fausak et al. Dec 2014 A1
20140373098 Fausak et al. Dec 2014 A1
20140379670 Kuhr Dec 2014 A1
20150004932 Kim et al. Jan 2015 A1
20150004933 Kim et al. Jan 2015 A1
20150023251 Giakoumelis et al. Jan 2015 A1
20150026477 Malatack et al. Jan 2015 A1
20150066865 Yara et al. Mar 2015 A1
20150081918 Nowack et al. Mar 2015 A1
20150082378 Collison Mar 2015 A1
20150100634 He et al. Apr 2015 A1
20150119050 Liao et al. Apr 2015 A1
20150181631 Lee et al. Jun 2015 A1
20150236905 Bellan et al. Aug 2015 A1
20150281294 Nur et al. Oct 2015 A1
20150304934 Malatack Oct 2015 A1
20150365480 Soto et al. Dec 2015 A1
20150370788 Bareket et al. Dec 2015 A1
20150381580 Graham, III et al. Dec 2015 A1
20160011758 Dornbush et al. Jan 2016 A1
20160028695 Binder Jan 2016 A1
20160073319 Malatack Mar 2016 A1
20160077693 Meyer et al. Mar 2016 A1
20160112475 Lawson et al. Apr 2016 A1
20160112521 Lawson et al. Apr 2016 A1
20160119291 Zollinger et al. Apr 2016 A1
20160127254 Kumar et al. May 2016 A1
20160149956 Birnbaum et al. May 2016 A1
20160162172 Rathod Jun 2016 A1
20160205519 Patel et al. Jul 2016 A1
20160226937 Patel et al. Aug 2016 A1
20160226979 Lancaster et al. Aug 2016 A1
20160234391 Wolthuis et al. Aug 2016 A1
20160239770 Batabyal et al. Aug 2016 A1
20170339283 Chaudhary et al. Nov 2017 A1
20180139677 Malatack May 2018 A1
20200053623 Malatack Feb 2020 A1
20210136652 Malatack May 2021 A1
Foreign Referenced Citations (28)
Number Date Country
1684587 Mar 1971 DE
0282126 Sep 1988 EP
1387239 Feb 2004 EP
1464418 Oct 2004 EP
1522922 Apr 2005 EP
1770586 Apr 2007 EP
2053869 Apr 2009 EP
2134107 Sep 1999 ES
2362489 Nov 2001 GB
10294788 Nov 1998 JP
2004166000 Jun 2004 JP
2004220118 Aug 2004 JP
2006319914 Nov 2006 JP
WO-9732448 Sep 1997 WO
WO-0131483 May 2001 WO
WO-0167219 Sep 2001 WO
WO-0219593 Mar 2002 WO
WO-0235486 May 2002 WO
WO-02052879 Jul 2002 WO
WO-2002087804 Nov 2002 WO
WO-03063411 Jul 2003 WO
WO-2006037492 Apr 2006 WO
WO-2009018489 Feb 2009 WO
WO-2009124223 Oct 2009 WO
WO-2010037064 Apr 2010 WO
WO-2010040010 Apr 2010 WO
WO-2010101935 Sep 2010 WO
WO-2011091085 Jul 2011 WO
Non-Patent Literature Citations (152)
Entry
“[Proposed] Order Granting Defendant Telesign Corporation's Motion to Dismiss”, Twilio, Inc., v. Telesign Corporation, Case No. 5:16-cv-6925-LHK, Filed Jan. 25, 2017, 2 pgs.
“ActivCard”, [Online]. Retrieved from the Internet: <URL: http://www.activcard.com:80/products/client/tokens/token.pdf>, (1998), 26 pgs.
“Aepona's API Monetization Platform Wins Best of 4G Awards for Mobile Cloud Enabler”, 4G World 2012 Conference & Expo, [Online]. [Accessed Nov. 5, 2015]. Retrieved from the Internet: <URL: https://www.realwire.com/releases/%20Aeponas-API-Monetization>, (Oct. 30, 2012), 4 pgs.
“U.S. Appl. No. 14/690,252, Notice of Allowance dated Aug. 31, 2015”, 10 pgs.
“U.S. Appl. No. 14/944,869, Corrected Notice of Allowability dated Dec. 20, 2017”, 2 pgs.
“U.S. Appl. No. 14/944,869, Examiner Interview Summary dated Sep. 15, 2017”, 3 pgs.
“U.S. Appl. No. 14/944,869, Non Final Office Action dated Jun. 16, 2017”, 15 pgs.
“U.S. Appl. No. 14/944,869, Notice of Allowance dated Oct. 13, 2017”, 8 pgs.
“U.S. Appl. No. 14/944,869, Response filed Sep. 12, 2017 to Non Final Office Action dated Jun. 16, 2017”, 12 pgs.
“U.S. Appl. No. 15/871,833, Non Final Office Action dated Jun. 8, 2018”, 21 pgs.
“U.S. Appl. No. 15/871,833, Notice of Allowance dated Feb. 25, 2019”, 5 pgs.
“U.S. Appl. No. 15/871,833, Notice of Allowance dated May 24, 2019”, 5 pgs.
“U.S. Appl. No. 15/871,833, Notice of Allowance dated Nov. 7, 2018”, 8 pgs.
“U.S. Appl. No. 15/871,833, Response filed Sep. 26, 2018 to Non Final Office Action dated Jun. 8, 2018”, 6 pgs.
“U.S. Appl. No. 16/546,019, Examiner Interview Summary dated Jul. 31, 2020”, 3 pgs.
“U.S. Appl. No. 16/546,019, Non Final Office Action dated Mar. 23, 2020”, 19 pgs.
“U.S. Appl. No. 16/546,019, Notice of Allowance dated Aug. 11, 2020”, 8 pgs.
“U.S. Appl. No. 16/546,019, Preliminary Amendment filed Dec. 16, 2019”, 6 pgs.
“U.S. Appl. No. 16/546,019, Response filed Jul. 23, 2020 to Non Final Office Action dated Mar. 23, 2020”, 12 pgs.
“Archive Microsoft Office 365 Email I Retain Unified Archiving”, GWAVA, Inc., Montreal, Canada, [Online] Retrieved from the Internet: <URL: http://www.gwava.com/Retain/Retain for_Office_365.php>, (2015), 4 pgs.
“ASB Bank selects RSA Mobile two-factor authentication for Internet security; Leading New Zealand bank to integrate RSA Mobile solution to expand business opportunities and enhance”, RSA Security, M2 Presswire ; Coventry [Coventry], (Jun. 23, 2003), 4 pgs.
“Authenex”, [Online]. Retrieved from the Internet: <URL: http://www.authenex.com:80/isaserver/pdf/psasas.pdf>, (2003), 34 pgs.
“Aventail partners with phone-based two-factor authentication company; Aventail and SecurEnvoy join forces to offer easy-to-use authentication from mobile devices for secure, remote access”, Aventail—M2 Presswire ; Coventry [Coventry], (Dec. 7, 2005), 4 pgs.
“Carrierinfo—Product Guide”, MapInfo Corporation, (2005), 36 pgs.
“CDyne Phone Verifier”, Background_Web_Archive, (2005), 4 pgs.
“Classifying m-payments—a user-centric model”, Proceedings of the Third International Conference on Mobile Business, M-Business, (2004), 11 pgs.
“Complaint for Patent Infringement”, Telinit Technologies, LLC v. Twilio Inc 2:12-cv-663, (Oct. 12, 2012), 17 pgs.
“Complaint for Patent Infringement—Jury Trial Demanded”, Twilio Inc., vs. Telesign Corporation, Case 3:16-cv-06925 Filed Dec. 1, 2016, 240 pgs.
“Crypto-Tokens”, CryptoCard, (2003), 12 pgs.
“Cyber Locator”, (1999), 7 pgs.
“Declaration of Jesse J. Camacho in Support of Defendant Telesign Corporation's Reply to Motion to Dismiss”, Twilio, Inc., v. Telesign Corporation, Case No. 5:16-cv-6925-LHK, Filed Feb. 15, 2017, 17 pgs.
“Defendant Telesign Corporation's Notice of Motion and Motion to Dismiss; Memorandum of Points and Authorities in Support Thereof”, Twilio, Inc., v. Telesign Corporation, Case No. 5:16-cv-6925-LHK, Filed Jan. 25, 2017, 32 pgs.
“Defendant Telesign Corporation's Reply in Support of Motion to Dismiss”, Twilio, Inc., v. Telesign Corporation, Case No. 5:16-cv-6925-LHK, Filed Feb. 15, 2017, 22 pgs.
“DIGIPASS® GO 1”, Vasco, (2001), 36 pgs.
“Diversinet”, MobiSecure, 2 pgs.
“Entrust”, Entrust TruePass™ Product Portfolio, 28 pgs.
“Ethernet to Token Ring Bridge”, Black Box Corporation, [Online] Retrieved from the Internet: <URL: http://blackboxcanada.com/resource/files/productdetails/17044.pdf>, (Oct. 1999), 2 pgs.
“EToken”, Aladdin Knowledge Systems, [Online]. Retrieved from the Internet: <URL: http://www.aladdin.com:80/etoken/products.asp>, (2005), 20 pgs.
“File History U.S. Pat. No. 8,351,369”, 295 pgs.
“File History U.S. Pat. No. 8,462,920 B2”, 322 pgs.
“File History U.S. Pat. No. 8,737,593”, 261 pgs.
“File History U.S. Pat. No. 8,755,376 B2”, 1084 pgs.
“Final Written Decision 35 U.S.C. § 318(a)”, Telesign Corporation v. Twilio Inc., Case IPR2017-01976, U.S. Pat. No. 8,837,465B2, (Mar. 6, 2019), 42 pgs.
“Final Written Decision 35 U.S.C. § 318(a)”, Telesign Corporation v. Twilio Inc., Case IPR2017-01977, U.S. Pat. No. 8,755,376B2, (Mar. 6, 2019), 51 pgs.
“Fone Finder”, (Feb. 4, 2005), 12 pgs.
“IKey 2032”, Personal USB Authentication and Encryption Token, [Online] Retrieved from the Internet : <http://www.safenet-inc.com:80/library/3/iKey_2032.pdf>, (2005), 5 pgs.
“International Numbering Plans”, Background_Web_Archive, (2005), 1 pg.
“Maag Holdings Selects RSA Security to Help Protect its Real Estate Information System”, (2003), 5 pgs.
“Microsoft Targets Mobile Developers with Tools and Devices”, Mobile Business Advisor, (2003), 1 pg.
“Multi-Factor Authentication Employing Voice Biometrics and Existing Infrastructures”, Background_Web_Archive_Authentify, (2005), 15 pgs.
“Open Service Access (OSA); Parlay X Web Services; Part 11: Audio Call (Parlay X 2)”, ETSI ES 202 391-11 V1.2.1, (Dec. 2006), 19 pgs.
“Open Service Access (OSA); Parlay X Web Services; Part 2: Third Party Call (Parlay X 2)”, ETSI ES 202 391-2 V1.2.1, (Dec. 2006), 18 pgs.
“Open Service Access (OSA); Parlay X Web Services; Part 3: Call Notification (Parlay X 2)”, ETSI ES 202 391-3 V1.2.1, (Dec. 2006), 23 pgs.
“Open Service Access (OSA); Parlay X Web Services; Part 4: Short Messaging (Parlay X 2)”, ETSI ES 202 391-4 V1.2.1, (Dec. 2006), 26 pgs.
“Open Service Access (OSA); Parlay X Web Services; Part 7: Account Management (Parlay X 2)”, ETSI ES 202 391-7 V1.2.1, (Dec. 2006), 22 pgs.
“Order Granting in Part and Denying in Part Defendant's Motion to Dismiss”, Twilio, Inc., v. Telesign Corporation, Case No. 16-CV-06925-LHK, Re: Dkt. No. 31, Filed Mar. 31, 2017, 58 pgs.
“Order Granting in Part Defendant's Motion to Dismiss”, Twilio, Inc., v. Telesign Corporation, Case No. 16-CV-06925-LHK, Re: Dkt. No. 31, Filed Apr. 17, 2017, 54 pgs.
“PhoneID Fraud Prevention”, Delivers real-time security intelligence and data on phone numbers around the world to enable greater assurance and security against fraudulent activity, (Jun. 15, 2015), 7 pgs.
“PhoneID Score”, PhoneID Score—TeleSign REST API v1.50 documentation, (Jun. 16, 2015), 10 pgs.
“PhoneID Standard”, PhoneID Standard—TeleSign REST API v1.50 documentation, (Jun. 16, 2015), 1-10.
“Plaintiff's Opposition to Defendant's Motion to Dismiss”, Twilio Inc., vs. Telesign Corporation, Case No. 5:16-CV-06925-LHK, Filed Feb. 8, 2017, 28 pgs.
“Q3 2002 RSA Security Earnings Conference Call—Final”, Dow Jones, (Oct. 16, 2002), 12 pgs.
“Q4 2002 RSA Security Earnings Conference Call—Final”, Dow Jones, (Jan. 23, 2003), 8 pgs.
“Requests”, TeleSign REST API v1.51 documentation, (Nov. 3, 2015), 1 pg.
“Resources”, TeleSign REST API v1.51 documentation, (Nov. 2, 2015), 2 pgs.
“Responses”, TeleSign REST API v1.51 documentation, (Nov. 3, 2015), 1 pg.
“Risk factor put on hold—Security Solutions—Data Under Siege—A special advertising report”, The Australian—Dow Jones, (Sep. 24, 2002), 1 pg.
“RSA launches authentication solutions”, The China Post—Dow Jones, (Sep. 14, 2002), 2 pgs.
“RSA Mobile”, Two-factor authentication for a mobile world, (Jun. 12, 2004), 6 pgs.
“RSA SecurID® Authentication”, A Better Value for a Better ROI, (2003), 34 pgs.
“RSA Security and iRevolution Join Forces to Offer Two-Factor Authentication For Companies Using Microsoft(R) Passport”, PR Newswire; New York, (Oct. 8, 2002), 4 pgs.
“RSA Security and Nocom launch new service in Scandinavia: Flexible and secure solution for user identification”, NASDAQ OMX—Dow Jones, (Sep. 9, 2003), 2 pgs.
“RSA Security Announces Third Quarter Results”, PR Newswire—Dow Jones, (Oct. 16, 2002), 10 pgs.
“RSA Security Helps Banca Popolare di Sondrio (Suisse) Differentiate Itself from the Competition”, PR Newswire ; New York, (Apr. 15, 2003), 4 pgs.
“RSA Security technology helps make an innovative information management solution even more compelling to the marketplace”, Maag Holdings Ltd., (2004), 3 pgs.
“RSA Security Unveils Innovative Two-Factor Authentication Solution for the Consumer Market”, PR Newswire ; New York, (Sep. 4, 2002), 5 pgs.
“RSA Security uses phones as security token. (Business)”, RCR Wireless News. 21.36, Academic OneFile, [Online] Retrieved from the Internet : <http://link.galegroup.com/apps/doc/A91672329/AONE?u=otta35732&sid=AONE&xid=2f576581>, (Sep. 9, 2002), 1 pg.
“RSA(R) Mobile and RSA SecurID(R) Two-Factor Authentication Products Recognized by SC Magazine as Best of 2002”, PR Newswire—Dow Jones, (Dec. 12, 2002), 2 pgs.
“Saintlogin”, Background_Web_Archive, (2005), 3 pgs.
“Score( )—TeleSign Python SDK documentation”, score( ), (Jun. 16, 2015), 2 pgs.
“Scottrade Selects PassMarkfor Strong Mutual Authentication”, PassMark, (Oct. 11, 2005), 8 pgs.
“SecurAccess Overview Video”, Securenvoy—Date for Overview.swf, [Online]. [Accessed Jan. 20, 2005]. Retrieved from the Internet: <URL: www.securenvoy.com/animations/Overview.swf>, 14 pgs.
“SecurAccess User Guide Video”, Securenvoy—Date for UserGuide.swf, [Online]. [Accessed Sep. 30, 2004]. Retrieved from the Internet: <URL: http://www.securenvoy.com/animations/UserGuide.swf>, 17 pgs.
“SecurAccess Video”, Securenvoy—Date for SecurAccess.swf, [Online]. [Accessed May 5, 2006]. Retrieved from the Internet: <URL: http://www.securenvoy.com:80/animations/SecurAccess.swf>, 8 pgs.
“Securenvoy”, Secure Email, (2004), 6 pgs.
“SecurEnvoy SecurAccess”, Protecting Access from outside the perimeter, (2005), 6 pgs.
“SecurMail and SecurAccess”, Securenvoy, 1 pg.
“Siemens”, System Description HiPath 3000 Version 1.2-3.0, (2002), 762 pgs.
“Simple, secure access control for the Web”, using SafeWord™ PremierAccess, (Nov. 2001), 46 pgs.
“Smart Verify | TeleSign”, Smart Verify, (Nov. 3, 2015), 9 pgs.
“SMS Authentication”, RSA Security Inc. Published in ComputerWorld Sep. 23, 2002, Technology, p. 38, (Sep. 23, 2002), 1 pg.
“SMS Verify—TeleSign”, SMS Verify, (Nov. 3, 2015), 8 pgs.
“Taking security online to new level”, Dow Jones, (2005), 2 pgs.
“TeleSign's PhoneID Score Named a New Products Winner”, TeleSign, (Jun. 27, 2014), 4 pgs.
“Trailblazers: RSA Security (specialises in access management tools for internal security)”, Dow Jones, (2003), 1 pg.
“Twilio Cloud Communications—APIs for Voice, VoIP, and Text Messaging”, Twilio, [Online] Retrieved from the Internet: <URL: http://www.twilio.com/docs/api/rest/call-feedback>, (Jun. 24, 2015), 8 pgs.
“Unified Authentication”, Verisign, (Mar. 21, 2005), 196 pgs.
“Verify Registration—TeleSign REST API v1.51 documentation”, Verify Registration, (Nov. 3, 2015), 7 pgs.
“Voice Verify With Call Forward Detection”, TeleSign Verification APIs, (2015), 2 pgs.
“What's a Mobile Phone, anyway?”, Australian PC World; Off Camera Fun, (Jun. 2005), 1 pg.
“Wifi WatchDog”, Newbury Networks, (2006), 11 pgs.
Abu-Lebdeh, et al., “A 3GPP Evolved Packet Core-Based Architecture for QoS-Enabled Mobile Video Surveillance Applications”, 2012 Third International Conference on the Network of the Future {NOF), (Nov. 21-23, 2012), 1-6.
Barakovic, Sabina, et al., “Survey and Challenges of QoE Management Issues in Wireless Networks”, Hindawi Publishing Corporation, (2012), 1-29.
Bennett, Robert, “American business has to start thinking of data with the same reverence that it thinks of money!”, Griffin Technologies, LLC. White Paper, (Oct. 2001), 6 pgs.
Berners-Lee, T., “RFC 3986: Uniform Resource Identifier (URI): Generic Syntax”, The Internet Society, [Online]. Retrieved from the Internet: <URL: http://tools.ietf.org/html/rfc3986>, (Jan. 2005), 57 pgs.
Curphey, Mark, et al., “A Guide to Building Secure Web Applications: The Open Web Application Security Project”, (2002), 70 pgs.
Doyle, Eric, “RSA uses SMS to offer secure Web access anywhere”, (2002), 1 pg.
Fonseca, Brian, “RSA and Entrust target Web services security returns”, Dow Jones, (Oct. 8, 2002), 2 pgs.
Forbes, Bob, “The Fifth Factor: Behavior Profiling Opens New Possibilities For Web Access Control”, Data Security Management, 8 pgs.
Fred, Piper, et al., “Identities and authentication”, Cyber Trust & Crime Prevention Project, (Apr. 6, 2004), 1-15.
Hill, Kashmir, “Your Phone Number Is Going To Get A Reputation Score Forbes”, Forbes, (Jun. 16, 2015), 4 pgs.
Hong, Sungjune, et al., “The semantic PARLAY for 4G network”, 2nd International Conference on Mobile Technology, Applications and Systems. IEEE, (2005), 5 pgs.
Jamieson, Rodger, et al., “A Framework for Security, Control and Assurance of Knowledge Management Systems”, School of Information Systems, Technology and Management, University of New South Wales, Sydney, Australia, Chapter 25, (2004), 29 pgs.
Jones, Dow, “Awakens To The Fact That Prevention Is Better Than Cure”, India Inc., (Mar. 31, 2003), 1 pg.
Jones, Dow, “Event Brief of Q3 2002 RSA Security Earnings Conference Call—Final”, (Oct. 16, 2002), 5 pgs.
Jones, Dow, “Make sure you're secure”, Bristol Evening Post, (Oct. 25, 2004), 2 pgs.
Jones, Dow, “Regulatory News Service (RNS)”, REG-iRevolution Group Announces Partnership, (Oct. 9, 2002), 2 pgs.
Jörg, Tacke, et al., “Two-Factor Web Authentication Via Voice”, VOICE.TRUST AG1, (2003), 88 pgs.
Kemshall, A., et al., “Two Factor Authentication”, securenvoy_White Paper, (2005), 8 pgs.
Kim, Hwa-Jong, et al., “In-Service Feedback QoE Framework”, 2010 Third International Conference on Communication Theory. Reliability and Quality of Service, (2010), 135-138.
Kotanchik, J, “Kerberos And Two-Factor Authentication”, (Mar. 1994), 6 pgs.
Kumar, Bharat, et al., “Breaking into Cyberia”, Business Line, Dow Jones, (Nov. 5, 2003), 4 pgs.
Lebihan, Rachel, “New online banking security plan in doubt”, The Australian Financial Review, Dow Jones, (Aug. 2, 2004), 2 pgs.
Lebihan, Rachel, “Still Fishing For Answer To Internet Scams”, The Australian Financial Review, Dow Jones, (2004), 3 pgs.
Louise, Richardson, “RSA Security”, Dow Jones, (Dec. 1, 2003), 2 pgs.
Mallery, John, “Who Are You? You just can't trust a username/password combo to verify user identity. It's time for two-factor”, Security Technology & Design, (Nov. 1, 2005), 4 pgs.
Matos, et al., “Quality of Experience-based Routing in Multi-Service Wireless Mesh Networks”, Realizing Advanced Video Optimized Wireless Networks. IEEE, (2012), 7060-7065.
McCue, Andy, “Networks—ISP trials security via SMS”, Computing, (Sep. 12, 2002), 1 pg.
McCue, Andy, “SMS Secures Online Apps”, ITWEEK, Dow Jones, (Sep. 9, 2002), 2 pgs.
McCue, Andy, “United Utilities pilots SMS security software”, VNUnet Newswire, Dow Jones, (Sep. 4, 2002), 2 pgs.
Messmer, Ellen, “HIPAA deadline ups healthcare anxiety”, Network World, (Mar. 10, 2003), 1 pg.
Mills, Kelly, “Security merger to boost banks”, The Australian—Dow Jones, (2005), 2 pgs.
Mizuno, Shintaro, et al., “Authentication Using Multiple Communication Channels”, (Nov. 11, 2005), 9 pgs.
Mu, Mu, et al., “Quality Evaluation in Peer-to-Peer IPTV Services”, Data Traffic and Monitoring Analysis, LNCS 7754, 302-319, (2013), 18 pgs.
Nguyan, Thien-Loc, “National Identification Systems”, (Jun. 2003), 156 pgs.
Nystrom, M, “The SecurID(r) SASL Mechanism”, RSA Laboratories, (Apr. 2000), 11 pgs.
O'Gorman, “Comparing Passwords, Tokens, and Biometrics for User Authentication”, In Proceedings: The IEEE, vol. 91, Issue 12, (Dec. 2003), 20 pgs.
O'Gorman, Lawrence, et al., “Call Center Customer Verification by Query-Directed Passwords”, 15 pgs.
Parthasarathy, P R, “Resolving Webuser on the Fly”, (Jun. 2002), 6 pgs.
Pullar-Strecker, Tom, “Asb Shuts Out Online Fraud”, (Sep. 27, 2004), 2 pgs.
Pullar-Strecker, Tom, “Auckland Security Firm Turns Heads”, (May 30, 2005), 3 pgs.
Pullar-Strecker, Tom, “NZ bank adds security online”, (Nov. 8, 2004), 1 pg.
Pullar-Strecker, Tom, et al., “NZ start-up plans authentication trial”, (Aug. 23, 2004), 3 pgs.
Scarlet, Pruitt, “RSA secures mobile access to Web apps”, Dow Jones—InfoWorld Daily News, (Sep. 4, 2002), 1 pg.
Subramanya, et al., “Digital Signatures”, IEEE Potentials, (Mar./Apr. 2006), 5-8.
Tran, et al., “User to User adaptive routing based on QoE”, ICNS 2011: The Seventh International Conference on Networking and Services, (2011), 170-177.
Tynan, Dan, “What's a Cell Phone, Anyway?”, PC World.Com ; San Francisco, (Mar. 23, 2005), 3 pgs.
Wall, Matthew, “Fight business marauders the high-tech way”, Sunday Times ; London (UK), (Sep. 18, 2005), 4 pgs.
Wolfe, Daniel, “For PassMark, Image Is Everything in Phish Foiling”, American Banker. 169.43, (Mar. 4, 2004), 2 pgs.
Wright, Rob, “Paramount Protection Vendors have devised new ways to safeguard information”, VARbusiness, (Oct. 28, 2002), 4 pgs.
Wu, Min, et al., “Secure Web Authentication with Mobile Phones”, DIMACS Workshop on Usable Privacy and Security Software, (Jul. 2004), 5 pgs.
Wullems, Chris, et al., “Enhancing the Security of Internet Applications using location : A New Model for Tamper-resistant GSM Location”, Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC'03), (2003), 9 pgs.
Related Publications (1)
Number Date Country
20210136652 A1 May 2021 US
Provisional Applications (1)
Number Date Country
61980749 Apr 2014 US
Continuations (4)
Number Date Country
Parent 16546019 Aug 2019 US
Child 17095122 US
Parent 15871833 Jan 2018 US
Child 16546019 US
Parent 14944869 Nov 2015 US
Child 15871833 US
Parent 14690252 Apr 2015 US
Child 14944869 US