The embodiments described herein relate to systems and methods for enabling the detection of the production of fluids, such as hydrocarbons, from an isolated zone of a wellbore and potentially the stimulation of the isolated zone of the wellbore.
Various tools may be conveyed on a tubing string into a wellbore for the diagnostic and/or treatment of a portion of the wellbore. Multiple packers, or a single a straddle packer, may be used to hydraulically isolate a portion of a wellbore. Packers are often actuated to isolate a portion of a wellbore by movement of the tubing string or may be actuated hydraulically. Movement of the tubing string may limit the actuation of a single isolator within the wellbore. Thus, a single isolator may need to be set and unset multiple times to isolate more than one location within a wellbore. It may also be required to run different tools into a wellbore in order to isolate a portion of the wellbore, treat a portion of the wellbore, and/or re-fracture a portion of the wellbore. Each trip into the wellbore increases the production costs and may require large amounts of time during which the wellbore may not be producing hydrocarbons.
The present disclosure is directed to systems and methods for enabling the detection of the production of fluids, such as hydrocarbons, from an isolated zone of a wellbore, evaluate the zone, design a treatment program, and stimulate the zone that overcomes some of the problems and disadvantages discussed above.
One embodiment is a system to detect fluid production from an isolated zone of a wellbore comprising a tubing string and a first isolator connected to the tubing string. The first isolator includes at least one first sealing element, a first mandrel, and at least one first memory shape element positioned between the at least one first sealing element and the first mandrel, wherein the at least one first memory shape element may be actuated between a first shape and a second shape to move the at least one first sealing element away from the first mandrel. The system comprises a second isolator connected to the tubing string, the second isolator includes at least one second sealing element, a second mandrel, and at least one second memory shape element positioned between the at least one second sealing element and the second mandrel, wherein the at least one second memory shape element may be actuated between a first shape and a second shape to move the at least one second sealing element away from the second mandrel and wherein a portion of the wellbore is substantially isolated when the at least one first memory shape element and the at least one second memory shape element are each actuated to the second shape. The system may comprise a first sensor configured to detect a production flow from a wellbore and
The at least one first sealing element may comprise a first plurality of sealing element, the at least one first memory shape element may comprises a first plurality of memory shape elements, the at least one second sealing element may comprise a second plurality of sealing elements, and the at least one second memory shape element may comprise a second plurality of memory shape elements. The system may comprise a port between the first isolator and the second isolator, the port being in fluid communication with an interior of the tubing string and the first sensor may be configured to detect the production flow from the isolated portion of the wellbore through the tubing string. The system may comprise a second sensor positioned between the first isolator and the second isolator, the second sensor being configured to monitor a pressure of the isolated portion of the wellbore while the first plurality of memory shape elements and the second plurality of memory shape elements are each actuated to the second shape.
The first and second plurality of sealing elements may be configured in a substantially circular configuration and the first and second plurality of sealing elements may have a first diameter when the first and second plurality of shape memory elements are in their respective first shape and a second diameter when the first and second plurality of shape memory elements are in their respective second shape. The second diameter may be larger than the first diameter. The first and second plurality of memory shape elements may actuate from their respective first shape to their respective second shape at a predetermined first temperature. The first and second plurality of memory shape elements may actuate from their respective second shape to their respective first shape at a predetermined second temperature. The first temperature may be at least approximately five degrees Celsius greater than the second temperature. The first and second plurality of memory shape elements may comprise a memory shape polymer and may actuate from their respective first shape to their respective second shape upon contact with an actuating fluid.
One embodiment is a method of isolating a portion of a wellbore comprising positioning an isolator adjacent a first portion of a wellbore, the isolator comprising a first plurality of shape memory elements operatively connected to a first plurality of sealing elements and a second plurality of shape memory elements operatively connected to a second plurality of sealing elements, wherein the first and second plurality of shape memory elements are in a respective first shape. The method comprises actuating the first and second plurality of shape memory elements of the isolator to move to a respective second shape, wherein the actuation of the first and second plurality of shape memory elements to their respective second shapes engages the first and second plurality of sealing elements against the wellbore to isolate the first portion of the wellbore. The method comprising enabling detection of a production of fluids from the isolated first portion of the wellbore.
The detection of the production of fluids from the isolated first portion of the wellbore may comprise measuring a fluid flow through a tubing string fluidly connected to the isolated first portion of the wellbore via a port in the isolator. The method may comprise treating the isolated first portion of the wellbore by pumping fluid through the tubing string and out the port in the isolator. Treating the isolated first portion of the wellbore may comprise re-fracturing a wellbore formation. Treating the isolated first portion of the wellbore may comprise restimulation of a wellbore formation. The detection of the production of fluids from the isolated first portion of the wellbore may comprise detecting a change in the production of fluid from the wellbore due to the isolation of the first portion of the wellbore. The method may include monitoring a pressure of the first portion of the wellbore while it is substantially isolated by the isolator.
Actuating the first and second plurality of shape memory elements may comprise heating the first and second plurality of shape memory elements to at least a first predetermined temperature, wherein the first and second plurality of shape memory elements actuates to their respective second shape at approximately the first predetermined temperature. Heating the first and second plurality of shape memory elements may comprise applying an electric current. The electric current may be applied via a battery located within the wellbore. Heating the first and second plurality of shape memory elements may comprise pumping heated fluid down the wellbore. Heating the first and second plurality of shape memory elements may comprise transmitting radio frequency waves or microwaves into the wellbore. The method may include cooling the first and second plurality of shape memory elements to a second predetermined temperature, wherein each of the shape memory elements actuates back to their respective first shape at approximately the second predetermined temperature. The first predetermined temperature may be at least approximately five degrees Celsius greater than the second predetermined temperature. Exposure of the first and second plurality of shape memory elements to a fluid pumped down the wellbore may actuate the first and second plurality of shape memory elements.
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Rather, the intention is to cover all modifications, equivalents and alternatives falling within the scope of the invention as defined by the appended claims.
The isolator 100 may include a mandrel 145 having an inner diameter 101 and an outer ring of components 125 with an inner ring of components 135. The mandrel 145, outer components 125, and inner components 135 may be solid components and may be comprises of various hard materials, such as metal. The outer components 125 may be connected together with a plurality of deformable elements 110 to form a single ring. The deformable elements 110 may be comprised of various deformable materials, such as rubber, as would be appreciated by one or ordinary skill in the art. A plurality of sealing elements 120 may be connected to the exterior surfaces of the outer components 125 as shown in
The outer elements 125 are connected to the exterior of the mandrel 145 via a first plurality of shape memory elements 150. Likewise, the inner elements 135 are connected to the exterior of the mandrel 145 via a second plurality of shape memory elements 150. The shape memory elements 150 are comprised of various shape memory alloys that move from a first shape to a second shape upon reaching a predetermined temperature. As shown in
The isolator 100 may not include inner components 135 and outer components 125 that are both connected to the mandrel 145. Instead, the memory shape elements 150 may connect the sealing elements 110 and 120 in various configurations as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure. For example, a single ring of solid members may be connected to the mandrel 145 via the shape memory elements 150 with sealing elements 110 connected to the exterior of the single ring of solid members.
The shape memory elements 150 may be heated in various ways to actuate to the second shape as would be appreciated by one of ordinary skill in the art. For example, fluid may be pumped down the wellbore to heat the shape memory elements 150; the elements 150 could be heated via electricity from either the surface or a downhole battery; the elements 150 could be heated via the transmission of microwaves, electromagnetic radiation, or a radio frequency to the isolator 100; and/or various other mechanisms. Alternatively, the shape memory elements 150 may be comprised of a shape memory polymer that is actuated from a first shape to a second shape upon contact of a specific fluid. Thus, the specified fluid may be pumped and retained in the wellbore when it is desirous to isolate a portion of a wellbore using one or two isolators comprising shape memory elements 150.
The shape memory elements 150 may be comprises of various materials that move between different shapes depending on the temperature of the element 150. The shape memory elements 150 may be configured so that when the elements 150 are heated to a first temperature the element 150 may move from a first or initial shape to a second shape, which may be used to engage the sealing elements 110 and 120 of the isolator 100 with a wellbore to create a seal. The engagement of the sealing elements 110 and 120 of the isolator 100 may substantially isolate or restrict a portion of the wellbore. The elements 150 may be configured so that the element remains in the second shape until the temperature cools to a second temperature at which the elements 150 revert back to their first or initial shape. The movement back to the first or initial shape may be used to unset the isolator 100 from the wellbore. The material of the memory shape elements 150 may be configured so that the second temperature is at least 5 degrees Celsius lower than the first temperature. As discussed above, the shape memory elements 150 may be comprised of various materials as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure. For example, the shape memory elements 150 may be comprised of, but not limited to, nickel titanium alloy, nickel titanium zirconium alloy, titanium nickel copper alloy, copper aluminum manganese alloy, iron nickel cobalt aluminum tantalum boron alloy, copper aluminum niobium alloy, nickel manganese gallium alloy, zirconium copper alloy, polycrystalline iron nickel cobalt aluminum alloy, polycrystalline iron manganese aluminum nickel alloy, polycrystalline nickel titanium zirconium niobium alloy, titanium hafnium nickel rhenium alloy, iron manganese alloy, zirconium copper alloy, iron manganese cobalt alloy, or cobalt aluminum alloy.
A communication line 15 within the tubing string 7 may connect a sensor 25 positioned within the wellbore 1 to the surface. The sensor 25 may be a pressure sensor connected to the exterior of the tubing string 6 between the lower isolator 100A and the upper isolator 100B. A sensor 35 positioned at the surface may be used to monitor the production from the wellbore 1. The isolators 100A and 100B shown in
The isolation of a portion of the wellbore 1 may be used to detect the production being production by the isolated portion of the wellbore 1. For example, the production from the wellbore 1 may be measured prior to using the isolators 100A and 100B to hydraulically isolate a portion of the wellbore 1. The production from the wellbore may then be measured again after the portion of the wellbore 1 is hydraulically isolated to detect the amount of production being produced from the isolated portion. The portion of the wellbore 1 below the isolated portion of the wellbore may be produced up the tubing string 7 and the portion of the wellbore 1 above the isolated portion of the wellbore may be produced up the annulus as indicated by the arrows in
In an embodiment, the tubing string 6 may include a port 105 positioned between the lower and upper isolators 100A and 100B as shown in
In step 230, the production of the isolated portion of the wellbore is detected. The production from the isolated portion of the wellbore may be produced and measured through the tubing string. Alternatively, the production may be measured before and after to determine the estimated production from the isolated portion of the wellbore. Pressure readings of the isolated portion of the wellbore may aid in determining the estimated production of the first portion of the wellbore. The first portion of the wellbore may optionally be treated in step 240 and/or the first portion of the wellbore may optionally be re-fractured in step 250. The shape memory elements are cooled in step 260 to move the elements back to the first shape to unset the isolator from the wellbore. In step 270, the isolator is located at a second portion of the wellbore to substantially hydraulically isolate the second zone so that the production of the second portion may also be detected. Alternatively, the memory shape elements may be configured so that the elements are cooled to be actuated to a set position and heated to unset the isolator, if desired.
Each of the isolators 100 includes shape memory elements 150 that may be actuated at a first temperature to cause the isolators 100 to engage the casing 6 of the wellbore 1. The shape memory elements 150 permits more than one isolators to be actuated and deactivated at once permitting multiple zones to be isolated simultaneously, if desired.
Although this disclosure has been described in terms of certain preferred embodiments, other embodiments that are apparent to those of ordinary skill in the art, including embodiments that do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of the present disclosure is defined only by reference to the appended claims and equivalents thereof.