The present disclosure generally relates to a hybrid vehicle drive train and, more particularly, to a method of adjusting the torque output of the drive train to match a target power profile.
Over the past few years, there has been a growing concern over global climate change due to an increase in carbon dioxide levels as well as oil supply shortages. As a result, automobile manufactures and consumers are developing a greater interest in motor vehicles having lower emissions and increased fuel efficiency. One viable option is a hybrid electric vehicle which allows the vehicle to be driven by electric motors, combustion engine, or a combination thereof.
Transmissions in hybrid drive trains serve a number of functions by transmitting and manipulating torque in order to provide torque to an output member. The driver, through actuation of the accelerator, brake pedal, and auxiliary braking selectors, commands the engine and/or electric motor to provide a desired power to the vehicle drive train. The transmission is expected to accurately implement the driver's command. As the transmission changes the gear ratio, the driver's intent is not always achieved. Gear shifts within transmissions often result in disturbances in the drive train power output profile. The disturbances manifest as vibrations in the vehicle which are felt by the driver and passengers. Such disturbances can cause discomfort to the driver and passengers or otherwise create an undesirable driving experience.
Hybrid vehicle drive trains provide additional options for tailoring power output profiles based on a user's particular needs. For example, the power profile can be tailored to provide many different functions such as optimizing fuel economy, maximizing acceleration, reducing or eliminating vibrations from gear shifts, or otherwise smoothing the drive train power profile for driver and passenger comfort. However, problems exist with transforming a drive train power input to a desired drive train power.
Thus, there is a need for improvement in this field.
The hybrid system described herein addresses several of the issues mentioned above as well as others. In one example, a method for operating a hybrid vehicle including a drive train having a transmission and a power source includes the actions of receiving a command input from a driver, determining a current state of the vehicle, determining loss parameters of the drive train, establishing a target drive train output power profile as a function of the command input, establishing power loss within the drive train as a function of the loss parameters, establishing a requisite input power needed to reach the target drive train output power profile as a function of the loss parameters and the target drive train output power profile, and supplying the requisite input power to the drive train. The loss parameters can include hydraulic power loss, kinetic power loss, and clutch power loss.
The hydraulic power loss can be calculated as a function of hydraulic loss parameters within the transmission. The hydraulic loss parameters can include the temperature of a hydraulic fluid, the pressure of the hydraulic fluid, and the flow rate of the hydraulic fluid.
The kinetic power loss can be calculated as a function of rotational inertia loss parameters within the drive train. The rotational inertia loss parameters include the rotational inertia of at least one body within the transmission, the rotational speed of the body, and the rotational acceleration of the body. The kinetic power loss (PK) is calculated by the formula
where J is the rotational inertia of the body, ω is the rate of rotation of the body, and {dot over (ω)} is the rotational acceleration of the body.
The clutch power loss is calculated as a function of clutch loss parameters within the transmission. The clutch loss parameters include torque transmitted across the clutch during engagement between two clutch plates, and the rotational speed of each clutch plate. The clutch power loss (Pclutch) is calculated by the formula
where Tclutch is torque transmitted across the clutch during engagement between two clutch plates and |ω1−ω2| is the absolute value of the difference between the rates of rotation of each clutch plate.
The power source can include an engine in the hybrid module. The requisite input power can be described as Pengine+Phybrid and is calculated by the formula
where Pdl is the target drive train output power profile, J is the rotational inertia of i=1-N bodies in the transmission, ω is the rate of rotation of i=1-N bodies in the transmission, {dot over (ω)} is the rotational acceleration of i=1-N bodies in the transmission, Tclutch is the torque transmitted across m=1-K clutches during engagement between two clutch plates, and |ω1−ω2| is the magnitude of the difference between the rates of rotation of two clutch plates in m=1-K clutches. The calculations can be performed by a transmission/hybrid control module.
In one example, a method for operating a hybrid vehicle having a drive train including a transmission and a power source includes the actions of establishing a target drive train output power profile, establishing hydraulic power loss of the drive train as a function of hydraulic loss parameters within the transmission, establishing kinetic power loss of the drive train as a function of rotational inertia loss parameters within the drive train, establishing clutch power loss of the drive train as a function of clutch loss parameters within the transmission, establishing the drive train input power needed to reach the drive train output power profile as a function of the hydraulic loss parameters, the rotational inertia loss parameters, and the clutch loss parameters, and adjusting torque supplied by the power source to reach the target drive train output power profile.
The hydraulic loss parameters can include the temperature of a hydraulic fluid, the pressure of the hydraulic fluid, and the flow rate of the hydraulic fluid. The rotational inertia loss parameters can include the rotational inertia of a body within the transmission, the rotational speed of the body, and the rotational acceleration of the body. The kinetic power loss (PK) can be calculated by the formula
where J is the rotational inertia of the body, ω is the rate of rotation of the body, and {dot over (ω)} is the rotational acceleration of the body.
The clutch loss parameters can include torque transmitted across the clutch during engagement between two clutch plates, and the rotational speed of each clutch plate. The clutch power loss (Pclutch) can be calculated by the formula
where Tclutch is the torque transmitted across the clutch during engagement between two clutch plates and |ω1−ω2| is the absolute value of the difference between the rates of rotation of each clutch plate.
The power source can include an engine and the hybrid module. The torque supplied by the power source can be characterized as Pengine+Phybrid and is calculated by the formula
where Pdl is the target drive train output power profile, J is the rotational inertia of i=1-N bodies in the transmission, ω is the rate of rotation of i=1-N bodies in the transmission, {dot over (ω)} is the rotational acceleration of i=1-N bodies in the transmission, Tclutch is torque transmitted across m=1-K clutches during engagement between two clutch plates, and |ω1−ω2| is the magnitude of the difference between the rates of rotation of two clutch plates in m=1-K clutches.
The disclosure further includes an apparatus for performing any of the actions described herein. Further forms, objects, features, aspects, benefits, advantages, and embodiments of the present disclosure will become apparent from a detailed description and drawings provided herewith.
For the purpose of promoting an understanding of the principles of the disclosure, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the disclosure as described herein are contemplated as would normally occur to one skilled in the art to which the disclosure relates. One embodiment of the disclosure is shown in great detail, although it will be apparent to those skilled in the relevant art that some features that are not relevant to the present disclosure may not be shown for the sake of clarity.
The reference numerals in the following description have been organized to aid the reader in quickly identifying the drawings where various components are first shown. In particular, the drawing in which an element first appears is typically indicated by the left-most digit(s) in the corresponding reference number. For example, an element identified by a “100” series reference numeral will first appear in
The transmission 106 is an automatic transmission that is capable of automatically changing gear ratios as the vehicle moves. The transmission 106 has variable gear ratios which can be selected or changed in an automatic fashion during operation. The transmission 106 can be a variety of types, but commonly is a hydraulic transmission including one or more planetary gearsets and a plurality of clutches. The planetary gearset(s) is a compound epicyclic gearset having one or more outer gears revolving about a central gear. The gearset(s) typically includes bands and clutches actuated by hydraulic servos. A hydraulic fluid (such as a lubricating or automatic transmission fluid) provides lubrication, corrosion prevention, and a hydraulic medium to convey mechanical power for operation of the transmission. In some embodiments, the transmission 106 includes a torque converter for hydraulically connecting the power sources to the transmission 106. The transmission 106 can include a pump which draws the hydraulic fluid from a sump and circulates the fluid throughout the transmission 106 and/or pressurizes it for input to a torque converter housing. Transmission 106 can include a fluid cooling system for maintaining the temperature of the hydraulic fluid. The cooling system can be shared with other components of the hybrid system 100 or it can be a dedicated to the transmission 106. In some embodiments, the transmission 106 is fluidly connected with the hybrid module 104. The transmission 106 includes an input shaft which is coupled to the hybrid module 104 and an output shaft which is coupled to the drive shaft 107.
The hybrid system 100 incorporates a number of control systems for controlling the operations of the various components. For example, the engine 102 has an engine control module 146 that controls various operational characteristics of the engine 102 such as fuel injection and the like. A transmission/hybrid control module 148 substitutes for a traditional transmission control module and is designed to control both the operation of the transmission 106 as well as the hybrid module 104. The transmission/hybrid control module 148 and the engine control module 146 along with the inverter 132, energy storage system 134, and a DC-DC converter system 140 communicate along a communication link as is depicted in
Various information is exchanged or communicated between the transmission/hybrid control module 148 and other various components. In terms of general functionality, the transmission/hybrid control module 148 receives power limits, capacity available current, voltage, temperature, state of charge, status, and fan speed information from the energy storage system 134 and the various energy storage modules within. The transmission/hybrid control module 148 in turn sends commands for connecting the various energy storage modules so as to supply voltage to and from the inverter 132. From the inverter 132, the transmission/hybrid control module 148 receives a number of inputs such as the motor/generator torque that is available, the torque limits, the inverter's voltage current and actual torque speed. Based on that information, the transmission/hybrid control module 148 controls the torque speed. From the inverter 132, the transmission/hybrid control module 148 also receives a high voltage bus power and consumption information. The transmission/hybrid control module 148 also communicates with and receives information from the engine control module 146 and in response controls the torque and speed of the engine 102 via the engine control module 146.
The various components of the hybrid system 100 as well as their function are discussed in further detail in U.S. patent application Ser. No. 13/527,953, filed Jun. 20, 2012 and International Application No. PCT/US2011/041018, filed Sep. 9, 2011, published as WO 2012/034031 A2, which are hereby incorporated by reference.
Disclosed herein is a method of controlling the drive train power profile. As used herein “power profile” refers to the torque profile delivered to wheels 110 over a given period of time. A target drive train output power profile (target power profile) is tailored to produce a specific power profile in response to a command from the driver. Driver commands can include actuating the accelerator, releasing the accelerator, actuating the brake pedal, releasing the brake pedal, engaging auxiliary braking selectors, or any combination, degree, or variance of the same. The method generally includes setting a target power profile in response to a driver command, determining the cumulative power losses of the drive train, and adjusting the power input from the power sources so that the actual power delivered to wheels 110 (i.e. actual power profile) matches the target power profile. The target power profile is monitored continuously or during set intervals over time and adjusted based on new or different driver commands. Various operating parameters of the drive train 108 are likewise monitored continuously or during set intervals in order to calculate the power losses and actual power delivered to wheels 110 at any given moment. Power losses are generally defined as energy losses over a period of time. Power losses are commonly dependent on a several loss parameters at any given moment and change with variance in the loss parameters. Power losses do not necessarily occur linearly, and various relationships between energy loss and time are described below.
During operation, various operating parameters of the drive train 108 are known, monitored, and/or calculated by the transmission/hybrid control module 148 and used when determining the amount of torque that is necessary to achieve the target power profile. Operating parameters are divided herein into the vehicle data and loss parameters. Loss parameters include hydraulic power loss, kinetic power loss, and clutch power loss. Vehicle data includes in part the rotational speed of the engine 102 output shaft, the rotational speed of the hybrid module 104, and the speed and acceleration of the vehicle (including the rotational speed of the drive shaft 107. Examples of loss parameters include the gear configuration of the transmission 106, the rotational speeds of each part of the transmission 106 (i.e. various groupings of gears), the temperature and pressure of the hydraulic fluid in the transmission, and the state of engagement of all of the clutches in transmission 106. The sampled values are transmitted to or obtained by the transmission/hybrid control module 148.
More specifically, several losses occur in the transmission 106 hydraulic system. Certain parameters of the transmission 106 hydraulic system are known (i.e. hydraulic loss parameters). A sensor positioned along the fluid flow path of the hydraulic fluid monitors and reports the temperature of the hydraulic fluid. Similarly, a sensor monitors and reports the pressure of the hydraulic fluid. The flow rate of the hydraulic fluid is also monitored and reported. Energy losses occur due to fluid friction from moving parts and moving fluid as well as losses from oil pressure changes. Efficiency of the hydraulic system varies with variances in the temperature of the fluid. Energy dissipated (and therefore lost) within the transmission 106 due to the transmission hydraulic system have been determined through testing and are generally well known for any given values of these loss parameters. Such losses for any given values of these loss parameters are denoted herein as equation (1):
Ploss=transmission hydraulic system losses (1)
Other loss parameters include the rotational rates and acceleration of all rotating parts in the drive train 108. Generally, energy losses occur when rotating parts maintain, change, or reverse rotational speeds. The kinetic energy of a rotating body is described mathematically as
where J is the rotational inertia of the body, and co is the angular velocity of the body. The rotational inertia (or polar moment of inertia) is the property of the body that measures its resistance to rotational acceleration about an axis, i.e. the degree of outside force necessary to reduce the rotation rate of the body. The rotational inertia of various parts of the transmission 106 for every possible gear and clutch configuration has been determined through testing and are well known. Generally, for each configuration one or more groups of components rotate in unison (not including transitory periods of clutch engagement and disengagement), and the rotational inertia of each group is determined. Power is defined as the time rate of change of energy, so the power of a rotating body can be found by taking the time derivative of E. Therefore the power is
where {dot over (ω)} is the time derivative of
or the rotational acceleration of the body. Practically, the rotational acceleration can be determined from or quantified as the surplus of power versus the load, or in the case of the drive train, the rotational acceleration is dependent on the power available and the weight of the vehicle and can be determined accordingly. The rotational speed of bodies in the drive train are known through sensors and/or known relationships between input values and various gear configurations. Thus, the total power loss due to kinetic energy dissipation (kinetic power loss) can be expressed and calculated according to equation (2):
for N groups of components rotating in unison (i.e. i=1-N), where J, ω, and {dot over (ω)}, are known values for any given set of loss parameters.
Other loss parameters are related to engagement of the clutches in the transmission 106. A clutch is a mechanical device for controlling the connection between two rotating bodies. Clutches generally include two metal plates that are pressed together by hydraulic force. When pressed together, frictional forces couple the two plates and connect the bodies so that they rotate in unison. During the coupling, energy is dissipated in the form of heat due to the friction between the two plates. Solenoids are included in the transmission 106. A solenoid includes a helically-wound coil which creates a magnetic field upon excitation of the coil. Such magnetic fields are harnessed and used to apply a linear hydraulic force to one or both plates in a clutch. The torque transmitted across the clutch during engagement is denoted by Tclutch. The slip across the clutch is denoted as |ω1−ω2|, where ω1−ω2 is the difference between the rates of rotation of the two clutch plates. The power dissipated during engagement of a clutch (i.e. transmission clutch power loss, or clutch losses) is then described according to equation (3):
for K clutches (i.e. m=1-K). Through testing, the torque transmitted across various clutches in transmission 106 has been determined as a function of the current applied to the coil(s). Therefore, the power loss in each clutch is known as a function of the current applied to the coil and the angular rotation rates of the two plates. Clutch losses occur when changing gears, as clutches either engage or disengage. When gears are not changing during operations, the clutch losses are zero and need not be calculated.
When all the power losses are known, the power needed from the power sources to maintain or achieve the target power profile are calculated according to equation (4):
Pdl=Pengine+Phybrid−Ploss−PK−Pclutch (4)
or, alternatively as equation (5):
where Pdl the target power profile, Pengine is the engine 102 power, and Phybrid is the hybrid module 104 power.
The details disclosed herein provide a method to precisely control the power profile of the vehicle and to create a driving experience that is more comfortable and/or custom tailored to the user's wishes.
Realization of the target power profile 502 is achieved according to the methods described herein, including obtaining the loss parameters, calculating the power losses in the drive train 108, and determining the level of torque that is needed at the transmission input shaft in order to maintain the target power profile 502 at the wheels 110 of the vehicle. Values for each of the loss parameters described herein are sampled regularly for each operating state (i.e. gear positions, speed of motors, speed of wheels, etc) and received by the transmission/hybrid control module 148. When the engine 102 and/or the hybrid module 104 are already rotating and/or supplying torque to the drive train 108, that speed or torque information is conveyed to the transmission/hybrid control module 148 along with the speed of wheels 110. In some cases the values of the loss parameters are sampled at specific intervals (e.g. 50-100 samples per second). Each sampling produces a result set of values.
An algorithm describing the method disclosed herein will now be described according to
Current vehicle operational data is transferred to the transmission/hybrid control module 148 at action 602. This includes information related to the current operation of the engine 102, the hybrid module 104, energy storage system 134, and the vehicle. The engine 102 speed, power (or torque produced), and limits associated with speed and power are obtained from the engine control module 146 over the vehicle data link. Data is also obtained regarding the speed, power (or torque produced), for all hybrid motors (i.e. hybrid module 104). Information related to the hybrid power capabilities is obtained from the energy storage system 134 over the hybrid data link. Data related to the vehicle such as wheel 110 speed and/or acceleration is also obtained. The transmission/hybrid control module 148 stores these values. In some embodiments, the transmission/hybrid control module 148 measures operational data directly. In other embodiments, any data described herein is measured and/or obtained by any of a variety of sensors and controllers, with the data ultimately being obtained by a single controller for processing.
At action 604, the transmission/hybrid control module 148 obtains the loss parameters necessary to calculate the losses according to equations (1), (2), and (3). The loss parameters (as already described above) include the gear configuration of the transmission 106, the current configuration of gears in the transmission including rotational speeds (ω), acceleration ({dot over (ω)}), and rotational inertia (J) of each. If a gear change is in progress, then loss parameters for each clutch undergoing change are obtained, such as angular rotation speeds (ω1 and ω2) of each clutch plate and the value of the torque across the clutch (Tclutch). The temperature of the hydraulic fluid in the transmission 106 as well as the pressure and flow rate of the hydraulic fluid are obtained. The three values of the pressure losses are then calculated (equations (1), (2), and (3)) and stored by the transmission/hybrid control module 148.
At action 606, the transmission/hybrid control module 148 calculates a target power profile (Pdl) based on the driver input received in action 600. The target power profile (Pdl) is determined based on a user's specific preference and can be tailored in a variety of ways. For example, the target power profile can be chosen to optimize fuel economy, maximize acceleration, cancel power fluctuations from transmission shifts, or smooth the drive line power profile for driver comfort. For example, the smooth slope of the target power profile 502 of
At action 608, the transmission/hybrid control module 148 calculates the power requirement from the engine 102 and the hybrid module 104 (Pengine+Phybrid) that is needed to meet the target power profile according to equation (4), which includes consideration of the difference between the actual power profile and the target power profile. In other words, equation (4) is solved for Pengine+Phybrid. The transmission/hybrid control module 148 sends torque commands to the engine control module 146 and the hybrid module 104, and the engine 102 and hybrid module 104 are set to best achieve Pengine+Phybrid. The torque commands are executed, and the target power profile is achieved.
Operation of the engine 102 and hybrid module 104 are tailored to make the actual power profile match the target power profile, as described below. Because the sampling and calculations are performed many times per second, any commands sent to the power sources which are needed to maintain the target power profile are immediately conveyed. Similarly, because the sampling occurs frequently, any changes to the state of the vehicle or driver inputs (e.g. change from acceleration to brake or change in incline of a road) are immediately considered. In this way, the target power profile can change and still be maintained by the vehicle.
Generally, a determination is made as to the appropriate split in power between the two power sources in order to make the actual power profile match the target power profile with the user's goal in mind, as each power source has different efficiencies and/or operating limits at any given operating condition. For example, the state of charge of the energy storage system 134 informs the transmission/hybrid control module 148 as to how much of the power can be provided by hybrid module 104 at any given moment and at what efficiency.
As mentioned previously, the drive train 108 couples the power sources (i.e. the engine 102 and the hybrid module 104) to the wheels 110. Torque can be transferred to an input shaft of transmission 106 independently by either the engine 102 or the hybrid module 104. Alternatively, the engine 102 and the hybrid module 104 can work in conjunction to transfer torque to the transmission 106. The hybrid module clutch allows the hybrid module 104 to couple or decouple with the engine 102 so that the hybrid module 104 can be turned by the engine 102, independently supply torque to the input shaft of the transmission 106, or work in conjunction with the engine 102 to supply torque to the input shaft of the transmission 106. Each power source has particular efficiency advantages and missions for a variety of different operating conditions. An algorithm executed by the transmission/hybrid control module is used to maintain a balance of the power sources that most efficiently realizes both the target power profile and other operating considerations.
While the disclosure has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes, equivalents, and modifications that come within the spirit of the disclosures defined by following claims are desired to be protected. All publications, patents, and patent applications cited in this specification are herein incorporated by reference as if each individual publication, patent, or patent application were specifically and individually indicated to be incorporated by reference and set forth in its entirety herein.
This application is a continuation of International Application No. PCT/US2014/020499 filed Mar. 5, 2014, which claims the benefit of U.S. Provisional Application No. 61/786,669 filed Mar. 15, 2013, which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6441588 | Yagi et al. | Aug 2002 | B1 |
6469403 | Omata et al. | Oct 2002 | B2 |
6518732 | Palanisamy | Feb 2003 | B2 |
6686724 | Coates et al. | Feb 2004 | B2 |
6727676 | Ochiai | Apr 2004 | B2 |
6799650 | Komiyama et al. | Oct 2004 | B2 |
6904342 | Hanada et al. | Jun 2005 | B2 |
7009401 | Kinoshita et al. | Mar 2006 | B2 |
7015676 | Kohama et al. | Mar 2006 | B2 |
7021409 | Tamor | Apr 2006 | B2 |
7076356 | Hubbard et al. | Jul 2006 | B2 |
7078877 | Salasoo et al. | Jul 2006 | B2 |
7131708 | Tao et al. | Nov 2006 | B2 |
7295902 | Chen et al. | Nov 2007 | B2 |
7305873 | Hubbard et al. | Dec 2007 | B2 |
7407026 | Tamor | Aug 2008 | B2 |
7449891 | Cawthorne | Nov 2008 | B2 |
7479761 | Okumura | Jan 2009 | B2 |
7482767 | Tether | Jan 2009 | B2 |
7486036 | Oyobe et al. | Feb 2009 | B2 |
7521935 | Uchida | Apr 2009 | B2 |
7532961 | Hoshiba et al. | May 2009 | B2 |
7538520 | Zettel et al. | May 2009 | B2 |
7550946 | Zettel et al. | Jun 2009 | B2 |
7639018 | Zettel et al. | Dec 2009 | B2 |
7645209 | Dreibholz et al. | Jan 2010 | B2 |
7657350 | Moran | Feb 2010 | B2 |
7661370 | Pike et al. | Feb 2010 | B2 |
7677341 | Tomo | Mar 2010 | B2 |
7719238 | Iida et al. | May 2010 | B2 |
7730984 | Heap et al. | Jun 2010 | B2 |
7768235 | Tae et al. | Aug 2010 | B2 |
7770676 | Tenbrock et al. | Aug 2010 | B2 |
7770678 | Nozaki et al. | Aug 2010 | B2 |
7784575 | Yamanaka et al. | Aug 2010 | B2 |
7795844 | Ichikawa et al. | Sep 2010 | B2 |
7800345 | Yun et al. | Sep 2010 | B2 |
7828693 | Soliman et al. | Nov 2010 | B2 |
7836985 | Itoh | Nov 2010 | B2 |
7863789 | Zepp et al. | Jan 2011 | B2 |
7865287 | Huseman | Jan 2011 | B2 |
7878282 | Kumazaki et al. | Feb 2011 | B2 |
7893637 | Suhama et al. | Feb 2011 | B2 |
7908064 | Cawthorne et al. | Mar 2011 | B2 |
7923950 | Takahashi | Apr 2011 | B2 |
7928699 | Kohn | Apr 2011 | B2 |
7935015 | Tabata et al. | May 2011 | B2 |
7967091 | Yamazaki et al. | Jun 2011 | B2 |
7977896 | Heap et al. | Jul 2011 | B2 |
7987934 | Huseman | Aug 2011 | B2 |
7998023 | Holmes et al. | Aug 2011 | B2 |
8000866 | Heap et al. | Aug 2011 | B2 |
8002667 | Hsieh et al. | Aug 2011 | B2 |
8010247 | Heap et al. | Aug 2011 | B2 |
8020652 | Bryan et al. | Sep 2011 | B2 |
8022674 | Miura | Sep 2011 | B2 |
8029408 | Seel | Oct 2011 | B2 |
8030883 | Katayama | Oct 2011 | B2 |
8035324 | Heap | Oct 2011 | B2 |
8035349 | Lubawy | Oct 2011 | B2 |
8047959 | Fuechtner et al. | Nov 2011 | B2 |
8053921 | Ichikawa | Nov 2011 | B2 |
8063609 | Salasoo et al. | Nov 2011 | B2 |
8078417 | Ishishita | Dec 2011 | B2 |
8082743 | Hermann et al. | Dec 2011 | B2 |
8091667 | Zettel et al. | Jan 2012 | B2 |
8098050 | Takahashi | Jan 2012 | B2 |
20030173934 | Arimitsu | Sep 2003 | A1 |
20050182526 | Hubbard | Aug 2005 | A1 |
20070090803 | Yun et al. | Apr 2007 | A1 |
20080224478 | Tamor | Sep 2008 | A1 |
20090037060 | Carlhammar et al. | Feb 2009 | A1 |
20090118929 | Heap et al. | May 2009 | A1 |
20090118941 | Heap | May 2009 | A1 |
20090118964 | Snyder et al. | May 2009 | A1 |
20090118971 | Heap et al. | May 2009 | A1 |
20090204280 | Simon, Jr. et al. | Aug 2009 | A1 |
20090308674 | Bhattarai et al. | Dec 2009 | A1 |
20100116235 | Imamura et al. | May 2010 | A1 |
20100125019 | Tabata et al. | May 2010 | A1 |
20100250037 | Yoshida et al. | Sep 2010 | A1 |
20100262308 | Anderson et al. | Oct 2010 | A1 |
20100263952 | Richter et al. | Oct 2010 | A1 |
20100299036 | Vespasien | Nov 2010 | A1 |
20100312422 | Imaseki | Dec 2010 | A1 |
20110040433 | Steuernagel | Feb 2011 | A1 |
20110048823 | Connelly et al. | Mar 2011 | A1 |
20110130904 | McGrogan et al. | Jun 2011 | A1 |
20110301791 | Swales et al. | Dec 2011 | A1 |
20110320075 | Kim et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 2012114430 | Aug 2012 | WO |
Entry |
---|
International Search Report and Written OPinion issued in PCT/US2014/020499, dated Jun. 16, 2014, 17 pgs. |
Number | Date | Country | |
---|---|---|---|
20150307081 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61786669 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2014/020499 | Mar 2014 | US |
Child | 14794928 | US |