This system is related to medical devices and more particularly, to endoscopic treatment of tissue.
The treatment of tissue encompasses a variety of techniques such as electrocauterization, heat therapy, resection (removal of tissue), and sclerotherapy (the injection of medicine into target tissue). These treatment techniques usually involve the passing of medical instruments through the operating channel of the endoscope. The endoscope permits minimally invasive access, as well as visualization and suction aids.
Another technique that frequently utilizes the operating channel of the endoscope is ligation, which involves applying a band or ligature around a vessel or portion of tissue, thereby cutting off blood or fluid flow and causing the tissue to necrose and separate from adjacent healthy tissue. Ligation is widely used to treat a number of medical tissue conditions, including, but not limited to, hemorrhoids, polyps, ballooning varices, and other types of lesions, including those that are cancerous. Typically, ligators are also used with a suction or vacuum means to draw the tissue into the distal tip, whereby the band is deployed over the base of the diseased tissue to cut off blood flow. The ligating device is typically activated by retracting a line (string, wire, or cable) that is attached to the ligator at the distal end of an endoscope and is threaded through the operating channel of the endoscope to the proximal end of the instrument. The ligator can be activated by mechanically pulling the activating line by means of a hand-operated reel or trigger, or a motor drive mechanism. Various other ligating devices use cooperating inner and outer members that slide the individual bands by pushing or pulling them from the tip of the inner or outer member, the bands being preloaded onto the inner or outer member prior to deployment.
To prevent having to withdraw the instrument from the patient, reload, and reintroduce it for treating additional tissue or vessels, devices have been developed capable of sequentially delivering multiple bands that are preloaded, thus shortening the procedure time and improving patient comfort. Multiple band ligating devices include designs that individually tether or otherwise secure the bands to the dispenser and then release them sequentially as needed, often by use of one or more strings extending to the proximal end.
It is often desirable to combine another endoscopic procedure, such as sclerotherapy or tissue removal with a surgical snare, with ligation. However, while the operating channel of the endoscope is often large enough to accommodate more than just an activating line from a ligator, combining the medical instruments necessary for the second procedure with the ligator can be problematic. Thus, there is a need for a ligating device that can be combined with other medical instruments in endoscopic procedures.
The present invention provides a system and method for endoscopic treatment of tissue. In particular, a system is provided for use an endoscope having an operating channel. The system includes a ligating system having an activating component and a ligating barrel. The system further includes a medical instrument having an elongate shaft and an operating member disposed near the distal end thereof. The activating component includes a mounting component having a first threading channel that fits into the working channel of the endoscope. In one preferred aspect of the invention, the first threading channel of the mounting component has a diameter of at least 2.5 millimeters, and more preferably a diameter of about 3.2 millimeters. The ligating barrel fits onto a distal end of the endoscope and is operably connected to the activating component. The shaft of the medical instrument is disposed through the first threading channel, the operating channel, and the ligating barrel so as to position the operating member near the tissue to be treated.
In another aspect, the present invention provides a system useful for convenient endoscopic resection of tissue. The system includes an endoscope having an operating channel, and a ligating barrel extending from the channel. The ligating barrel includes at least one and desirably multiple ligating bands disposed thereon and deployable therefrom. An elongated tissue resection device extends through the working channel and is effective to resect tissue captured by the bands. In certain embodiments the tissue resection device is an electrosurgical snare.
In another aspect the invention provides a method for endoscopically resecting tissue. The method includes advancing an endoscope into a body passageway of a patient. The endoscope has an operating channel and a ligating barrel extending from the channel. The patient's tissue is drawn into the ligating barrel and a ligating band is deployed to form a ligated tissue mass or pseudo-polyp. An elongated tissue resecting device, such as an electrosurgical snare, is advanced through the operating channel of the endoscope, and is used to resect the ligated tissue mass.
These and other features of the invention will become apparent upon review of the following detailed description of the presently preferred embodiments of the invention, taken into conjunction with the appended figures.
Referring now to the drawings, there is shown in
Ligating barrel 14 is located at distal end portion 13 of endoscope 10 and includes an activation line 15. Endoscope 10 also includes operating channel 16 which extends through endoscope 10 from ligating barrel 14 to both operating control portion 11 and to proximal opening 18. Activation line 15 is threaded from ligating barrel 14 through operating channel 16 and exits through proximal opening 18. Barrel 14 is preferably of a hard plastic clear polycarbonate for maximum durability and visibility.
Mounting component 21 also provides first threading channel 27 which extends through mounting component 21. First opening 28 of first threading channel 27 is shown in
In the particular embodiment illustrated, surgical snaring system 42 comprises an operating loop 48 (or snare head) made from a braided stainless steel cable and having a hexagonal shape when in the open configuration. The braided stainless steel cable provides the operating loop 48 with a combination of flexibility, strength and resiliency that permits multiple resections of tissue. For example, and as will be explained in greater detail below, the ligating system 5 may comprise as many as six (or more) deployable ligating bands disposed on the ligating barrel 14. The ligating system 5 is therefore capable of banding as many as six (or more) separate tissue sections (i.e., pseudo-polyps) without withdrawing the endoscope 10 from the patient to re-load the ligating system 5 with additional ligating bands. Thus, it is preferable that a single operating loop 48 be capable of resectioning (cutting) each of the banded tissue sections (i.e., pseudo-polyps) without breaking or excessively deforming, thereby eliminating the need to withdraw and replace the original surgical snaring system 42 with a second (or third) surgical snaring system. It is also preferable that the operating loop 48 be capable of cutting through a ligating band that has been placed about the target tissue, which can occur if the operating loop 48 is not positioned completely above or below the ligating band. Similarly, the hexagonal shape of the operating loop 48 facilitates the resection of the banded tissue since the ligating bands tends to create a pseudo-poly having a generally circular cross-section that is easily ensnared by the operating loop 48. The hexagonal shape also facilitates shape retention, even after repeated use. A suitable surgical snare system 42 is the 7FR Soft AcuSnare™ Mini Hexagonal Head disposable polypectomy snare, sold by Wilson-Cook Medical Inc., dba Cook™ Endoscopy, 4900 Bethania Station Road, Winston-Salem, N.C. 27105, catalog no. SASMH-1. The 7FR Soft AcuSnare™ Mini Hexagonal Head disposable polypectomy snare has a braided stainless steel snare with a loop size of 1.5 cm×2.5 cm and a catheter sheath size of 7.0 FR. Although other types of surgical snare systems (or other types of medical catheter devices) may be utilized in combination with the ligating system 5 disclosed herein, these other devices may not be as suitable or efficient for performing multiple tissue resections.
To facilitate the extension of activation line 15 and catheter 46 all the way through first threading channel 27, first threading channel 27 and first opening 28 can be enlarged via boring from a typical diameter of about 2.5 mm to a new diameter of about 3.2 mm. A 3.2 mm diameter threading channel and first opening allows the physician to use a larger sized snare, such as the surgical snare system 42 having a 7 FR catheter sheath described above. Of course, a 3.2 mm diameter threading channel and first opening will also accommodate smaller sized snares, such as a surgical snare system having a 5FR catheter sheath. A smaller sized snare may be advantageous because it reduces frictional forces between the exterior of the snare's catheter 46, the activation line 15 of the ligating system 5, and the interior of the endoscope operating channel 16. It should also be understood that first threading channel 27 and first opening 28 can be enlarged or formed to have any diameter, within the dimensional limits of the endoscope operating channel 16 and the mounting component 21, that may be required to accommodate larger (or smaller) surgical snare systems 42 or other types of medical catheter devices there through. In the particular embodiment illustrated, the endoscope operating channel 16 has a diameter of about 3.7 mm and the mounting component 21 has an outer diameter of about 4.0 mm. Thus, the upper limit of the diameter of first threading channel 27 and first opening 28 will necessarily be less than 3.7 mm, depending on the specific design, configuration and type of materials utilized for these components. Regardless of the size of the threading channel 27 and first opening 28, it is imperative that outer sealing portion 25 forms a seal with sealing member 17 so that there is no pressure loss in the vacuum needed during endoscopic procedures.
Accordingly, ligating system 5 can be used in conjunction with endoscope 10 by a physician for the treatment of tissue. First, the physician positions the ligating barrel 14 (and thus the distal end of the endoscope) over the target tissue. The physician then applies suction via the endoscope to a target tissue (or pseudo-polyp) and deploys one or more ligating bands around the pseudo-polyp. Once the pseudo-polyp has been banded, the physician may release the suction and insert snaring system 42 (with a snare as large as 7 FR if the threading channel and first opening is at least 3.2 mm in diameter) through threading channel 27, operating channel 16 and ligating barrel 14. The physician can position operating loop 48 to ensnare the pseudo-polyp above the ligating band(s) with the snaring system. Next, the physician can cut the pseudo-polyp through electric cautery via electrical connector 49. The resected piece of tissue (i.e., pseudo-polyp) is then typically allowed to drop into the esophagus and/or the stomach, where it may pass naturally through the digestive tract of the patient. If desired, the physician may retrieve the resected pieces of tissue with a separate forceps (not shown), the operating loop 48 of the snaring system 42, or some other tissue collecting device. Retrieval of the resected pieces of tissue is preferably done after all of the resections have been completed. In particular, the present invention permits the physician to perform multiple band ligation and Endoscopic Mucosal Resection (EMR) in the esophagus and other portions of the gastrointestinal tract. This procedure can be repeated several times during one surgical session, increasing the physician's efficiency.
Alternatively, the physician can insert snaring system 42 through the first threading channel 27 and operating channel 16 at the beginning of the procedure, before applying suction and banding the pseudo-polyp. In this method, the physician can guide operating loop 48 all the way through operating channel 16 into ligating barrel 14. As illustrated in
Moreover, additional endoscopic devices and procedures can be combined with the activating mechanism of the ligating system due to the increased diameter in threading channel 27 and first opening 28. Thus, an injection needle for sclerotherapy or an endoscopic ultrasound (EUS) needle could be extended through threading channel 27 and first opening 28 into and through the operating channel 16 of endoscope 10. In addition, biopsy forceps could also be utilized (instead of suction) by extending the forceps through the threading channel to capture the tissue and withdraw the tissue into the ligating barrel before deploying ligating bands. These other medical instruments can be utilized to treat the target tissue either before or after the banding of the tissue. Furthermore, these instruments can be used serially in one surgical session. For example, a solution can first be injected into the submucosal layer of tissue to elevate the target tissue and separate it from the muscular layer before banding the target tissue with a ligating system and removing it with a snaring system. It should be noted that the present invention can also be used to treat vessels as well as tissue.
It will of course be well understood from the discussions above that other known ligating barrel designs, activation mechanisms, endoscope systems, etc. could be used within the scope of the invention. It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
This application is a continuation-in-part of U.S. Non-Provisional application Ser. No. 11/127,554, filed May 12, 2005, which claims the benefit of U.S. Provisional Application Ser. No. 60/571,279, filed May 13, 2004, both of which are entitled “System and Method For Endoscopic Treatment of Tissue”, the entire contents of which are incorporated herein by reference. This application also claims the benefit of U.S. Provisional Application Ser. No. 60/787,759, filed Mar. 31, 2006, entitled “System and Method For Endoscopic Treatment of Tissue”, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60571279 | May 2004 | US | |
60787759 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11127554 | May 2005 | US |
Child | 11725601 | Mar 2007 | US |