System and method for enforcing compliance with subscription requirements for cyber-attack detection service

Information

  • Patent Grant
  • 10673867
  • Patent Number
    10,673,867
  • Date Filed
    Friday, September 29, 2017
    7 years ago
  • Date Issued
    Tuesday, June 2, 2020
    4 years ago
Abstract
A system featuring a cloud-based malware detection system for analyzing an object to determine whether the object is associated with a cyber-attack. Herein, subscription review service comprises a data store storing subscription information. The subscription information includes identifier for the customer and one or more identifiers each associated with a corresponding customer submitter operable to submit an object to the cloud-based malware detection system for analysis. The first customer submitter receives credentials provided by the subscription review service to establish communications with the cloud-based malware detection system. The first customer submitter includes a first submitter identifier that comprises (i) enforcement logic that enforces compliance with a plurality of requirements of the subscription to the cloud-based malware detection system and (ii) reporting logic that transmits a result of the analysis of the object by the cloud-based malware detection system in determining whether the object is associated with a cyber-attack.
Description
FIELD

Embodiments of the disclosure relate to the field of cybersecurity; and more specifically to a subscription-based malware detection system.


GENERAL BACKGROUND

Cybersecurity attacks have become a pervasive problem for organizations as many networked devices and other resources have been subjected to attack and compromised. A cyber-attack constitutes a threat to security arising out of stored or in-transit data that may involve the infiltration of any type of software for example, onto a network device with the intent to perpetrate malicious or criminal activity or even a nation-state attack (i.e., “malware”).


Recently, malware detection has undertaken many approaches involving network-based, malware protection services. One approach involves “on-site” placement of dedicated malware detection appliances at various ingress points throughout a network or subnetwork. Each of the malware detection appliances is configured to extract information propagating over the network at an ingress point, analyze the information to determine a level of suspiciousness, and conduct an analysis of the suspicious information internally within the appliance itself. While successful in detecting advanced malware that is attempting to infect network devices connected to the network (or subnetwork), as network traffic increases, an appliance-based approach may exhibit a decrease in performance due to resource constraints.


In particular, a malware detection appliance has a prescribed (and finite) amount of resources (for example, processing power) that, as resource capacity is exceeded, requires either the malware detection appliance to resort to more selective traffic inspection or additional malware detection appliances to be installed. The installation of additional malware detection appliances requires a large outlay of capital and network downtime, as information technology (IT) personnel are needed for installation of these appliances. Also, dedicated, malware detection appliances provide limited scalability and flexibility in deployment.


An improved approach that provides scalability, reliability, and efficient and efficacious malware detection at lower capital outlay is desirable.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1A is a block diagram of an exemplary embodiment of a scalable, malware detection system operating to establish a communication session extending from a sensor to a selected cluster.



FIG. 1B is a block diagram of an exemplary embodiment of the malware detection system of FIG. 1A directed to an analysis of submitted objects for malware and report generation.



FIG. 2 is a block diagram of an exemplary embodiment of logic implemented within a sensor deployed within the malware detection system of FIGS. 1A-1B.



FIG. 3 is an exemplary embodiment of a cluster implemented within the object evaluation service hosted by the second subsystem of the malware detection system of FIGS. 1A-1B.



FIG. 4 is an exemplary embodiment of a compute node being part of the cluster of FIG. 3.



FIGS. 5A-5B are an exemplary flowchart of the general operations performed by the malware detection system of FIGS. 1A-1B.



FIG. 6A is an embodiment of the operational flow conducted by the malware detection system of FIGS. 1A-1B in establishing communications with on-site sensors.



FIG. 6B is an embodiment of the operational flow between the sensors and the subscription review service of FIG. 1A.



FIG. 7 is an exemplary embodiment of the analysis selection service of FIGS. 1A-1B, including the cloud broker and the system monitoring logic.





DETAILED DESCRIPTION

Embodiments of the present disclosure generally relate to a subscription-based malware detection system, which includes a first subsystem and a second subsystem remotely located from the first subsystem. Herein, the first subsystem may provide multi-tenancy through a cloud-based service that connects any number of potential or actual customers (generally referred to as “customers”) to an object evaluation service, hosted by the second subsystem, to analyze objects submitted by different customers to determine whether a cyber-attack has been conducted or is in process. This determination may be conducted by performing an analysis of the objects for an association with a cyber-attack. The malware detection system provides a flexible and efficient business model with differentiated service levels based on assigned or customer configured attributes for a subscription, which represent the customer's subscription requirements. The subscription requirements dictate a level of operation that the malware detection system must meet for the customer, and limits on what the customer may submit to the malware detection system for analysis. The object evaluation service can offer customers customized pricing based on, for example, different submission throughputs (data rates), different analysis criteria (e.g., analysis location or type), different remediation settings, different alert settings, and other features specified by these attributes.


More specifically, the first subsystem may be provided access to a plurality of attributes (generally referred to as “service attributes”), which may be maintained as structured data on a per-sensor, per-customer or per-group basis. The structured data is generally referred to as “subscription information.” According to one embodiment of the disclosure, the service attributes include subscription attributes associated with an associated subscription tier, and customer-configurable attributes including guest image software attributes (types/versions for use in a virtual machine “VM” based dynamic analysis), and/or geographical attributes (analysis location).


As noted, the subscription attributes may be automatically selected based on the subscription tier chosen by the customer and appropriate payment. Each of these attributes may be assigned a value that specifies, for example, a level of performance including a predetermined (e.g., maximum) number or maximum rate of submissions for analysis over a prescribed period of time (e.g. per day, week or month), maximum response time in analysis of submissions, the customer size (e.g., number of endpoints protected through the malware detection system, maximum number of sensors supported by the malware detection system), or the like. It is contemplated that one of the subscription tiers offered may include a premium service tier which, if purchased, has a premium attribute set to assure priority service to reduce potential latency in the event of resource contention with other customers or sensor(s) for object analysis.


Each subscription tier may also permit differentiated services through customer-configurable attributes. The customer-configured attributes allow customers to tailor their subscriptions accordingly to current need. For example, a Korea-based company is able to select properties and functionality that may differ from U.S. based companies, resulting in different values for the same attribute types (e.g., selection of Korean-language word processor applications included in special guest images in VM based analysis at the object evaluation service instead of selecting only U.S. centric word processor applications). Also, the factory or a reseller/OEM may set certain “base attributes” that apply to all customers, and other attributes may be operationally dynamic as described elsewhere in the specification.


According to one embodiment of the disclosure, customer-specific controls of the malware detection system and its object evaluation service may be achieved based on a first level of control performed by enforcement logic within the first subsystem or a second level of control performed by enforcement logic at the subscriber site, or both. More specifically, the first subsystem of the malware detection system features (i) an analysis selection service and (ii) an analysis monitoring service. The analysis selection service includes logic, referred to as a “cloud broker,” which is responsible for performing the first level of control by (a) selecting a cluster of the malware detection system to analyze objects that are submitted by a customer via a sensor; (b) monitoring operability of the selected cluster based on received operational metadata (described below); (c) enforcing compliance by the selected cluster to customer requirements for a subscription selected by the customer and by the customer (and its sensor(s)) to the subscription requirements; and/or (d) report compliance discrepancies, operational metadata and/or analysis results. Herein, the malware detection system employs a scalable architecture that includes one or more (and preferably plural) clusters, where each cluster includes at least one compute node to perform object evaluation for malware. The architecture renders the malware detection system scalable to allow additional clusters or compute nodes, or both, to be added as increased object analysis capacity is needed, as well as flexibility in operation, as will be described below. Additionally, this architecture provides assured continued availability of the malware detection service when a cluster or a compute node requires maintenance or is otherwise unavailable for malware detection. A “compute node” includes logic that is configured to analyze suspicious objects, where these objects may be detected by one or more sensors deployed at a subscriber site and, according to one embodiment, received via the first subsystem before being provided to the second subsystem for evaluation.


According to one embodiment, the subscription requirements as applied to cluster operability may be represented by a first set of attributes within the subscription information that pertain to a plurality of requirements (e.g., guaranteed system performance, geographic location requirements, software profile types, etc.) set for that customer's subscription. The subscription requirements as applied to customer usage of the malware detection system may be represented by a second set of service attributes, and the subscription requirements as applied to a particular sensor may be represented by a third set of service attributes. Each of these sets of service attributes may be mutually exclusive with the other and/or may intersect by sharing at least one attribute with the other set(s). Herein, the service attributes are a superset of (i) subscription attributes, (ii) customer-configured attributes, and (iii) operational attributes (described below), where the service attributes may include bandwidth attributes e.g., (maximum or minimum data rates, quality of service (QoS) thresholds, maximum rate (number of object submissions for analysis per prescribed time period), or the like).


Besides subscription enforcement, the cluster selection may be based, at least in part, on analyses of attributes from the subscription information and operational metadata directed, at least in part, to the workload, health, or availability of clusters. The “subscription information” may include the following: (i) subscription attributes (e.g., bandwidth attributes such as allocated minimum or maximum number or rate of object submissions per selected time period, QoS attributes (thresholds) guaranteed for a selected subscription tier, cluster availability attributes that are based on subscription tier and/or geographic location of subscriber site, etc.); (ii) customer-configured attributes as set by the customer (e.g., language, geographic location permissions or restrictions for cluster/compute nodes, remediation type set by the customer, notification “alert” type directed to customer-selected network device(s), virtual machine provisioning preferences that may range from high level granularity (e.g., email, web traffic, etc.) to lower level granularity (e.g., type of software profile required for analytic compute nodes including the type of operating system, application, and/or plug-in); (iii) factory set attributes (e.g., selected default cluster, selected default permissions, etc.); and/or (iv) operationally dynamic attributes (e.g., heuristics, communication history, etc.).


The analysis monitoring service includes logic, referred to as “system monitoring logic,” which is configured to communicate with a cluster management system to receive the operational metadata, which may include metadata associated with one or more clusters (referred to as “cluster(s)”) operating as part of the second subsystem and/or metadata associated with compute nodes within the cluster(s). The received metadata (e.g., capacity, rate of analyses, number of analyses conducted, guest images utilized, history regarding the foregoing as well as uptime and maintenance, etc.) may also be used to generate heuristic-based (operational) attributes associated with a cluster or compute nodes within the cluster.


According to one embodiment of the disclosure, the second subsystem of the malware detection system may include a portal, a subscription review service, and the object evaluation service. The portal provides a customer with access to at least one website hosted by a (portal) server deployed within the second subsystem. Of course, as alternative embodiments, the portal server may be deployed in the first subsystem or may be remotely located from either of the first or second subsystems. For these embodiments, the portal server is in communications with logic of the subscription review service.


Using the portal, via a network device (e.g., subscriber management system, endpoint device, etc.), a customer is able to register (subscribe) for services offered by the malware detection system. In so doing, the customer can use the portal to select a subscription tier to set a service performance level (i.e., subscription requirements as represented by service attributes and the values thereof) for the customer and/or service performance level for specific sensors. Later, using the portal, the customer is able to modify a current subscription (e.g., change subscription tier, increase/decrease number of authorized sensors, change customer-configured attributes on a customer or sensor basis, etc.). As an illustrative example, the portal provides the customer with access to one or more webpages (e.g., subscription webpages) that allows the customer to provide customer details, select a subscription tier, and select certain configurable attributes (i.e., customer-configured attributes). Collectively, the information loaded via the portal is referred to as “registration information,” which is part of the subscription information.


Upon completing registration via the portal, an activation code may be sent by the portal server to a network device chosen by the customer or the network device used in the registration process. The activation code includes at least credentials that, when installed into a sensor of the customer, enables the sensor to communicate with the subscription review service for licensing and enrollment purposes.


Being part of the first subsystem or the second subsystem (as shown in FIG. 1A), the subscription review service is communicatively coupled to the portal server to receive the registration information for a particular customer for storage as part of its subscription information. According to one embodiment of the disclosure, the subscription review service may respond to a license request message from a sensor of the particular customer by returning information that enables the sensor to communicate with the cloud broker of the first subsystem (referred to as “service policy level information”). The system policy level information may include data maintained by the subscription information. Alternatively, in accordance with other embodiments directed to licensing and enrollment, the license request message may be provided to the subscription review service from a network device via the portal or via the subscriber management system on behalf of a customer (and its sensors), where the service policy level information may be directly or indirectly provided to the sensor.


Herein, the service policy level information may include a network address (e.g., a uniform resource locator “URL”) for accessing the cloud broker (logic within the analysis selection service). Besides the URL, the service policy level information may further include at least an identifier to a customer (referred to as “Customer_ID”). Herein, the Customer_ID may be provided to a customer submitter, namely logic that is configured to communicate with the first subsystem (e.g., the sensor or logic communicatively coupled to the sensor), which allows the customer submitter to identify the customer represented by the sensor to the cloud broker. The Customer_ID may be used by the cloud broker to acquire certain subscription information for use in enforcing subscription requirements as well as selecting a cluster to analyze submitted objects from the customer.


More specifically, the cloud broker may utilize the Customer_ID to conduct a look-up to obtain certain subscription information stored within a data store maintained by the subscription review service. As an illustrative example, the cloud broker may utilize the Customer_ID as an index to recover information associated with the service attributes, for example, (i) rate of data submissions (attributes) guaranteed (or permitted) for the subscription tier selected by the customer and/or (ii) geographic location permissions or restrictions (customer-configured attributes) for clusters or compute nodes. Such subscription information, along with the operational metadata, may be used by the cloud broker to assign a particular cluster for communications with the sensor, and enforce compliance with the service performance level assigned to the customer or the sensor for the particular customer. Such enforcement may include (i) reassigning the sensor to another cluster in response to the current cluster failing to maintain the customer's service performance level after a predetermined amount of time has elapsed, and/or (ii) stopping or throttling continued malware detection services when non-compliance is due to the customer or sensor falling outside a range of operation established for the service performance level (e.g., number or rate of submissions (e.g., objects or metadata) over a prescribed time period, bandwidth usage, etc.), optionally after a predetermined amount of time has elapsed from issuance of an alert to the customer.


Further deployed within the second subsystem, the object evaluation service includes (i) cluster(s) for use in analyzing objects provided by one or more sensors (referred to as “sensor(s)”) for malware and (ii) a cluster management system that monitors the operations of each cluster and controls its configuration. The cluster includes at least a cluster broker (hereinafter, “broker compute node”), which is responsible for a second level of control for subscription enforcement for this embodiment. It is contemplated that the cluster management system, in lieu of the cluster broker, may be configured as the second level of control, requiring some or all of the control functionality described below to be incorporated as functionality by the cluster management system.


Implemented as a physical sensor or as a virtual sensor (described below), each sensor is configured to capture network traffic (e.g., incoming data including objects), and perform a preliminary analysis on the network traffic (e.g., content of the object, which may include headers and/or payloads of packets forming or carrying the object). Each sensor is further configured to provide objects deemed “suspicious” (e.g., meets or exceeds an attack threshold representing a level of similarity, with respect to content, between the object under analysis and known malware or cyber-attack components) to a selected cluster for in-depth analysis. A customer may subscribe to the malware detection system in order to utilize the object evaluation service through data submissions from one or more sensors as described above.


As described above, the cloud broker provides the first level of control by at least (a) selecting a cluster to analyze objects that are submitted by a particular customer via a sensor and (b) monitoring operability of the selected cluster to ensure compliance with the service attributes associated with a subscription for the particular customer. The system monitoring logic collects metadata from the cluster management system that may pertain to the operating state of (a) sensor(s) at a subscriber site, (b) cluster(s) that are part of the second subsystem, and/or (c) compute node(s) of a particular cluster or clusters. According to one embodiment of the disclosure, this metadata (referred to as “operational metadata”) may include, but is not limited or restricted to, any or all of the following: cluster-based operational metadata, customer-based operational metadata, and/or compute node (CN)-based operational metadata (when the cluster management system is monitoring cluster specific activity), as described below. The receipt of the operational metadata may occur periodically or aperiodically. Also, the operational metadata may be received in response to a query message initiated by the system monitoring logic (“pull” method) or may be received without any prompting by the system monitoring logic (“push” method).


Based on this operational metadata (and optionally subscription information from the subscription review service), the system monitoring service may generate information (referred to as “cluster selection values”) for use by a rules engine within the cloud broker, operating in accordance with installed policy and routing rules, to determine cluster and/or compute node availability. More specifically, the cloud broker relies on the policy and routing rules processed by the rules engine to select the pairing between the cluster and a specific sensor, where the selection of the cluster may be influenced by the cluster selection values from the system monitoring logic and/or subscription information (attributes) accessed from one or more data stores located within the first subsystem and/or the second subsystem using the Customer_ID or Sensor_ID (or included in the service policy level information received from the specific sensor).


The degree of compliance by a selected cluster (represented by certain operational metadata) with certain service attributes for a customer (at least partially defined by the selected subscription tier) may influence load-balancing among the clusters and/or readjustment of sensor/cluster pairing. The degree of compliance may be further influenced by either (i) changes in condition of the assigned cluster or (ii) changes in cluster availability where a cluster different than the currently assigned cluster is better suited to handle analyses (e.g., as new clusters come online or workload demands on clusters change) or (iii) changes in customer or sensor requirements. In fact, in response to determining that the operability of the selected cluster is non-compliant with the subscription attributes and/or customer-configured attributes for the selected subscription tier (e.g., operability falls below a prescribed number of performance thresholds, falls below any performance threshold by a certain amount or percentage, etc.), the cloud broker may issue one or more alert messages (“alerts”) to a cybersecurity provider or other entity hosting the selected cluster in efforts to remedy such non-compliance. Additionally, or in the alternative, the cloud broker may perform load-balancing by reassigning the sensor(s) to a different cluster. According to one embodiment, the reassignment may occur “gracefully” by the sensor(s) or cloud broker temporarily storing a portion of the data within the incoming data submissions until reassignment by the cloud broker has been completed.


Where non-compliance is due to changes in operation by the customer or sensor, such as increased number or rate of object submissions for example, the cloud broker may provide one or more alerts to the subscriber management system associated with the non-compliant customer or sensor. Additionally, or in the alternative, the cloud broker may conduct cluster reassignment or stop/throttle malware detection services being provided until the customer alters its subscription to address the non-compliance. This may be achieved by the customer altering its subscription to increase the service performance level assigned to the customer or sensor (e.g., increasing number of submissions per customer or sensor, increase maximum data submission size per customer or sensor, number of authorized sensors for the customer, etc.).


The system monitoring service (along with the cloud broker) may be responsible for assuring that the malware detection system (and specifically the clusters and compute nodes available to perform object evaluation services) are capable of satisfying the service requirements (and, where provided, performance guarantees) of all customers. By evaluating the operational metadata provided by the cluster management system for all clusters against subscription information from the subscription review service regarding all customer registrations (and/or sensor enrollments for object evaluation services), enforcement logic within the cloud broker (or alternatively the system monitoring service) may generate system status information indicating the overall capacity and capability of the malware detection system to service all the registered customers per their aggregated service level requirements. The system status information is provided to system administrators by generating and sending status reports and alerts on demand and/or as system conditions require to allow the system administrators to alter functionality of the malware detection system, as needed.


In summary, as described below, the malware detection system includes enforcement logic (e.g., accounting and license enforcement services provided by the cloud broker), which assures compliance by the customer to the service performance level of the purchased subscription. For example, at enrollment time, the cloud broker may check credential attributes to assure the customer is registered (subscribed), the purchase price has been paid, contact information for the customer (e.g., customer administrator address, e.g., to which alerts should be sent) has been received, or the like. During operation subsequent to enrollment, the enforcement logic will enforce the subscription by assuring service attributes, and in particular the performance attributes, have not been exceeded. If the customer exceeds the rate or number of submissions permitted by its subscription level, for example, the cloud broker will send an alert to a customer administrator to increase (and possibly, if the performance attributes include a minimum (or simply to reduce the customer's expense associated with the subscription) to decrease the subscription level. If the performance attributes (maximums) are still exceeded, the service may be throttled back or suspended.


On the other hand, if it is found by the cloud broker that the operational metadata indicates the subscription requirements across all customers or for any specific customer cannot be satisfied, the cloud broker may send an alert to at least a system administrator for the malware detection system. The administrator may respond by adding additional clusters or compute nodes to the malware detection system, reconfigure existing clusters or compute nodes, or rebalancing the cluster-customer pairings by forcing re-enrollment of sensors of all impacted customers. The same functionality would apply when the subscription requirements for a specific customer cannot be satisfied.


Alternatively, in lieu of or in addition to issuing alerts to a malware detection system administrator, the cluster management system may be configured to respond to non-compliance with respect to the capacity and/or capabilities of the clusters to meet individual or aggregated customer service requirements. In one embodiment, the cluster management system can remedy the non-compliance (present occurring or anticipated as additional customers are serviced) by adjusting or modifying the clusters in accordance with a selected policy (e.g., a set of rules) stored in memory residing within or external from the cluster management system. In some embodiments, the analysis monitoring service may make decisions regarding compliance and cause the cluster management system to effectuate the decisions through adjusting or modifying the clusters The clusters can be adjusted or modified automatically (without the system administrator's involvement) or semi-automatically (with the system administrator approving recommended actions or selecting from options presented by the malware detection system through a user interface. For instance, the clusters can be modified or adjusted by adding a cluster or compute node that is available and operationally ready for installation or boot-up. Additionally, the cluster management system may be configured to adjust capabilities of its managed cluster(s) to assure compliance with customer-configurable and other attributes of subscriptions of subscribing customers. As illustrative examples, the cluster management system may be configured to adjust capabilities of its managed cluster(s) by adding clusters and/or compute nodes to selected clusters to satisfy (i) geographic requirements or preferences offered as a service attribute of a subscription); (ii) configuration requirements or preferences such as software profile(s) to be supported by a cluster, etc.); and/or (iii) storage capacity requirements where queue size constraints are approaching an overflow or underflow condition.


The cloud broker may also be responsible for reporting statistical information associated with analyses (by the selected cluster) of suspicious objects submitted from a sensor associated with the customer to the subscriber management system. The subscriber management system is configured to monitor operations of the sensor as well as other sensors associated with the customer. According to one embodiment of the disclosure, the statistical information may include at least customer-based operational metadata and/or compute node (CN)-based operational metadata (described below), provided from the cluster management system within the second subsystem. The reporting of the statistical information may be responsive to a request for statistical information by the subscriber management system, or alternatively, such reporting may be conducted by the cloud broker without any prompting by the subscriber management system or any network device on its behalf (e.g., periodic transmission of statistical information, aperiodic transmission upon receipt of the statistical information from the cluster management system, etc.).


The subscriber management system is configured to aggregate data associated with data submissions sent to the first subsystem (e.g., cloud broker) from the sensors managed by the subscriber management system to develop a customer-wide view of compliance with subscription requirements. For example, the subscriber management system may also gather information regarding the statistics (e.g., number and percentage of all objects subject to pre-analysis that are submitted for analysis). Based on the aggregated data, the subscriber management system is configured to confirm the accuracy of the statistical information and monitor subscription compliance, where the subscriber management system is provided access to the subscription information. In the case of a discrepancy between the aggregated data and the statistical information or detected non-compliance with the consumer's service performance level, the subscriber management system may send an alert to a prescribed network device to prompt an administrator to investigate the discrepancy or non-compliance. These operations enable the subscriber management system to monitor the activity and health of its sensors as well as compliance with service guarantees indicated by the service performance level.


Moreover, the subscriber management system may be configured with enforcement logic to cause a reduction and/or increase in object submissions caused by non-compliance with the consumer's service performance level. For example, the enforcement logic deployed in the subscriber management system may alter thresholds utilized in its preliminary analysis of metadata for suspiciousness by increasing/decreasing the suspiciousness threshold to reduce/increase the data submission rate. This allows the enforcement logic to throttle or halt use of the malware detection system during a period of consumer or sensor non-compliance.


As further described below, the subscriber management system may be equipped with an interactive user interface (UI) to permit the customer to examine all the statistics on a per sensor basis rather than at a customer-aggregated level. In this regard, the customer may be allowed to allocate or select the service attributes on a per-sensor basis.


I. Terminology


In the following description, certain terminology is used to describe features of the invention. In certain situations, each of the terms “logic”, “service,” “engine,” or “system” are representative of hardware, firmware, and/or software that is configured to perform one or more functions. As hardware, the logic (or engine or system) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.


Alternatively, or in combination with the hardware circuitry described above, the logic (or engine or system) may be software in the form of one or more software modules. The software modules may include an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, a shared library/dynamic load library, or one or more instructions. The software module(s) may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code may be stored in persistent storage.


The “network device” may be construed as an electronic device and/or one or more software modules with data processing and/or networking functionality. Examples of a network device may include, but are not limited or restricted to any type of computer (e.g., desktop, laptop, tablet, netbook, server, mainframe, etc.), a data transfer device (e.g., router, repeater, portable mobile hotspot, etc.), a data capturing/forwarding device (e.g., radio transceiver or tuner, a firewall, etc.), or software that virtualizes operability of the electronic device or certain functionality of the electronic device (e.g., virtual sensor, virtual proxy server, etc.) or other logic type.


One illustrative example of a type of network device may include a sensor or a compute node (e.g., hardware and/or software that operates to receive information, and when applicable, perform malware analysis on that information). Another illustrative example of a type of network device may include an endpoint device (e.g., laptop, tablet, netbook, device-installed mobile software and/or management console) that is configured to receive information propagating over a network, including alerts configurable for delivery to the endpoint device by the customer during registration.


In general, a “customer” may be construed as any entity (e.g., an individual, a company, or an organization being a group of individuals operating within the same or different company, governmental agency, department or division, etc.) considering, seeking, or granted authorized access to the malware detection system. Also, a “subscriber site” may be construed as a collection of network devices, which may be communicatively coupled over a network. The subscriber site may deploy a subscriber management system and one or more sensors which, after credential checks, may gain authorized access to the object evaluation service (deployed within the second subsystem of the malware detection system) via the first subsystem.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.


The term “message” generally refers to signaling (wired or wireless) as either information placed in a prescribed format and transmitted in accordance with a suitable delivery protocol or information made accessible through a logical data structure such as an API. Examples of the delivery protocol include, but are not limited or restricted to HTTP (Hypertext Transfer Protocol); HTTPS (HTTP Secure); SSH (Secure Shell); SSH over SSL (SSH over Secure Socket Layer); Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), iMES SAGE, Instant Message Access Protocol (IMAP), or the like. Hence, each message may be in the form of one or more packets, frames, or any other series of bits having the prescribed format or an API.


The term “service” generally refers to one or more network devices operating individually or collectively to provide on-demand network access to shared data for customer or network device registration and/or enrollment. According to one embodiment, the service may allow for access to a shared pool of configurable resources for analysis of objects for a presence of malware or a detection of a completed or on-going cyber-attack after successful registration and enrollment for that service. Hence, the term “cloud-based” generally refers to a hosted service that is remotely located from a data source and configured to receive, store and process data delivered by the data source over a network. Cloud-based systems may be configured to operate as a public cloud-based service, a private cloud-based service or a hybrid cloud-based service. A “public cloud-based service” may include a third-party provider that supplies one or more servers to host multi-tenant services. Examples of a public cloud-based service include Amazon Web Services® (AWS®), Microsoft® Azure™, and Google® Compute Engine™ as examples. In contrast, a “private” cloud-based service may include one or more servers that host services provided to a single customer (enterprise) and a hybrid cloud-based service may be a combination of certain functionality from a public cloud-based service and a private cloud-based service.


As briefly described above, the term “malware” may be broadly construed as any code, communication or activity that initiates or furthers an attack (hereinafter, “cyber-attack”). Malware may prompt or cause unauthorized, unexpected, anomalous, unintended and/or unwanted behaviors (generally “attack-oriented behaviors”) or operations constituting a security compromise of information infrastructure. For instance, malware may correspond to a type of malicious computer code that, upon execution and as an illustrative example, takes advantage of a vulnerability in a network, network device or software, for example, to gain unauthorized access, harm or co-opt operation of a network device or misappropriate, modify or delete data. Alternatively, as another illustrative example, malware may correspond to information (e.g., executable code, script(s), data, command(s), etc.) that is designed to cause a network device to experience attack-oriented behaviors. The attack-oriented behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device an atypical and unauthorized manner; and/or (2) provide unwanted functionality which may be generally acceptable in another context.


In certain instances, the terms “compare,” comparing,” “comparison,” or other tenses thereof generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular pattern.


The term “transmission medium” may be construed as a physical or logical communication link (or path) between two or more nodes. For instance, as a physical communication path, wired and/or wireless interconnects in the form of electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), may be used.


The term “submission” may correspond to a submission of data directed to a targeted destination (e.g., malware detection system), such that a “data submission” may correspond to metadata associated with an object that is determined to be suspicious and may be subjected to additional malware analysis. Alternatively, or in addition to the metadata, the data submission may include one or more objects provided concurrently with or subsequent to the metadata. The term “object” generally relates to content (or a reference for accessing such content) having a logical structure or organization that enables it to be classified for purposes of malware analysis. The content may include an executable (e.g., an application, program, code segment, a script, dynamic link library “dll” or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.), a non-executable (e.g., a storage file; any document such as a Portable Document Format “PDF” document; a word processing document such as Word® document; an electronic mail “email” message, web page, etc.), headers and/or payloads of packets operating as the object, or simply a collection of related data.


The object and/or metadata may be acquired from information in transit (e.g., a plurality of packets), such as information being transmitted over a network or copied from the transmitted information for example, or may be acquired from information at rest (e.g., data bytes from a storage medium). Examples of different types of objects may include a data element, one or more flows, or a data element within a flow itself. A “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session while a “data element” generally refers to a plurality of packets carrying related payloads (e.g., a single webpage provided as multiple packet payloads received over a network). The data element may be an executable or a non-executable, as described above.


Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. As an example, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


II. Overall General Architecture


Referring to FIG. 1A, an exemplary block diagram of an illustrative embodiment of a subscription-based, malware detection system 100 is shown. Herein, the malware detection system 100 is communicatively coupled to one or more sensors 1101-110M (M≥1). The sensors 1101-110M may be located at a subscriber site 112 (e.g., located at any part of an enterprise network infrastructure at a single facility or at a plurality of facilities), or as shown, the sensors 1101-110M may be located at different subscriber sites 112 and 114. As illustrated, the malware detection system 100 may be separated geographically from any of the subscriber sites 112 and 114.


According to one embodiment of the disclosure, the malware detection system 100 includes a first subsystem 130 and a second subsystem 160. As shown in FIG. 1A, the first subsystem 130 of the malware detection system 100 may be hosted as part of a public cloud-based service. The second subsystem 160 of the malware detection system 100 may include a private cloud-based object evaluation service 180 operating as an analysis system, which is hosted by a cybersecurity provider or another entity (e.g., different than the customer). Having a high degree of deployment flexibility, in the alternative, the malware detection system 100 can also be deployed as a fully public cloud-based service, as a fully private cloud-based service, or as a hybrid cloud-based service. This flexibility provides optimal scaling with controlled capital expense as well as the ability to control deployment locale to satisfy governmental requirements, e.g., as to sensitive information such as personally identifiable information (PII).


A. Portal—Sensor Architecture


In FIG. 1A, a sensor 1101 may be deployed as a physical sensor (e.g., self-contained network device configured with software to perform the operations as illustrated in FIG. 2) or a virtual sensor (e.g., computer code installed by a customer within a network device). When deployed as a physical sensor, the sensor 1101 is identified by a sensor identifier (“Sensor_ID”) 115, which may be based on the media access control (MAC) address or another unique identifier (e.g., serial number or network identifier) assigned to the sensor 1101. However, when deployed as a virtual sensor, the sensor 1101 may be loaded with the Sensor_ID 115 upon registering (subscribing) to the malware detection system 100. According to one embodiment of the disclosure, the credential 116 and/or the Sensor_ID 115 (for use by virtual sensors) may be provided as part of an activation code 117 in response to the customer completing registration (or modifying its subscription) via a portal 165. Herein, the “portal” 165 may be construed as a service including hardware (portal server) that provides access to at least one website hosted by a server to register for a subscription to a cloud-based malware detection system and modify the terms of the subscription.


As shown in FIG. 1A, the portal 165 provides a potential customer with access to one or more websites hosted by a server 166 residing within the second subsystem 160. Of course, as another embodiment (not shown), the portal server 166 may be deployed in the first subsystem 130 or may be remotely located (and external) from both subsystems 130 and 160. Independent of location, the portal server 166 is in communications with logic of a subscription review service 170 within the malware detection system 100.


Using the portal 165, a customer is able to register (subscribe) to services offered by the malware detection system 100 or modify the current terms of the subscription (e.g., change subscription tier, increase/decrease number of authorized sensors, change customer-configured attributes, etc.) to set a service performance level for the customer and/or specific sensors for the customer. As an illustrative example, the portal 165 may provide a customer with access to one or more webpages, which allows the customer to supply customer details (e.g., customer name; address; administrator and preferred contact media such as email address, text or phone number; credit card or banking information for periodic payment for the subscription; network address for subscriber management system, etc.). The webpages may prompt the customer for such customer details and other information using conventional “user interactive” techniques. These may include a web form, e.g., rendered by a conventional web browser of the customer, including one or more online pages that prompts for and accepts customer input.


The portal 165 may further enable the customer to select a subscription tier, which may automatically assign certain subscription attributes for the customer's subscription. These subscription attributes may include certain performance-based attributes (e.g., QoS thresholds, throughput thresholds, etc.) and/or administrative-based attributes (e.g., software update frequency, total number of sensors supported, etc.). Also, the portal 165 allows the customer to customize the subscription through customer-configured attributes (e.g., cluster geographic permissions or restrictions, special guest image software profiles for use in virtualized processing of objects by a selected cluster, alert notification schemes, etc.). Collectively, the information gathered from the customer via the portal 165 is generally referred to as “registration information” 167. A portion of the registration information 167, which pertains to guaranteed system performance and requirements for the customer, corresponds to a portion of the service attributes used in monitoring for compliance with the service performance level assigned to the customer and/or the sensor


Upon completing registration (or modification of the subscription) via the portal 165, a message 168 including the activation code 117 may be sent by the portal server 166 to a network device (e.g., subscriber management system 118, endpoint device, etc.), namely the network device used in the registration process or a network device selected by the customer during the registration process. The network device may be located at the subscriber site 112 or external to the subscriber site 112. The message 168 includes at least the credentials 116 that, if installed into the sensor 1101, enables the sensor 1101 to communicate with the subscription review service 170 for licensing and enrollment purposes. Alternatively, the credentials 116 may be submitted by another network device, where the credentials 116 allow that network device to communicate with the subscription review service 170 to enroll and license the sensor 1101 on the customer's behalf


B. Sensor—Subscription Review Service Architecture


Deployed within the second subsystem 160, the subscription review service 170 is communicatively coupled to the portal server 166 to receive the registration information 167 for a particular customer for storage as part of the subscription information 177. The subscription information 177 may be stored as structured data (e.g., databases, files, etc.) or unstructured data within memory represented as one or more data stores 175. As shown in FIG. 1A, the subscription review service 170 may be deployed within the first subsystem 130 or may be deployed within both subsystems 130 and 160. As a result, the data store(s) 175 may be deployed within the malware detection system 100 (e.g., within the second subsystem 160, within the first subsystem 130, or within both subsystems 130 and 160 where the data store(s) 175 hosted by the first subsystem 130 may feature a mirror copy or a subset of the amount of data stored in the data store(s) 175 hosted by the second subsystem 160).


Furthermore, although not shown, the subscription review service 170 may be communicatively coupled to the analysis selection service 140 and/or the analysis monitoring service 145 to provide subscription information 177 thereto. The subscription information 177 may be used to adjust operability of one or both of these services (e.g., increase or decrease QoS levels, decrease or increase analysis times, decrease or increase cluster availability, etc.).


Using installed credentials 116 provided by the portal server 166, the sensor 1101 communicate with the subscription review service 170 to receive a portion of the subscription information (e.g., service policy level information 127), which enables the sensor 1101 to communicate with the analysis selection service 140 of the first subsystem 130. The service policy level information 127 may include an identifier of the customer (Customer_ID 128) that may be used by the analysis selection service 140 to access subscription information 177 associated with the customer assigned the Customer_ID 128 in determining what cluster to selected to handle object submissions from the sensor 1101 to determine whether a cyber-attack has occurred (e.g., identified by detecting a presence of malware).


C. Cluster Selection Architecture


Referring still to FIG. 1A, the sensors 1101-1102 may be positioned at separate ingress points along the subscribing customer's network or subnetwork, or may be positioned in close proximity to one another, perhaps sharing the same hardware (e.g., power source, memory, hardware processor, etc.). For certain deployments, where the sensor 1101-1102 are used as edge network devices for subnetworks, sensors may be used to monitor lateral infection between the subnetworks at the subscriber site 112. The sensors 1101-1102 may serve as email proxies to receive email traffic being sent to computing assets protected by the customer in order to perform a security analysis.


A sensor (e.g., sensor 1101) may conduct a preliminary analysis of network traffic, including data within an object 120 (e.g., data within a header or body of one or more packets or frames within monitored network traffic) to determine whether that object 120 is suspicious. The object 120 may include a portion of information (content) that is intercepted or copied from information being routed over a network, which may be a public network (e.g., the Internet) or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. The sensor 1101 may retain metadata associated with each data submission transmitted to the first subsystem 130 by the sensor 1101.


The object 120 may be deemed “suspicious” based on an analysis of the object 120 (without execution) and, based on the analysis, determining that the object being associated with a cyber-attack exceeds a prescribed probability. This analysis may include (i) detecting whether the object 120 is sourced by or directed to a particular network device not identified in a “blacklist” or “whitelist,” and (ii) an analysis of content of the object 120 (e.g., data patterns, etc.). Hence, the preliminary analysis, in effect, controls the rate and/or number of suspicious objects made available by the sensor 1101 for in-depth malware analysis by a selected cluster within the second subsystem 160 and adjustment of the prescribed threshold for suspiciousness (up/down) may adjust (reduce/increase) the submission rate to the malware detection system 100.


In some embodiments, upon completing the preliminary analysis of the network traffic (including suspicious object 120) and having been authenticated to access an object evaluation service 180 of the malware detection system 100 over an established a communication session, the sensor 1101 provides at least metadata associated with the suspicious object 120 to the object evaluation service 180 to commence an in-depth malware analysis process of the suspicious object 120 to follow. The results of the preliminary analysis may be made available for use later in the final determination after in-depth analysis of whether the suspicious object 120 is associated with a cyber-attack.


Referring still to FIG. 1A, with respect to the malware detection system 100, an analysis selection service 140 hosted by the first subsystem 130 is responsible for selecting a particular cluster (e.g., cluster 1851) of one of more clusters 1851-185N (N≥1), which is deployed within the second subsystem 160, to perform malware analyses on objects provided by a specific sensor (e.g., sensor 1101). The analysis selection service 140 selects the cluster 1851 after an analysis of data, including the subscription information 177 accessed using the service policy level information 127 and/or a portion of the operational metadata 150 (used to produce “cluster selection values” 157) operating as inputs to the analysis selection server 140.


For example, according to one embodiment of the disclosure, upon receiving the cluster selection values 157 and/or subscription information 177 (recovered using the service policy level information 127), a rules engine 142 operates in accordance with policy and routing rules to select the cluster 1851, where the operational metadata 150 associated with the selected cluster 1851 indicates that the cluster 1851 is able to satisfy performance or operation criteria set forth by subscription attributes and/or customer-configured attributes within the subscription information 177. The policy and routing rules utilized by the rules engine 142 may be static, dynamic (modifiable and updateable) or a hybrid where some of the policy/routing rules are static while others are dynamic. For instance, the policy and routing rules of the rules engine 142 may be preloaded, but some of its rules may be modified or replaced over time. The frequency of the rule modifications may depend, at least in part, on results of prior malware detection by cybersecurity providers, changes in the cyber-threat landscape, and/or the types, targets, and techniques used in recent or potential cyber-attacks. Of course, the policy and routing rules utilized by the rules engine 142 should be broadly construed as any data (rules, models or other logical construct) that attempts to maintain or increase compliance with service guarantees based, at least in part, on the subscription tier of the customer.


Hence, the analysis selection service 140 is configured to select the cluster 1851 to perform malware analyses on suspicious objects submitted by a sensor (e.g., sensor 1101) based, at least in part, on (i) the subscription information 177 and (ii) the cluster selection values 157. The subscription information 177 is accessible using (or provided as part of) the service policy level information 127 included in an analysis request message 125 while the cluster selection values 157 are based on operational metadata 150 received from the cluster management system 190 deployed within the second subsystem 160 via analysis monitoring service 145 (described below). As a result, the analysis selection service 140 controls the formation and maintenance of a communication session over a communication link 155 between the selected cluster 1851 of the object evaluation service 180 and the sensor 1101 requesting the communication session over the communication link 155.


After the communication session over the communication link 155 has been established, logic within the analysis selection service 140 (generally referred to as a “cloud broker” 610) is configured to provide information associated with a suspicious object from the requesting sensor 1101 to the selected cluster 1851 within the object evaluation service 180. Also, this logic may be configured to provide results of a malware analysis on that suspicious object to the requesting sensor 1101 or any selected destination by the customer such as another network device.


As shown in FIG. 1A, the analysis monitoring service 145 receives, in a periodic or aperiodic manner, the operational metadata 150 from the second subsystem 160 (e.g., cluster management system 190). As an example, the operational metadata 150 may be directed to the overall health of one or more clusters (e.g., the cluster 1851); cluster queue size or queue length; cluster or compute node workload; cluster or compute node geographic location; traffic restrictions on a cluster or compute node basis according to a particular traffic type (e.g., governmental versus commercial traffic, email versus web traffic, or traffic from customers with or exceeding a prescribed subscription level); and/or software profiles (e.g., guest images) supported for processing (e.g., executing, running, activating, etc.) of the suspicious object 120 within one or more virtual machines (used for malware detection) hosted by compute nodes within the cluster 1851. As shown, the operational metadata 150 may be received in response to a query message initiated by the analysis monitoring service 145 (“pull” method) or may be received without any prompting by the analysis monitoring service 145 (“push” method). The cluster selection values 157, namely a portion of the operational metadata 150 and/or information produced based at least in part on a portion of the operational metadata 150, is made available to the rules engine 142 within the analysis selection service 140.


According to one embodiment of the disclosure, the cluster selection values 157 corresponds to information that (i) pertains to rule-based parameters utilized by the policy and routing rules and (ii) is generated from the operational metadata 150. Hence, the cluster selection values 157 may be values generated from the operational metadata 150 that are consistent with parameters utilized by the policy and routing rules. As a result, when these values are applied to the policy and routing rules controlling operation of the rules engine 142, the analysis selection service 140 is able to identify which cluster or clusters are available to support another sensor and/or their level of availability and ability to fulfill service attributes. As an illustrative example, where the policy and routing rules include a rule that requires a cluster to have 30% queue capacity to service another sensor and the metadata identifies that the queue size is fifty storage elements and the current queue length is 15 storage elements, the cluster selection values 157 would identify that the cluster has 30% ( 15/50) capacity.


Based at least on the operational metadata 150 described above, the cluster selection values 157 may be values that refine the cluster selection process by identifying which cluster or clusters should be considered or precluded from consideration for data submissions involving a particular type of object and/or a specific customer or specific subscription tier. From still other information (e.g., compute node workload), the cluster selection values 157 may be values that further determine what broker compute node is to be selected for a particular cluster. Additionally, or in the alternative, the cluster selection values 157 may include or may be based on information associated with one or more sensors 1101, . . . , and/or 110N or information based on prior communication sessions by the sensor(s) 1101, . . . , and/or 110N such as sensor activity (e.g., number of submissions, amount of analysis time performed on objects by the particular sensor, number of malicious objects detected for a particular sensor, number of timeouts triggered, or the like).


In summary, the following operations are performed before the sensor (e.g., sensor 1101) is able to provide data for analysis (referred to as a “data submission 124” and illustrated in FIG. 1B) to the malware detection system 100:

    • (a) a submitter (e.g., sensor 1101) obtains service policy level information 127 that includes credentials (e.g., the Customer_ID 128, user name, password, and/or keying material), and optionally attributes that may be used in cluster selection by the analysis selection service 140;
    • (b) submitter (e.g., sensor 1101) is authenticated to access services provided by the malware detection system 100 using (i) its Submitter_ID (e.g., Sensor_ID 115, where Sensor_ID-Customer_ID mapping is provided to access subscription information 177 associated with the Customer_ID 128 from the data store(s) 175); (ii) Sensor_ID 115 or Customer_ID 128 included as part of the service policy level information 127 is used to access the subscription information 177 from the data store(s) 175 and the Sensor_ID 115 used to identify routing path of signaling (e.g., control messages, data, etc.) from the object evaluation service 180; or (iii) portions of the subscription information 177 included as part of the service policy level information 127.
    • (c) the analysis selection service 140 (cloud broker) selects a cluster (e.g., cluster 1851) to handle malware analyses for the sensor 1101 based on incoming cluster selection values 157 via analysis monitoring service 145, and certain subscription information 177 (e.g., certain subscription attributes, customer-configured attributes, etc.) provided as part of (or accessible using) the service policy level information 127 as described in subsection (b) above; and
    • (d) the analysis selection service 140 (cloud broker) establishes the communication session over the communication link 155 with the cluster 1851.


D. Data Submission Architecture


According to one embodiment of the disclosure, as shown in FIG. 1B, the data submission 124 may include the object 120 and/or metadata 122 associated with the object 120. Herein, according to this embodiment, the data submission 124 includes the metadata 122 while the object 120 is temporarily stored by the sensor 1101 and uploaded at a later time. Alternatively, it is contemplated that the sensor 1101 may concurrently upload the object 120 and its corresponding metadata 122 to the malware detection system 100 for processing.


For instance, the sensor 1101 may later upload the object 120 to the object evaluation service 180 via the analysis selection service 140 for malware analysis. This upload may occur once the malware detection system 100 confirms, based on analysis of the metadata 122, that (a) the object 120 has not been analyzed previously and (b) a particular compute node within a selected cluster is ready to analyze the object 120. If the malware detection system 100, such as the broker compute node 186 for example, determines that the suspicious object 120 has been previously analyzed, the first subsystem 130 may include logic that returns results from previously analyzed objects upon detecting a high correlation between the metadata 122 associated with the suspicious object 120 and metadata associated with a previously analyzed object before submission of the suspicious object 120. This logic may be implemented to avoid unnecessary analysis to improve response time and mitigate potential false positives or false negatives.


According to one embodiment of the disclosure, a first enforcement logic 143, separate from the licensing and enrollment services offered by the subscription review service 170, may be implemented in the first subsystem 130 and configured to monitor data submissions by the customer and account for all of the analysis and actions undertaken that exceed the terms of a license (subscription), namely non-compliance with the service performance level assigned to the customer as represented by the service attributes and/or the service performance level assigned to the sensor.


Additionally, the first enforcement logic 143 is further configured to enforce compliance with the service performance level assigned to the customer or the sensor for the particular customer based on an analysis of a portion of the operational metadata 150 along with at least some of the service attributes within the data store(s) 175. Where non-compliance is due to changes in customer or sensor requirements, such as certain performance-based attributes for the subscription have been exceeded, the first enforcement logic 143 of the cloud broker 610 may provide one or more alerts to a customer administrator (e.g., via the subscriber management system 118 associated with the non-compliant customer at subscriber site 112, a network device accessed by the customer administrator identified at registration, or the non-compliant sensor 1101 to prompt a change in the selected subscription tier). Additionally, the first enforcement logic 143 may signal the cloud broker 610 to begin a cluster reassignment or stop/throttle malware detection services being provided until the customer alters its subscription to address non-compliance or, even after adjustment of the subscription tier, the customer still remains non-compliant with the terms of the subscription.


The software associated with this service may further implement a “pay-as-you-go” licensing feature, which keeps track of all of the data submissions by a customer and charges based on usage of the malware detection system 100. This licensing feature provides for pre-payment of some reserved object analysis capacity, potentially at a cost savings.


Additionally, the first enforcement logic 143 may be configured to confirm the current subscription status assigned to the customer associated with the sensor 1101 that is attempting to upload the suspicious object 120 into the malware detection system 100 for analysis. This confirmation may be accomplished by accessing the data store(s) 175 within the malware detection system 100 using the Sensor_ID 115 or the Customer_ID 128 provided by the sensor 1101 as an index to obtain credential attributes within the subscription information 177 pertaining to the customer. For example, at enrollment time, the first enforcement logic 143 may check credential attributes to assure the customer is registered (subscribed), the purchase price has been paid, contact information for the customer (e.g., administer address) has been received, etc. Alternatively, this confirmation may be accomplished by using the Sensor_ID 115 to determine the Customer_ID 128 within a Sensor_ID-Customer_ID mapping, and thereafter, conduct a database lookup using the Customer_ID 128 concerning subscription status.


In more general terms, the confirmation of the current subscription status may involve a first determination by the first enforcement logic 143 as to whether the customer has an active subscription to the malware detection system 100. If the customer does not possess an active subscription to the malware detection system 100, the sensor 1101 may be precluded from establishing the communication session over the communication link 155 and uploading information into the object evaluation service 180 for analysis. Upon determining an active subscription, the first enforcement logic 143 selects a cluster (second determination) using certain subscription information 177. The certain subscription information 177 may include, but is not limited or restricted to the following: (a) subscription attributes including subscription tier, QoS thresholds, permissions, access control information, cluster availability details such as a listed default cluster, cluster selection ordering or preferences, and/or cluster restrictions; (b) customer-configured attributes including geographic location permissions or restrictions for compute nodes in processing objects for the sensor 1101, type of remediation selected by the customer, type of alert notification selected by the customer (medium, destination, etc.); (c) factory set attributes including default cluster permissions; and/or (d) operational attributes including heuristic (and dynamic) data based on past historical operations.


Thereafter and concurrent to these operations, the first enforcement logic 143 of the cloud broker 610 enforces the subscription by assuring that maximum thresholds included as part of the service performance levels (as described above) are not exceeded and minimum thresholds are met. Upon determination by the cloud broker 610, based on the operational metadata, that the minimum performance service levels across the particular customer or all customers cannot be satisfied (e.g., cluster failure/maintenance, compute node failure/maintenance, etc.), the cloud broker 610 will send an alert to at least a system administrator for the malware detection system 100. The administrator may respond by (i) adding additional clusters (e.g., cluster 1853) to the malware detection system 100 or one or more additional compute nodes, (ii) reconfigure the selected cluster 1851 or its compute nodes, or the like. Additionally, the cloud broker 610 may rebalance the cluster-customer pairings by forcing re-enrollment of the sensor 1101 and/or any sensors of impacted customers. This may be effected, e.g., by the cloud broker sending an appropriate message to the sensor(s) or subscriber management system 118 to cause the sensor(s) to re-enroll following the same process as that described above for enrollment. Similar operations would be applicable when the subscription requirements for a specific customer cannot be satisfied.


It is contemplated that an OEM or another party hosting the object evaluation service 180 may configure the service so that an attribute may be categorized as a subscription, customer-configured, factory set, or operationally dynamic attribute. Also, some customer-configured attributes may allow customers to tailor operability that is not offered by the base attributes associated with a subscription tier. The OEM or the other party can decide which attribute or attributes should be configured in conjunction with which subscription level.


Additionally, the first subsystem 130 is configured to generate and transmit statistical information 192, which may be prompted in response to a management query message 194 (as shown) or provided without being in response to signaling from the subscriber site 112. The management query message 194 may correspond to a request for data that is directed to the operability of a particular sensor or the cluster(s). For instance, the statistical information 192 may be provided to the subscriber management system 118 or a centralized management system (not shown) accessible by more than one customer site, where the central management system may be configured to aggregate the information associated with all sensors and provides a report, e.g., via a user interface, to the customer on operational statistics, results of analysis, and subscription compliance details. Deployed as a physical network device including a processor and/or memory or as a virtualization (in software), the subscriber management system 118, in some embodiments, is also responsible for receiving customer selections of available configurable attributes, as elsewhere described.


According to one embodiment of the disclosure, the statistical information 192 may include a portion of the operational metadata 150 such as at least a portion of the customer-based operational metadata and/or the compute node (CN)-based operational metadata (described below). Besides receipt of the statistical information 192, the subscriber management system 118 aggregates data associated with data submissions sent to the cloud broker 610 from the sensors 1101-1102 managed by the subscriber management system 118. Such data gathering develops a customer-wide view for use in compliance with the established service performance level for the subscription and customer statistics (e.g., number or percentage of objects subject to pre-analysis that are provided for subsequent analysis by the object evaluation service 180). Furthermore, based on the aggregated data, the subscriber management system 118 (with access to the subscription information 177) may confirm accuracy of the statistical information 192 and/or monitor compliance with the service performance level assigned to the customer and/or sensor 1101 as described above.


In the case of a notable discrepancy between the aggregated data and the statistical information 192 (e.g., exceeding a set amount of discrepancy to avoid repeated investigation alerts) or a finding of non-compliance with the service performance level, the subscriber management system 118 is configured to (i) send an alert to a prescribed network device associated with an administrator of the subscriber site 112 to prompt an investigation as to the discrepancy or non-compliance. As a result, the subscriber management system 118 is able to (i) monitor, in real-time, the activity and health of the sensor 1101 and (ii) enforce compliance with service guarantees indicated by the service performance level assigned to the customer or the sensor 1101.


It is contemplated that, in lieu of the management query message 194, the first subsystem 130 may provide the statistical information 192 to the subscriber management system 118 in accordance with a “push” transmission scheme. This transmission scheme may be conducted periodically or upon termination of a communication session between the sensor 1101 and the selected cluster 1851.


The object evaluation service 180 includes one or more clusters 1851-185N (N≥1). Each cluster 1851-185N may be configured to conduct an analysis of a suspicious object (e.g., object 120) provided by one of the sensors 1101-110M that is enrolled to the subscription-based malware detection system 100. As described above, each cluster 1851 . . . or 185N is a scalable architecture, which includes at least one compute node in which additional compute nodes may be added as needed to handle an increased number of object analyses caused by increased network traffic at a subscriber site (e.g., subscriber site 112).


According to one embodiment, the cluster 1851 includes a plurality of compute nodes, including (i) one or more compute nodes 186 each operating as a “broker” compute node and (ii) one or more compute nodes 187 each operating as an “analytic” compute node. Herein, a broker compute node 186, operating as the second level of control, may be configured to perform to at least determine, from received metadata 122 associated with the data submission 124 (e.g., hash value for the object 120 being part of the metadata 122), whether the suspicious object 120 has been previously processed by the malware detection system 100.


If the suspicious object 120 has not been previously processed by the malware detection system 100, the broker compute node 186 causes the loading of the metadata 122 into a queue 310. Thereafter, based on processing availability, a broker compute node 186 or an analytic compute node 187 gains access to the metadata 122 and uses the metadata 122 (or data accompanying the metadata such as an object identifier 275 of FIG. 2, attributes, or tags) to retrieve the suspicious object 120 from a data store within the sensor that submitted the metadata 122 (e.g., sensor 1101). Alternatively, the suspicious object 120 may be stored in memory separate from the sensor 1101, within a data store within the subscriber management system 118, or within data storage within the first subsystem 130. Upon receipt of the suspicious object 120, the object requesting broker or analytic compute node determines whether the suspicious object 120 is associated with malware.


If the suspicious object 120 has been previously processed by the malware detection system 100, the results of the prior analysis may be reported by the broker compute node 186 to a network device chosen by the customer to receive the results via the first subsystem 130. The network device may include the sensor 1101, the subscriber management system 118 or an endpoint device via the portal 165. In some embodiments, however, the sensor 1101 may provide the results to the subscriber management system 118.


III. Subscriber Site/Sensor Components and Operation


Referring now to FIG. 2, a block diagram of an exemplary embodiment of logic implemented within a physical deployment of the sensor 1101 in communication with the malware detection system 100 of FIGS. 1A-1B is shown. According to this embodiment of the disclosure, the sensor 1101 comprises one or more hardware processors 200 (generally referred to as “processor”), a non-transitory storage medium 210, and one or more interfaces 220 (generally referred to as “interface”). These components are at least partially encased in a housing 230, which may be made entirely or partially of a rigid material (e.g., hard plastic, metal, glass, composites, or any combination thereof) that protects these components from environmental conditions.


In an alternative virtual device deployment, however, the sensor 1101 may be implemented entirely as software that may be loaded into a network device (as shown) and operated in cooperation with an operating system (“OS”) running on that device. For this implementation, the architecture of the software-based sensor 1101 includes software modules that, when executed by a processor, perform functions directed to functionality of logic 240 illustrated within the storage medium 210, as described below.


The processor 200 is a multi-purpose, processing component that is configured to execute logic 240 maintained within the non-transitory storage medium 210 operating as a data store. As described below, the logic 240 may include, but is not limited or restricted to, (i) subscription control logic 250, (ii) preliminary analysis logic 260, (iii) metadata extraction logic 270, (iv) notification logic 290, and/or (v) cluster selection logic 295. One example of processor 200 includes an Intel® (x86) central processing unit (CPU) with an instruction set architecture. Alternatively, processor 200 may include another type of CPUs, a digital signal processor, an Application Specific Integrated Circuit (ASIC), a field-programmable gate array, or any other hardware component with data processing capability.


According to one embodiment of the disclosure, the sensor 1101 may include subscription control logic 250 that controls the signaling (handshaking) with the subscription review service 170, such as the licensing logic 640 and/or enrollment logic 650 as shown in FIG. 6A. Such signaling enables the sensor 1101 to acquire credentials that are part of the service policy level information 127 of FIG. 1A (e.g., Customer_ID, username, password, keying material, etc.) as well as an uniform resource locator (URL) or other communication address for accessing the cloud broker 610 of FIG. 6A. Additionally, the subscription control logic 250 may maintain information associated with a subscription expiration time that, if the subscription is not extended through renewal, the subscription control logic 250 disables communications with the assigned cluster 1851 and/or signals a customer that renewal payments are due to continue the subscription to the malware detection system 100 or upgrade to a more robust service policy (subscription) level.


According to one embodiment of the disclosure, as shown, the interface 220 is configured to receive incoming data 235 propagating over a network, including the metadata 122 and/or the object 120. The incoming data 235 may be received directly from the network or via a network tap or Switch Port Analyzer (SPAN) port, also known as a mirror port, provided by the sensor 1101. Processed by the processor 200, the preliminary analysis logic 260 may conduct an analysis of at least a portion of the incoming data 235, such as headers/payloads of packets of the incoming object 120 for example, to determine whether the object 120 is suspicious. Furthermore, the metadata extraction logic 270, during such processing, may extract metadata 122 from the incoming data 235 and assign an object identifier 275 to correspond to both the metadata 122 and the suspicious object 120. The object identifier 275 may be unique among the clusters 1851-185N (referred to as “universally unique identifier” or “UUID” 275). It is contemplated that the UUID 275 may be included as part of the metadata 122.


According to one embodiment of the disclosure, the metadata 122 (with the UUID 275) may be stored in a metadata data store 280. Similarly, the suspicious object 120 and UUID 275 may be stored in a content data store 285. The content data store 285 may be part of the non-transitory storage medium 210 of the sensor 1101. It is contemplated, however, that the content data store 285 may be located externally from the sensor 1101.


The sensor 1101 further includes notification logic 290, which is responsible for handling communications 292 via communication session over the communication link 155 with the selected cluster 1851 via the analysis selection service 140 of FIGS. 1A-1B. Such communications 292 may include (i) analysis results or (ii) information that signifies (a) the suspicious object 120 has already been analyzed or (b) a timeout event has been detected for the metadata 122 that originated from the sensor 1101, where a “timeout event” denotes that the suspicious object 120 has not been analyzed by the object evaluation service 180 of FIGS. 1A-1B within a time allotted by the service policy level information 127 associated with the subscription for the customer or by the sensor 1101.


Some embodiments of the sensor 1101 may include the cluster selection logic 295. Operating in combination with subscription control logic 250 and/or preliminary analysis logic 260, the cluster selection logic 295 is adapted to control, based on the service policy level information 127 associated with the subscription for the customer, the cloud broker to select between an on-premises cluster (or malware detection system) that resides on the same enterprise network as sensor 1101 (not shown) or an off-premises cluster within malware detection system 100 of FIGS. 1A-1B. More specifically, according to one embodiment, an attribute pertaining to the customer (e.g., customer-configured attribute) may specify the customer's preference regarding on-premises or off-premises cluster selection. This customer-configured attribute may be provided to the sensor 1101 during the enrollment/licensing phase.


Hence, where the selected default cluster is a cluster within the (cloud-based) object evaluation service 180, the on-premises cluster may be deployed to provide extra capacity when malware analysis thresholds established for cloud-based analyses allowed in accordance with the customer's subscription level have been exceeded. Alternatively, one or more off-premises clusters may be deployed to provide extra capacity when the on-premises cluster is selected as the default cluster and the malware analysis thresholds provided by the on-premises clusters have been exceeded.


It is contemplated that routing decisions for the metadata 122 to either (i) on-premises cluster or (ii) off-premises cluster via the analysis selection service 140 may be based on any number of factors. These factors may include, but are not limited or restricted to object type (e.g., portable document format “PDF” objects are directed to an on-premises cluster and binaries are directed to off-premise cluster); customer type (e.g., objects extracted from network traffic originating from certain customers, e.g., governmental agencies are directed to an on-premises cluster while objects extracted from network traffic originating from other governmental agencies are directed to an off-premises cluster); capacity (e.g., objects are directed to an off-premises cluster until a capacity (or subscription) threshold reached); and/or network security level (e.g., objects extracted from network traffic over protected subnetworks are directed to an on-premises cluster while objects extracted from network traffic over unprotected subnetworks are directed to an off-premises cluster).


IV. Cluster Components and Operation


Referring now to FIG. 3, an exemplary embodiment of logic implemented within the cluster 1851 of FIG. 1B is shown. The cluster 1851 comprises a plurality of compute nodes 3001-300P (P≥1), which are communicatively coupled to a distributed queue 310 (e.g., a logical representation of the collective memory formed by queue memories for each cluster 1851-185N) over a first network 315. Each compute node (e.g., compute node 3001) may feature an analysis coordination system 3201 and an object analyzer (e.g., object analysis system 3401). As shown in FIG. 4, analysis coordination system 3201 may be activated or deactivated, such as activation or deactivation of a control line 420 by processor 400, where the compute node 3001 operates as a “broker” compute node when the analysis coordination system 3201 is activated or operates only as an “analytic” compute node when the analysis coordination system 3201 is deactivated (e.g., compute nodes 3003 and 3004). As an alternative embodiment, it is contemplated that a “broker” compute node may have a logical architecture different than an “analytic” compute node. For example, a broker compute node may be configured with only an analysis coordination system. An analytic compute node may be configured with only an object analysis system.


Returning back to FIG. 3, sensors 1101-110M are communicatively coupled to one or more broker compute nodes (e.g., compute node 3001 and compute node 3002) of the first cluster 1851 via the analysis selection service 140 of FIG. 1B. In some embodiments, in lieu of directing communications via the analysis selection service 140, the communications may be sent directly to the cluster (broker computer node) once the cloud broker 610 of FIG. 1A notifies the sensor (e.g., sensor 1101) of the cluster selection. Any of the analysis coordination systems 3201 and 3202 (e.g., system 3201) may be selected by the analysis selection service 140 to receive metadata 122 from any of the sensors 1101-110M (e.g., sensor 1101) for storage within the distributed queue 310. The metadata 122 may be retrieved by an object analysis system 3401-3404 that is available for analyzing the suspicious object 120 associated with the metadata 122 for malware.


As further shown in FIG. 3, according to this embodiment of the disclosure, the analysis coordination systems 3201 and 3202 for the respective “broker” compute nodes 3001 and 3002 have been activated while the analysis coordination systems (not shown) for compute nodes 3003 and 3004 have been deactivated. It is noted, in some embodiments, the compute nodes 3001-3004 within the same cluster 1851 feature an object analysis system 3401-3404, respectively. Each of these object analysis systems 3401-3404 includes logic that is capable of conducting an in-depth malware analysis of the suspicious object 120 upon determining to have sufficient processing capability.


According to one embodiment of the disclosure, one of the object analysis systems 3401-3404 accesses the queue 310 to obtain the metadata 122 associated with the suspicious object 120 awaiting malware analysis. The queue 310 may be accessed when the object analysis system (e.g., object analysis system 3401) determines to have sufficient processing capability to meet the required analysis. The determination may occur, for example, by (i) passing at least one service attribute with the metadata 122, (ii) accessing the attribute by the object analysis system 3401 prior to removal of the metadata 122 from the queue 310, and (iii) determining whether the object analysis system 3401 can process the suspicious object 120 in accordance with preset criteria. Likewise, during operation, the object analysis system 3401 may periodically and/or aperiodically (e.g., in response to completion of a prior malware analysis) access the queue 310 and obtain the metadata 122 associated with the suspicious object 120.


According to another embodiment of the disclosure, additionally or alternatively to the processing capability determination described above, the metadata 122 stored in the queue 310 may be prioritized for removal and subsequent retrieval and analysis of the corresponding object. For example, according to one embodiment of the disclosure, the prioritization of the metadata 122 stored in the queue 310 may be in accordance with object type (e.g., metadata associated with an object of a first type is queued at a higher priority than metadata associated with an object of a second type). As another example, the prioritization of the queue 310 may be in accordance with the subscription level assigned to the customer, namely metadata associated with an object submitted by a customer or any of a group of first customers at a first service policy level (e.g., first QoS threshold) is queued at a higher priority than metadata associated with an object submitted by a customer or any of a group of second customers at a second service policy level. For prioritization, each customer may be separate a company or a separate unit (department) in the same company.


In summary, a broker compute node 3001, targeted to receive the suspicious object 120, places the metadata 122 into the queue 310. Retrieval of the metadata 122 may be performed by any of the plurality of compute nodes 3001-300P, including broker compute node 3001. This retrieval may be organized in accordance with a plurality of queue retrieval schemes. For instance, the retrieval may be in accordance with a first-in, first-out (FIFO) queue scheme for fairness and controlled latency of submission analysis. Alternatively, the retrieval may be prioritized. As an illustrative example, the metadata from a customer with a higher (premium) subscription may be assigned to a different (higher priority) queue that is serviced first. As another example, the metadata may be tagged (i) to identify the metadata submitted by a higher subscription customer than a normal subscription customer or (ii) identify metadata from customers where three or more different subscription levels are available. The tagged metadata allows the compute node to read the top “L” queued metadata submissions (e.g., L≥2) and select the highest priority metadata submission from the L submissions.


Upon retrieval of the metadata 122 and based on at least a portion of the metadata 122, the object analysis system 3401 is able to determine the storage location of the suspicious object 120. Thereafter, the object analysis system 3401 may retrieve the suspicious object 120. The suspicious object 120 may be stored in the sensor 1101, in the compute node 3001, or in an external network device (not shown) that may be accessed via the analysis selection service 140 of FIGS. 1A-1B.


Upon receipt of the suspicious object 120, the object analysis system 3401 conducts an in-depth malware analysis, namely any combination of attack-oriented behavior (dynamic) analysis or static analysis, in order to determine a probability of the suspicious object 120 being associated with malware. Such operations may involve execution of the suspicious object 120 within a virtual machine operating with the object analysis system 3401, where the virtual machine is configured with one or more software profiles (e.g., one or more software components including operating system, application(s), and/or plug-in(s)) allowing the virtual machine to execute the suspicious object 120 and monitor attack-oriented behaviors of the virtual machine, including any of the software components. Thereafter, the object analysis system 3401 performs a correlation operation on the monitored attack-oriented behaviors (e.g., analyzes the monitored behaviors against known malicious behaviors and behavioral patterns) to determine if the suspicious object 120 is associated with a cyber-attack.


As an illustrative example, the analysis coordination system 3201 may be selected by the analysis selection service 140 of FIGS. 1A-1B to receive the metadata 122 associated with the suspicious object 120 and provide information, which may include some or all of the metadata 122, to the queue 310. Thereafter, the analysis coordination system 3201 has no involvement in the routing of such metadata to any of the object analysis systems 3401-3404 of the compute nodes 3001-3004. Instead, an object analysis system (e.g., object analysis system 3403) having sufficient processing capability (e.g., processor utilization, etc.) to handle a deeper level analysis of the suspicious object 120 may fetch the metadata 122 that is stored in the queue 310 and subsequently fetch the suspicious object 120 based, at least in part, on a portion of the metadata 122.


V. Overall Operational Flow


In summary, as shown in FIGS. 5A-5B, while referencing FIGS. 1A-4, the malware detection system 100 is configured to communicate with one or more sensors 1101-110M, where each sensor 1101 . . . or 110M is configured to receive information that includes at least metadata 122 and a corresponding suspicious object 120 for malware analysis (block 500). Prior to forwarding the metadata 122 to the first subsystem 130, a sensor (e.g., sensor 1101) may complete its enrollment as an initial analysis logic for a customer of the malware detection system 100. This enrollment scheme includes the subscription review service 170 of the malware detection system 100 receiving a license request message from a customer via a sensor or another network device (e.g., subscriber management system, endpoint device via the portal, etc.). The license request message may include the Sensor_ID 115 and/or credentials 116, which are received as part of the activation code 117 from the portal server (block 502).


In response to granting of the license request, without any human interaction, the subscription review service 170 stores the service policy level information 127 associated with the customer and returns or redirects at least a portion of the service policy level information 127 to the sensor or another network device with subsequent loading into the sensor (blocks 504 and 505). The service policy level information 127 include at least the URL for accessing the cloud broker 610 of FIG. 6A. This URL is used by the sensor to access the analysis selection service 140 within the malware detection system 100 while other data, such as the Sensor_ID 115 and/or Customer_ID 128, provided in the service policy level information 127, enables the cloud broker within the analysis selection service 140 to gain access to the subscription information 177 of FIGS. 1A-1B.


The analysis selection service 140 utilizes both the cluster selection values 157 and the subscription information 177, recovered the Customer_ID 128 provided as part of the service policy level information 127 and/or the Sensor_ID 115, to establish a communication session (e.g., tunnel) between the sensor (e.g., sensor 1101) and a selected cluster (e.g., cluster 1851) of the second subsystem 160 (blocks 510, 515, 520, 525 & 530). Herein, the subscription information 177 provides the analysis selection service 140 with customer selected performance and system operability requirements while the cluster selection values 157 provide information pertaining to the health of the clusters and/or compute nodes of the system.


As illustrated examples, the cluster selection values 157 relied upon for selection of the cluster (and/or compute node within the selected cluster) may pertain to values that collectively identify, when applied to policy and routing rules of the rules engine 142, what cluster or clusters have sufficient resources to support additional data submissions from a sensor. For example, the cluster selection values 157 may include values directed to cluster capacity and capabilities, including workload. The cluster workload may be determined based, at least in part, on utilization levels of each of the compute nodes (e.g., compute nodes 7501-750P of FIG. 7) within that cluster (e.g., cluster 1851). The cluster capacity may be based, at least in part, on current data (e.g., the distributed queue size for each cluster 1851-185N along with its current queue length (i.e., amount of queue (i.e., number of queue entries) that is not storing pertinent metadata) and/or historical data (e.g., cluster or node percentage utilization over a selected period of time). Additionally, or in the alternative, the cluster selection values 157 may include values directed to software profiles or geographic location of the sensor and/or cluster and/or other cluster capabilities that, when applied by the rules engine 142, may be used to determine which cluster or clusters is best suited for supporting the sensor (e.g., clusters that are geographically close to the sensor may be preferred for reduced transmission latency or legal requirements such as privacy regulations) and/or best satisfy the service attributes applicable to the subscriber's information.


The sensor (e.g., sensor 1101) receives incoming information for malware analysis. Specifically, the metadata extraction logic 270 of the sensor 1101 separates the metadata 122 from the object 120. Thereafter, the preliminary analysis logic 260 conducts an analysis of incoming traffic to determine whether the object 120 is suspicious (e.g., meets or exceeds a first threshold that the object 120 is associated with a cyber-attack). This preliminary analysis may include one or more checks (real-time analyses) being conducted on the metadata 122 and/or object 120 without execution of the object 120. Illustrative examples of the checks may include, but are not limited or restricted to the following: (i) bit pattern comparisons of content forming the metadata 122 or object 120 with pre-stored bit patterns to uncover (a) deviations in messaging practices (e.g., non-compliance in communication protocols, message formats, and/or payload parameters including size), (b) presence of content within the object 120 that is highly susceptible to or widely used by perpetrators for cyber-attacks, and/or (c) prior submission via the sensor 1101 of certain types of objects, and/or (ii) comparison between a representation of the object 120 (e.g., bit pattern representation as a hash of the object 120 or portions of the object 120) and stored representations of previously analyzed objects.


Prior to conducting an analysis to determine whether the object 120 is suspicious, it is contemplated that the preliminary analysis logic 260 within the sensor 1101 may determine whether a prior preliminary (or in-depth malware) analysis has been conducted on the object 120. Upon detecting a repeated malicious object, the sensor 1101 may issue an alert to the subscriber management system 118 or a network device selected by the customer. Also, the sensor 1101 may report the results from the prior analysis to the subscriber management system 118 or a network device. Upon detecting a repeated benign object, the sensor 1101 may discontinue further analysis of the object 120. However, where the object 120 is an URL or another object type, especially an object with dynamically changing data as in URLs or documents with an embedded URL, the sensor 1101 may routinely supply the metadata 122 to its assigned broker compute node via the analysis selection service 140.


Herein, the metadata 122 may be an aggregate of metadata retrieved from the incoming data 235 of FIG. 2 along with additional metadata associated with the sensor 1101 itself. The metadata 122 is provided to one of the broker compute nodes (e.g., compute node 3001) of the cluster 1851 that is assigned by the analysis selection service 140 to conduct an in-depth malware analysis of a suspicious object to be subsequently submitted by the sensor 1101 (block 535). A portion of the metadata 122 may be used by an analytic compute node to retrieve the suspicious object 120 associated with the metadata 122 for processing within a virtual machine, monitoring behaviors of the object (and virtual machine) during such processing, and determining whether the object may be malicious based on these monitored behaviors (blocks 540 and 545). The analysis results may be returned to the sensor 1101 via the analysis selection service 140 or provided to management system, portal or mobile as selected by the customer (block 550). Metadata associated with this analysis (e.g., Sensor_ID 115 that requested analysis, cluster workload, object type, etc.) and other analyses may be collected by the cluster management system 190 for use by the analysis monitoring service 145 to assist the analysis selection service 140 in cluster assignment to sensors 1101-110M and in subscription enforcement as described above (block 555).


VI. Details of Operational Flow


Referring now to FIG. 6A, a more detailed embodiment of the operational flow in establishing communications between sensors 1101-110M and the malware detection system 100 of FIGS. 1A-1B is shown. According to this embodiment of the disclosure, the analysis selection service 140 of the first subsystem 130 includes a cloud broker 610 that is communicatively coupled to the system monitoring logic 630, which may be located in the analysis selection service 140 (see FIG. 7) or the analysis monitoring service 145 as shown in FIG. 6A. The architecture of the cloud broker 610 and the system monitoring logic 630, either individually or collectively, may include one or more hardware processors and memory including software modules that, when executed, performs their functionality described below. Alternatively, the cloud broker 610 and/or the system monitoring logic 630 may be deployed as the software modules that, upon execution by a hardware processor, perform the functionality described herein.


The second subsystem 160 features subscription review service 170, which may include licensing logic 640 along with enrollment logic 650 and security content updating logic 670. It is contemplated that the licensing logic 640, enrollment logic 650 and the security updating logic 670 may be configured as a collective grouping at the same location or may be geographically distributed. In accordance with one embodiment of the disclosure, the architecture of the subscription review service 170 may include licensing logic 640 along with enrollment logic 650 and security content updating logic 670 being software modules with functionality (described herein), which are stored in memory and executed by one or more hardware processors. Additionally, the object evaluation service 180 of the second subsystem 160 includes one or more clusters 1851-185N, and/or cluster management system 190 to manage the organization of the cluster(s) 1851-185N and the configuration of the compute nodes (not shown) deployed within the clusters 1851-185N. The architecture of the cluster management system 190 may be implemented as a network device that includes one or more hardware processors and memory including software that, when executed, performs its functionality described below. However, as alternative embodiments, the subscription review service 170 and/or some or all of the object evaluation service 180, including the cluster management system 190, may be deployed as software that is executed by the same or different hardware circuitry deployed within the second subsystem 160.


The sensors 1101-110M may be positioned at various locations on a transmission medium 602 that may be part of an enterprise network 600 (e.g., connected at various ingress points on a wired network or positioned at various locations for receipt of wireless transmissions). For an email threat detection embodiment, for example, a sensor (e.g., sensor 1102) may be incorporated in a message transfer agent deployed in-line with the email traffic flow and between an anti-spam gateway and a network's internal mail server (e.g., Microsoft Exchange®). For use in a deployment involving a cloud-based messaging service, the email may be delivered to the sensor 1102 as a next-hop before the email reaches the internal mail server. Alternatively, the sensor 1102 may be included as part of the anti-spam gateway or the internal mail server.


As shown in FIG. 6A, located at subscriber site 112, each sensors 1101-110M deployed as a physical or virtual sensor is configured to monitor data traffic propagating over a network, such as the enterprise network 600 for example. The “traffic” may include an electrical transmissions as files, email messages, web pages, or other types of content. Each sensors 1101-110M is communicatively coupled to the subscriber management system 118, which is responsible for managing operability of the sensors 1101-110M.


More specifically, according to one embodiment of the disclosure, the sensor 1101 may be implemented as a network device or deployed as software within a network device. The sensor 1101 is either coupled to the transmission medium 602 directly or coupled to the transmission medium 602 via a data capture device 604. According to this embodiment, the data capture device 604 is configured to receive incoming data and subsequently process the incoming data, as described below. For instance, the data capture device 604 may operate as a network tap with mirroring capability, which provides to the sensor 1101 at least one or more data submissions 124 acquired from network traffic propagating over the transmission medium 602. Alternatively, the data capture device 604 may operate as a port for receiving data submissions 124 provided via a suitable dedicated communication link or from portable storage media such as a flash drive. Furthermore, although not shown, the sensor 1101 may be configured as an in-line appliance to receive traffic (e.g., files or other objects) and to provide data submissions 124 that are associated with “suspicious” objects for subsequent analysis.


It is contemplated that the security content updating logic 670 may be communicatively coupled to a cybersecurity vendor (not shown) to receive software updates and/or data (e.g., component) updates for distribution to (i) the cluster management system 190 via a first transmission medium 672 and (ii) the subscriber management system 118 via a second transmission medium 673. The cluster management system 190 is configured to manage a cluster or multiple clusters of the object evaluation service 180 while the subscriber management system 118 is configured to manage a sensor or multiple sensors of the subscriber site 112, as shown.


As an illustrative example, updates to the functionality of components within the object evaluation service 180 (e.g., signatures, rules, executables, software patches, OS versions, plug-ins, etc.) may be propagated to the compute nodes 3001-300P via the cluster management system 190, which received the updates from the security content updating logic 670 via the first transmission medium 672. Similarly, updates to the functionality of components within the sensors (e.g., sensors 1101-110M) may be propagated via the subscriber management system 118, which received the updates from the security content updating logic 670 via the second transmission medium 673. Furthermore, the security content updating logic 670 supports two-way communications to receive and share information associated with analysis results conducted by sensors or clusters of the malware detection system 100 via communication path 674 and/or analysis results from other sources outside of the malware detection system 100 such as a cybersecurity intelligence vendor via communication path 675.


A. Licensing and Enrollment


Referring now to FIG. 6A, to obtain access to the malware detection system 100, the sensor 1101 may require a software license that includes software license (subscription) credentials 116 to allow the sensor 1101 to communicate with the enrollment logic 650. To secure these credentials 116, a customer may register (subscribe) to services offered by the malware detection system 100 via a network device (e.g., using input/output “I/O” interface 606 with web browser functionality at the subscriber management system 118, an endpoint device 608 coupled to the network 600, or network device 609). Upon completing registration, the portal 165 provides the activation code 117, including at least the credentials 116 (along with the Sensor_ID 115 to be loaded onto any virtual sensors), to the network device used in the registration process or any network device selected by the customer during registration (including the sensor 1101). Additionally, the portal 165 stores the registration information 167 provided by the customer as part of the subscription information 177.


In some embodiments, the customer may be offered a plurality of subscriptions (types and/or tiers). Different subscription types may focus on different cybersecurity protection points (e.g., email, network traffic, file system, etc.) while the subscription tiers may correspond to different service performance levels as specified by a set of subscription attributes. For instance, one subscription attribute may specify a specific duration (or latency) allocated for analyzing an object by the malware detection system 100 before the analysis time-out occurs and for classifying the object as malware or benign. Another subscription attribute may specify a maximum number of customer endpoint devices, e.g., laptops and other computers to be supported and protected against cyber-attacks by the malware detection system. Yet another subscription attribute includes a number and/or rate of data submissions allowed for the subscription tier selected. The subscription attributes may be included as part of the subscription information 177.


Moreover, the customer may also have an opportunity to select (e.g., via the portal 165 by the I/O interface 606 or the endpoint device 608) from among a set of customer-configured attributes which, though not dictated by the subscription type or tier, once selected, become associated with the subscription. The customer-configured attributes may be used in managing the selection of cluster(s) within the object evaluation service 180. These customer-configured attributes may include, by way of example, (i) a geographic location attribute that specifies the customer's preferred or required geographic location for the cluster used to analyze submission data from the customer, e.g., to protect sensitive information, and (ii) a guest image attribute that specifies one or more software profiles (e.g., brand and/or version of computer programs included in the software profiles) preferred or required by the customer.


As described, the subscriber management system 118, when equipped with the interactive I/O interface 606, permits examination of subscriber site or customer statistics on a per sensor basis rather than at a customer-aggregated level. This allows for selection or allocation of different attributes on a per-sensor basis. As an illustrative example, traffic/objects from a sensor (e.g., sensor 1101) serving the finance department of a customer may have a lower threshold of suspiciousness, be entitled to a higher bandwidth of analysis (e.g., greater number of submissions per day, week or month) by the malware detection system 100 than traffic/objects from other departments, where the average bandwidth of analysis across all sensors for the customer still meets the subscription level and other attributes. As another example, the customer can customize malware detection on a per-sensor basis, where a sensor 110M is located at a different geographic reason to protect a subnet different than the subnet protected by the sensor 1101. These sensors 1101 and 110M may feature different guest image software profiles, and thus, the attributes associated with the sensor-based subscription may vary from sensor to sensor. In some embodiments, the per-sensor customization can be performed at the portal's interactive user interface 606 rather than or in addition to that of the subscriber management system 118, in which case the customer's “entries” can be communicated to the subscriber management system 118 for informational/reporting purposes and for compliance monitoring/enforcement. The portal 165 can also store the customer's per-sensor configuration selections as part of the subscription information 177.


According to one embodiment of the disclosure, as shown in both FIG. 6A and FIG. 6B, the Sensor_ID 115 and credentials 116 provided during registration are stored in the sensor 1101 to allow the sensor 1101 to communicate with the licensing logic 640. Hence, the sensor 1101 may acquire the software license credentials 642 by transmitting one or more license request messages 644 to licensing logic 640. The license request message(s) 644 may include information uniquely associated with the sensor 1101. Additionally, the license request message(s) 644 may include the Sensor_ID 115, the credentials 116, and information associated with the customer and/or financial information to purchase the software license to supplement information provided during registration via the portal 165. The software license credentials 642 includes the service policy level information 127, which includes at least the Customer_ID 128 along with any credentials necessary to communicate with the enrollment logic 650.


After receipt of the software license credentials 642, to enroll for access to the malware detection system 100, the sensor 1101 establishes a communication session with the enrollment logic 650 over a communication link 652. During this communication session, as shown in FIG. 6B, the enrollment logic 650 receives an enrollment request message 654, which includes at least the Sensor_ID 115 and/or the Customer_ID 128. Based on this information, the enrollment logic 650 authenticates the sensor 1101 through use of a directory (e.g., LDAP lookup), and upon authentication, returns to the sensor 1101 a network address 658 (e.g., URL) for accessing the cloud broker 610 of FIG. 6A. The enrollment logic 650 may generate a mapping between Sensor_IDs, Customer_IDs and attributes associated with the subscription for storage within the subscription information 177.


As represented in FIG. 6A by transmission medium 659, the enrollment logic 650 may be communicatively coupled to the cloud broker 610 to directly provide an array of attributes associated with the subscribed customer and/or enrolled sensor 1101 to a local memory accessible by the cloud broker 610. The cloud broker 610 accesses these attributes, which are stored as part of the subscription information 177, and considers these attributes when assigning a cluster to handle malware analyses on objects provided by the enrolled sensor 1101 (e.g., selection of the cluster may be based on sensor location; sensor assigned QoS threshold; customer subscription level; etc.).


Besides subscription attributes, the attributes may include factory set attributes, customer configurable attributes provided via (i) a command line interface (CLI), (ii) a web-browser based interface offered by the sensor 1101 or the subscriber management system 118, or (iii) the portal 165 (e.g., customer console). Additionally, one or more attributes (operational attributes) may be generated dynamically during operation of the malware detection system, for example, an attribute may specify aspects of a history of communications (e.g., email or web downloads; number or rate of data submissions for in-depth analysis) with the sensor 1101, where the history may assist in the selection of the cluster for the enrolled sensor 1101.


As a result, as shown in FIG. 6A, the sensor 1101 may establish communications with the cloud broker 610 through transmission of the analysis request message 125 which, in turn, prompts the cloud broker 610 to establish the communication session over the communication link 155 with the selected broker compute node (e.g., broker 3001). Thereafter, the sensor 1101 may provide a data submission 124 (including at least metadata 122) to commence analysis of the object 120 associated with the metadata 122. Of course, in the event that the sensor 1101 has not been authenticated via the enrollment logic 650, no data submissions by the sensor 1101 are forwarded by the cloud broker 610 to a selected cluster (e.g., cluster 1851) for processing.


Alternatively, in accordance with a second embodiment of the disclosure as shown in FIG. 6B, in lieu of a sensor directly interacting with the malware detection system 100 for enrollment, the subscriber management system 118 may be configured to indirectly enroll a sensor (e.g., sensor 1101). Communicatively coupled to the sensor 1101-110M, the subscriber management system 118 monitors and/or controls operability of the sensor 1101-110M. In response to a triggering event occurring for sensor 1101, the subscriber management system 118 establishes a communication session 660 with the enrollment logic 650 on behalf of the sensor 1101. As described above, via the subscriber management system 118, the enrollment logic 650 authenticates the sensor 1101, where the authentication may include confirming that the sensor 1101 features an active license to the malware detection system 100. Such confirmation may be accomplished by, after receipt of an enrollment request message 662 via the subscriber management system 118 by enrollment logic 650, determining that the message 662 includes information stored in a database in the enrollment logic 650 that identifies the sensor 1101 and/or the customer associated with the sensor 1101 (e.g., Customer_ID, username, and/or keying material associated with the sensor 1101). Upon authentication of the sensor 1103, the URL 658 is acquired by the enrollment logic 650 and provided to the sensor 1101 via the subscriber management system 118.


B. Data Submission


Referring back to FIG. 6A, after successful enrollment, the sensor 1101 establishes the communication session via communication link 612 with the cloud broker 610 (illustrated separately from signaling that establishes the session 612). In particular, the sensor 1101 transmits an analysis request message 125 to the cloud broker 610, which operates as a proxy on a per sensor basis. As one embodiment, the analysis request message 125 may include at least the Sensor_ID 115, and perhaps some or all of the service policy level information 127 (e.g., Customer_ID 128, or perhaps the assigned subscription tier or QoS threshold).


According to one embodiment of the disclosure, the Sensor_ID 115 and/or the Customer_ID (if provided) may be used by the cloud broker 610 to access certain attributes associated with the subscription selected by the customer. These attributes, along with the cluster selection values 157, namely a portion of the operational metadata 150 or information produced based at least in part on a portion of the operational metadata 150, is used in selecting a cluster (e.g., cluster 1851) and a broker compute node of the cluster 1851 (e.g., broker compute node 3001) to control the handling of malware analyses for the sensor 1101. Thereafter, from the sensors 1101, the Sensor_ID 115 is passed with the metadata 122 to the selected broker compute node 3001.


According to one embodiment of the disclosure, the object evaluation service 180 (e.g., cluster management service 190 on behalf of the broker compute node 3001) may use the Sensor_ID 115 to retrieve at least a portion of the subscription information 177 (e.g., subscription tier, QoS threshold, permissions, access control information, and/or cluster availability details). The portion of the subscription information 177 may be used by the broker compute node 3001 (or passed to the cluster management system 190) to verify operations by the customer and the cluster 185, are compliance with the customer subscription. Also, the portion of the subscription information 177 may be used by the broker compute node 3001 to prioritize (compute a priority in the handling of) the metadata 122 over some other metadata representing objects in the queue 310. Such prioritization may be accomplished by assigning tags to the metadata 122 to denote priority, assigning higher priority metadata to different locations within the queue 310 or different queues, or the like.


In this example, both the Sensor_ID 115 and the metadata 122 may be stored within the distributed queue 310 and subsequently removed from the queue 310 by one of the compute nodes 3001-300P for use (if needed) in retrieval of the corresponding object 120 for analysis. The Sensor_ID 115 may further accompany the malware analysis results of the object 120, which are returned from the cluster 1851 to the cloud broker 610. A mapping between Sensor_IDs and their corresponding Customer_IDs is accessible to the cloud broker 610 via the data store(s) 175 within or separate from the subscription service 170, as described above. Customer-configured attributes for the customer (learned from the Sensor_ID-to-Customer_ID mapping) may be accessed to identify the selected network device(s) to receive the malware analysis results.


Additionally, as another embodiment of the disclosure, a portion of the service policy level information 127 may be used in controlling operation of the object evaluation service 180, such as selecting a cluster to handle malware analyses for the sensor 1101 and/or assigning priority in the handling of metadata 122 (and corresponding object 120) according to the subscription tier assigned to the customer. For this embodiment, the Customer_ID 128 may be used by the object evaluation service 180 (e.g., cluster management service 190 on behalf of the broker compute node 3001) in retrieving, from the subscription review service 170, at least the portion of the subscription information 177 assigned to the customer with the Customer_ID 128.


According to yet another embodiment of the disclosure, it is contemplated that the Customer_ID 128 is not forwarded to the selected cluster 1851. Rather, using the Sensor_ID 115 or the Customer_ID 128 as a lookup parameter, the cloud broker 610 may be configured to access one or more data stores 175 within the malware detection system 100 (e.g., within the first and/or second subsystems) to collect a portion of the subscription information 177 that may influence cluster selection. Examples of the subscription information 177 may include, but are not limited or restricted to the subscription tier value, QoS threshold(s) based on the subscription level; cluster availability based on the subscription level (e.g., the default cluster for the subscription, cluster selection ordering or preferences if the default cluster is unavailable or is unable to satisfy the QoS threshold(s), cluster restrictions, etc.); geographic location permissions or restrictions for compute nodes associated with the selected cluster; remediation setting (e.g., type of remediation) set for the customer; or any other attribute(s). A portion of this subscription information 177 accompanied by the metadata 122 is provided to the selected broker compute node 3001 and may be used to prioritize handling of the metadata 122.


Referring still to FIG. 6A, the system monitoring logic 630 is communicatively coupled to the cloud broker 610 of the first subsystem 130 and the cluster management system 190 of the second subsystem 160. Configured to provide the cloud broker 610 with sufficient visibility of cluster and/or sensor operability, the system monitoring logic 630 collects, on a periodic or aperiodic basis, the operational metadata 150 from the cluster management system 190. Thereafter, the system monitoring logic 630 provides the cloud broker 610 with either access to a portion of the operational metadata 150 or with cluster selection values 157 that can be based on at least portions of the operational metadata 150 representing the operability and availability of the clusters 1851-185N hosted by the object evaluation service 180. The cloud broker 610 utilizes the portion of the operational metadata 150 (or the cluster selection values 157) along with attributes from the subscription information 177 in selecting at least one of the clusters 1851-185N to receive data submissions 124 from the sensor 1101.


The system monitoring service 630 operating in concert with the cluster broker 610 may be configured to assure that the malware detection system 100 (and specifically the clusters and compute nodes available to perform object evaluation services) are capable of satisfying the service requirements (and, where provided, performance guarantees) of all customers. By evaluating the operational metadata 155 provided by the cluster management system 190 for all clusters against customer subscription information from the subscription review service regarding all customer registrations (and/or sensor enrollments for object evaluation services), the cluster broker 610 (and/or the system monitoring service 630) may generate system status information indicating the overall capacity and capability of the malware detection system to service all the registered customers per their aggregated service level requirements. The cluster broker 610 (and/or the system monitoring service 630) provides the system status information to system administrators by generating and sending status reports and alerts on demand and/or as system conditions require.


According to one embodiment of the disclosure, the cluster selection values 157 may be based on operational metadata 150 that may be categorized as cluster-based operational metadata, customer-based operational metadata and CN-based operational metadata. In general, the cluster-based operational metadata includes data representing the availability of each cluster 1851-185N to analyze an incoming object for malware. The customer-based operational metadata and CN-based operational metadata are directed to measured data in accordance with subscriber (customer) and compute node based granularity. Examples of the cluster-based operational metadata, customer-based operational metadata and CN-based operational metadata included as parts of the operational metadata 150 include the following:


Cluster-Based Operational Metadata:


Operational information regarding the cluster(s), including (i) workload (e.g., cluster workload or utilization level, etc.); (ii) location (e.g., cluster geographic location, etc.); (iii) configuration (e.g., software profile(s) supported by cluster, etc.); and/or (iv) storage capacity (e.g., queue size for use in storage of metadata awaiting processing to prompt fetching of the corresponding object, etc.).


Customer-Based Operational Metadata:


Operational information regarding the customer(s) or one or more of the sensors of the customer(s), including: (i) submission rate (e.g., number of objects submitted (per sensor or per subscriber) over a given time period or other aggregate, rate of submission over a given time period such as number of objects submitted” divided by “given time period,” etc.); (ii) submission type (e.g., types of objects submitted (per sensor or per subscriber) over a given time period or other aggregate, etc.); and/or (iii) detection rate (e.g., number of submitted objects determined as potentially malicious by a cluster over a given time period or other aggregate, etc.).


CN-Based Operational Metadata:


(i) node workload (e.g., workload or utilization level of a particular compute node “CN”, etc.); (ii) location (e.g., geographic location of the particular CN, etc.); (iii) configuration (e.g., software profile(s) supported by the particular CN, etc.); and/or (iv) rate of submission (e.g., “number of objects” divided by “given time period” by the particular CN).


It is contemplated that the architecture of the system monitoring logic 630 may be further configured to receive a portion of the subscription information 177 (e.g., customer-configured attributes), which may cause weighting of certain cluster selection values 157. For instance, as an illustrative example, where customer-configured attributes identify that the customer has selected only compute nodes featuring a certain software profile for analysis of submitted objects for malware, the system monitoring logic 630 may adjust the cluster selection values 157 to cause the rule engine 142 to eliminate any clusters that do not feature computer nodes with the certain software profile. Additionally, or in the alternative, compute node selection may be at least partially performed automatically (without customer input) based on at least a portion of the service policy level information 127 (e.g., Customer_ID), which may restrict or enlarge the types of compute nodes or groupings of compute nodes based on subscription level, geographic location based on the location of sensor having the object for submission, etc.).


In order to ensure compute node configurability, the system monitor logic 630 may be configured to provide cluster selection values 157 that include metadata used by the cloud broker 610 to control what compute node or compute nodes are permitted to process submitted objects from a particular subscriber. For instance, this metadata (e.g., subsequently included as part of the metadata 122 as illustrated in FIG. 1B), may signal the cloud broker 610 to appropriately tag the metadata 122 prior to transmission to a targeted broker compute node (e.g., broker compute node 3001) of a selected cluster for temporary storage in the cluster queue 310. The tag may be used to identify preferred or requisite compute nodes (or group of compute nodes) for recovery of the metadata 122 for subsequent retrieval of a corresponding object for malware analysis. As briefly described above, each compute node (e.g., compute 3001), when accessing the cluster queue 310 to retrieve metadata, may scan the queue 310 for a prescribed time or prescribed “L” number of entries (e.g., 10≥L≥2). The scanning is performed to determine whether any of the queued metadata is targeted for exclusive handling by that compute node 3001 (or a group of which the compute node is a member). If so, the compute node 3001 may retrieve that metadata thereby deviating from a first-in, first-out (FIFO) queue retrieval scheme.


The FIFO retrieval scheme may be the default retrieval scheme for all compute nodes (e.g., compute node 3001-300P) in a cluster (e.g., cluster 1851) in some embodiments. In such embodiments, upon completing processing of an object, the compute node 1851 simply retrieves the metadata of the next entry in the queue 310 that remains unprocessed and available for processing by a compute node. In other embodiments that are equipped to provide certain subscribers premium service with reduced latency, each of these compute node(s) may seek to next process an entry tagged to identify the metadata being provided from premium service customers. For example, these compute node(s) may check for the next tagged entry in the queue 310 for data submissions from premium service customers, and process that entry. In some embodiments, the compute node(s) may check only the next “Q” entries in the queue 310, where the number “Q” is a positive integer (e.g., Q≤10), and if such an entry is not found, returns to retrieval of the metadata through a FIFO scheme by default so as to select the least recent (top) available entry.


Upon receipt of the cluster selection values 157, the cloud broker 610 is better able to select a cluster (e.g., cluster 1851) from the cluster 1851-185N for handling analyses of objects from the sensor 1101. The selection of the cluster (e.g., cluster 1851) may be based, at least in part, on the cluster selection values 157 and/or portions of subscription information 177 made available by content within the analysis request message (e.g., service policy level information 127), which are applied by the policy and routing rules processed by the rules engine 142 within the cloud broker 610 (see FIG. 7). Stated differently, the cluster selection values 157 provided from the system monitoring logic 630 and/or attributes from the subscription information 177 (for the customer seeking access to the cluster 1851-185N) are made available to the rules engine 142 running the policy and routing rules on the cloud broker 610. Upon selection of the cluster 1851, a communication session (e.g., tunnel) over the communication link 155 is established between the cloud broker 610 and one of the broker compute nodes within the cluster 1851 for receipt of data submissions from the sensor 1101.


Additionally, in lieu of the first enforcement logic 143, another type of logic, namely the policy and routing rules controlling operations of the cloud broker 610, may be designed to confirm compliance with one or more performance and/or operation thresholds for the selected subscription level by comparing values associated with certain cluster selection values 157 (or operational metadata 150) to values associated with certain attributes within the subscription information 177. In response to determining that the operability of the cluster 1851 is not compliant with certain thresholds established by attributes for the subscription selected by the customer (e.g., failure to satisfy a prescribed number of performance thresholds or a particular performance threshold, number of submissions exceeds a prescribed maximum, etc.), the cloud broker 610 may issue an alert to the sensor 1101, subscriber management system 118, or another network device (e.g., endpoint device 608, etc.) regarding detected non-compliance.


Different types of alerts may be provided. For instance, a first alert may include a message sent to a subscriber management system 118 or an endpoint device 608 controlled by an administrator of the customer's network. The alert may identify one or more attributes that fail to satisfy criterion set by certain subscription information e.g., criteria associated with certain service attributes. In some cases, non-compliance may be remedied by adjusting the current subscription to increase entitled object processing capacity. For example, where the subscription tier qualifies or permits the customer to submit a maximum number of objects or transmit at a maximum rate for analysis, the first alert may notify the customer administrator that the number or rate has been exceeded, and the customer is notified to increase this factor of the subscription accordingly to address non-compliance.


Besides a first alert, a second alert (message) may be provided to an OEM (or another party) hosting the object evaluation service 180 identifying a performance issue causing non-compliance. In response to the second alert, the OEM (or another party) may provide a remedy by augmenting the selected cluster with more compute nodes or re-balancing workloads on the existing clusters/compute nodes (e.g., readjustment of sensor/cluster pairing, activating a cluster or compute node in a particular geographic location, etc.). Of course, the selected remedy may depend on what attributes have not been satisfied in accordance with the current subscription.


As an illustrative example, the policy and routing rules of the rules engine 142 may be coded to select from a certain subset of clusters (e.g., clusters 1851-1852), numbering less than the available clusters (e.g., e.g., clusters 1851-1855), based on subscription information retrieved using the Sensor_ID 115 or a portion of the service policy level information 127 (e.g., Customer_ID 128) as described above. Additionally, the selection of a particular cluster (e.g., cluster 1851) from the subset of clusters (e.g., clusters 1851-1852) may be based on an evaluation of cluster selection values 157 associated with each cluster of the subset of clusters. This evaluation may include (i) a comparison of the current workload of each cluster (e.g., cluster 1851 and cluster 1852) as represented by certain cluster selection values 157; (ii) a determination as to which cluster(s) of the subset of clusters (e.g., clusters 1851 or 1852) support a software profile needed to process the type of object for analysis (e.g., PDF reader application, word processing application, a web browser) or a software profile required by a particular customer as represented by other cluster selection values 157; and/or (iii) a determination of the geographic region in which each cluster of the subset of clusters (1851 or 1852) is located, as represented by the subscription information 177 accessed using the Sensor_ID 115 or a portion of the service policy level information 127 (e.g., Customer_ID) as a reference. It is contemplated that the ordering (or weighting) for some or all of these rules may vary for different versions of the policy and routing rules of the rules engine 142.


Besides issuing alerts upon determining that the operability of the cluster 1851 is not compliant with certain thresholds established by attributes for the subscription selected by the customer, a communication session with the effected sensor 1101 may be terminated for load-balancing purposes. According to one embodiment of the disclosure, the communication session established via communication links 155/612 between the sensor 1101 and the cluster 1851 via the cloud broker 610 may remain active (and exclusive) until a session termination event has occurred. The session termination event may be detected by the sensor 1101 or logic within the analysis selection service 140, such as the system monitoring logic 630 and/or the cloud broker 610 for example.


For instance, according to one embodiment of the disclosure, a session termination event may occur in response to logic within the analysis selection service 140 determining, from the operational metadata 150 gathered by the cluster management logic 190, that termination of the communication session and reassignment of the current sensor/cluster 1101/1851 pairings is needed to better ensure that service guarantees established by the subscription (i.e., identified by certain service attributes) are fulfilled. This session termination event may be caused, at least in part, by (a) changes in condition of the assigned cluster (e.g., health and operability of the cluster 1851); (b) changes in cluster availability where a cluster 185N different than the assigned cluster 1851 is better suited to handle analyses (e.g., as new clusters come online or workload demands on clusters change); or (c) changes in customer requirements.


As an illustrative example, the reassignment may involve cluster load-balancing based on an analysis of cluster operability. Such analysis of cluster operability may involve (i) monitoring the number of timeouts that occur during the communication session 155/612 between the sensor 1101 and the cluster 1851 and (ii) determining whether the number of timeouts exceeds a timeout threshold. The timeout threshold may be a uniform value or a value that is based, at least in part, on the customer's subscription (e.g., lower timeout thresholds for higher subscriptions tiers or a customer-configured attribute). Hence, upon exceeding the timeout threshold (once or over a prescribed period of time), which signifying that the cluster 1851 is currently unable to adequately support the data submissions level provided by the sensor 1101 (session termination event), a readjustment of one or more cluster/sensor pairings may occur. More specifically, the sensor 1101 may be re-assigned to a different cluster (e.g., cluster 185N) or other sensors in communications with the cluster 1851 (e.g., sensor(s) at lower subscription tiers) may be re-assigned to a different cluster (e.g., cluster 1852) to reduce cluster workload.


It is contemplated that, to perform the reassignment substantially in real-time, measures need to be undertaken to address incoming data submissions and metadata currently residing in the cluster queue. As an illustrative example, incoming data submissions could be temporarily buffered at the sensor 1101 or at the analysis selection service 140 while another communication session is being established between the sensor 1101 and another cluster 1852, . . . , or 185N. Prior to or concurrently with the buffering of the incoming data submissions involving the sensor 1101, the queued metadata from the sensor 115 may be returned to the sensor 1101 or the analysis selection service 140, temporarily buffered, and resubmitted to the reassigned cluster 185N.


Other illustrative examples of session termination events for readjustment of the sensor/cluster pairing may include, but are not limited or restricted to the following: (1) geography restrictions (e.g., new cluster closer in proximity to customer); (2) health issues (e.g., compute node failures, environmental conditions in one geographical location to shut down and causing clusters at another geographic location to temporarily handle the increased workload); (3) resizing of the individual clusters (e.g., higher number or fewer number of compute nodes available within cluster); (4) capacity or other limits on subscription; (5) communication session 612 between the sensor 1101 and the cloud broker 610 remaining active beyond a prescribed period of time; or (6) scheduled maintenance (e.g., schedule non-use of the cluster within certain time frames along with a prescribed lead time or allow for “graceful” take-down of the cluster).


According to another embodiment of the disclosure, the malware detection system 100 may be configured without supporting real-time reassignment session termination event may occur in response to the sensor 1101 detecting that its local data store has no suspicious objects currently awaiting processing by object evaluation service 180. Responsive to detecting the empty local data store, the sensor 1101 may terminate the existing communication session 612 with the cloud broker 610.


Besides assigning a sensor to a particular cluster, the cloud broker 610 may be configured to output statistical information in response to the management query message. The statistical information is based on one or more portions of the operational metadata 150 and is included as part of reporting data 193. The reporting data 193 may be aggregated and displayed, by the endpoint device 608, subscriber management system 118 or another network device, in a manner that is directed to the operability of any customer (as the Customer_IDs may be cross-referenced to the Sensor_IDs) as well as any sensor, any cluster, or any compute node within one of the clusters.


C. Subscription Service Levels


The malware detection system 100 may offer differentiated subscription levels or tiers of service, managed by the cloud broker 610 and the broker compute nodes 3001-300i (i≥1) in association with the license/enrollment services (described above) or the authentication node (described below). According to one illustrative example, the cloud broker 610 (and/or a selected broker compute node 3001) can push all data submissions from sensors (and their corresponding subscribers who paid for this higher subscription level) to a high priority queue (an allocated part of queue 310) to handle the analysis of the data submission within a pre-agreed time allotment. In contrast, data submissions handled by a non-premium level of service (lower subscription level) are provided to a different “standard” queue. Alternatively, the cloud broker 610 (and/or a selected broker compute node 3001) can tag entries in the queue (not shown) as premium requests and the analytic computer nodes will process a number of premium requests before resuming with processing a standard request.


As another example, for different service subscriptions, the distributed queue 310 may be monitored by logic within the cloud broker 610 (e.g., first enforcement logic 143 described above), where the malware detection system may limit the total number of data submission per customer (subscriber site) per a prescribed time period (e.g., hour/day/week/month/year) based on the subscription. Alternatively, the malware detection system 110 may limit the data submissions based on a prescribed amount of content based on the level of service per the subscription (e.g., 1 gigabytes/second “GPS” of traffic for Tier 1 service level and 2 GPS for Tier 2 service level).


As yet another example, the data submissions from a certain customer (Customer_ID) or certain sensors (e.g., Sensor_ID) at subscriber sites 112 and/or 114 may be tracked by the cloud broker 610 (and/or selected broker compute node). Such tracking may be conducted where the customer is billed based on the overall usage of the object evaluation service 180. As a result, the level of subscription paid for by the customer may be used to set throughput thresholds, number of data submissions, and/or other SLA (service level agreement) attributes.


Also, the malware detection system may differentiate service level commitments based on the type of object, for example, URL analysis may be performed in a shorter time than file analysis. Alternatively, different clusters or analytic compute nodes within a single cluster can be dedicated to certain tiers of service or types of object analysis (URLs, email, files, webpages) that may consume more or less time to complete.


VII. Cloud Broker Architecture



FIG. 7 is an exemplary embodiment of the cloud broker 610 being a portion of the logic implemented within the analysis selection service 140 of FIGS. 1A-1B. The cloud broker 610 offers centralized control of policy and routing decisions for object evaluation service 180 and a level of abstraction that precludes exposure of a particular broker compute node within the clusters 1851-185N to the sensors 1101-110M. This level of abstraction may assist in compliance with certain outbound firewall rules at an enterprise network 600 of FIG. 6A that may require a single endpoint connection. According to this embodiment, the cloud broker 610 includes one or more proxy modules 7001-700R (R≥1), interface logic 710 and reporting logic 720.


Although not shown, it is contemplated that the service monitoring service 630 of FIG. 6A and/or the cloud broker 610 communicatively coupled to the service monitoring service 630 may aggregate operational metadata for all clusters and compute nodes for use by the first enforcement logic 143 to confirm subscription requirements are satisfied for all customers. Where any subscription requirements are not satisfied, the malware detection system may be augmented with additional clusters, compute nodes or reconfigured to optimize operability of the clusters or computer nodes or provide new functionality (e.g., new guest images supported, etc.). More specifically, by evaluating the operational metadata provided by the cluster management system for all clusters against subscription information from the subscription review service regarding all customer registrations (and/or sensor enrollments for object evaluation services), the first enforcement logic 143 of the cloud broker 610 may generate system status information indicating the overall capacity and capability of the malware detection system to service all the registered customers per their aggregated service level requirements. The system monitoring service provides the system status information to system administrators by generating and sending status reports and alerts on demand and/or as system conditions require.


Herein, the proxy module(s) 7001-700R include one or more software modules that, when executed by a hardware processor (not shown), collectively operate as a proxy server, which conducts load balancing of communications from the sensors 1101-110M as governed by the policy and routing rules 730 of the rules engine 142. The load balancing is based, at least in part, on the cluster selection values 157 that are produced by the system monitoring logic 630 from the collected operational metadata 150, where the operational metadata 150 may be stored in a data store (not shown) accessible to the first enforcement logic 143. These cluster selection values 157 are made available to the proxy module(s) 7001-700R via interface logic 710, which provides a mechanism to propagate load-balancing updates to the proxy module 7001-700R. Configured to select a cluster (and in one embodiment a particular broker compute node), the proxy module(s) 7001-700R may use the cluster selection values 157 as input parameters for the rule engine 142 which, based on the policy and routing rules 730, results in the selection of a particular cluster (e.g., cluster 1851) from the set of clusters 1851-185N available to a requesting sensor (e.g., sensor 1101).


According to another embodiment of the disclosure, besides the cluster selection values 157 described above, a portion of the subscription information 177 (stored within the data store(s) 175 and accessible by content in the analysis request message 125 from the sensor 1101) may be analyzed by at least one of the proxy modules (e.g., proxy module 700R) in determining a selected cluster (e.g., cluster 1851).


For instance, as an illustrative example, the Sensor_ID included as part of the analysis request message 125 may be provided to at least one of the proxy modules (e.g., proxy module 700R), where the Sensor_ID may identify a geographic region of the sensor 1101 and the Sensor_ID may be used to retrieve certain attributes of the subscription information 177 from the data store 175 located within the first subsystem 130 and/or the second subsystem 160 (e.g., a data store within the subscription review service 170). Additionally, or in the alternative, the Customer_ID may be included as part of the analysis request message 125 for use in accessing certain attributes of the subscription information 177 maintained within the cloud broker 610 or stored remotely from the cloud broker 610 and within the malware detection system 100 (e.g., within the first subsystem 130 or the second subsystem 160).


Depending on such information, the proxy module 700R may utilize (i) the cluster selection values 157 accessible from the system monitoring logic 630, (ii) the Sensor_ID, the Customer_ID, and/or its associated subscription information 177 as other inputs for the policy and routing rules 730 executed by the rules engine 142 in determining what cluster (and/or broker compute node) to select for communications with the sensor 1101. This determination may involve emphasizing (e.g., increase value to, apply weights on, etc.) the cluster selection value(s) 157 associated with a cluster (or compute node) within a certain geographic proximity to the sensor than clusters outside this geographic region. Another determination may involve evaluating whether the selected cluster (or targeted broker compute node) can satisfy (or is satisfying) QoS thresholds for this subscription. A high QoS threshold may provide the sensor 1101 with a lower number of possible clusters than a low QoS threshold.


The reporting logic 720 of the cloud broker 610 gathers operational metadata and/or analysis results from the proxy module(s) 7001-700R. These operational metadata and/or analysis results may be aggregated to formulate statistical information as described above, which is searchable and available for display and analysis by a subscriber management system within the subscriber site 112.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. However, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. Principles of the invention may be practiced within a single monolithic malware detection system with a single cluster and/or a single compute node within the cluster.

Claims
  • 1. A system, comprising: a cloud-based malware detection system including at least a processor and a memory, the memory includes object analysis logic that, during execution by the processor, analyzes an object to determine whether the object is associated with a cyber-attack;a portal that provides access over a network to displayable data for a customer to register with and obtain a subscription to the cloud-based malware detection system; anda subscription review service communicatively coupled with the portal, the subscription review service comprises a data store storing subscription information, wherein the subscription information includes an identifier for the customer and one or more identifiers each associated with a corresponding customer submitter operable to submit an object to the cloud-based malware detection system for analysis,wherein the cloud-based malware detection system comprises a cloud broker to perform one or more inter-cluster analyses to select a cluster to conduct a malware analysis of the object from a plurality of clusters based, at least in part, on the subscription information and operational metadata associated with operations of the plurality of clusters, and a cluster broker communicatively coupled with and remotely located from the cloud broker and deployed within the selected cluster, the cluster broker to perform one or more intra-cluster analyses for causing an object analyzer of the selected cluster to analyze the object to determine whether the analyzed object is associated with a cyber-attack.
  • 2. The system of claim 1 further comprising: a first customer submitter to receive credentials associated with the subscription provided by the subscription review service to establish communications with the cloud-based malware detection system.
  • 3. The system of claim 2, wherein the first customer submitter being communicatively coupled to a subscriber management system, the subscriber management system to (i) monitor objects including the object being submitted by the first customer submitter for analysis to the cloud-based malware detection system and (ii) enforce compliance with a plurality of requirements of the subscription to the cloud-based malware detection service based on operations performed by at least the first customer submitter.
  • 4. The system of claim 3, wherein the subscriber management system includes enforcement logic to enforce compliance with the plurality of requirements of the subscription by at least monitoring the operations of the first customer submitter, comparing the operations of the first customer submitter to one or more attributes of the subscription, and altering operations of the first customer submitter in response to detecting that the operations of the first customer submitter exceed limits imposed by the one or more attributes.
  • 5. The system of claim 3, wherein the subscriber management system being configured to receive statistical information based on the metadata from the cloud-based malware detection system, and after receipt of the statistical information, the subscriber management system changing the subscription via the portal.
  • 6. The system of claim 3, wherein the subscriber management system includes enforcement logic to enforce compliance with the plurality of requirements of the subscription by at least monitoring the operations of the first customer submitter, comparing the operations of the first customer submitter to one or more attributes of the subscription that are associated with operations of a submitter, and altering operations of the first customer submitter in response to detecting that the operations of the first customer submitter exceed limits imposed by the one or more attributes.
  • 7. The system of claim 2, wherein the first customer submitter includes a sensor to capture network traffic, perform a preliminary analysis on the network traffic to identify suspicious traffic, and provide objects extracted from the suspicious traffic to the cloud-based malware detection system for further analysis to determine whether the objects are associated with a cyber-attack, the sensor includes analysis logic operable in a network device communicatively coupled to the cloud-based malware detection system and the subscription review service.
  • 8. The system of claim 7, wherein the network traffic is identified as suspicious upon at least a portion of the network traffic meets or exceeds an attack threshold identifying that the objects extracted from the network traffic are potentially associated with a cyber-attack, and an operability of the first customer submitter is changed to reduce a number of objects provided to cloud-based malware detection system by increasing the attack threshold.
  • 9. The system of claim 7, wherein the sensor is a virtual sensor operable on a second processor different than the processor of the cloud-based malware detection system and stored within a second memory different than the memory of the cloud-based malware detection system.
  • 10. The system of claim 1, wherein the cloud-based malware detection system further comprises: enforcement logic that, during execution by the processor, enforces compliance with a plurality of requirements of the subscription to the cloud-based malware detection system; andreporting logic that, during execution by the processor, transmits a result of the analysis of the object by the cloud-based malware detection system in determining whether the object is associated with a cyber-attack.
  • 11. The system of claim 10, wherein the enforcement logic, during execution by the processor, enforces (i) compliance by the customer being expected to operate in accordance with the plurality of requirements of the subscription as selected by the customer and (ii) compliance by a second customer being expected to operate in accordance with a second plurality of requirements of a subscription as selected by the second customer.
  • 12. The system of claim 10, wherein the enforcement logic of the cloud-based malware detection system to enforce compliance with the plurality of requirements of the subscription by at least (i) analyzing whether metadata associated with operations performed on data submitted by the first customer submitter to the cloud-based malware detection complies with a service performance level established by one or more service attributes associated with the subscription that are stored as a portion of the subscription information, and (ii) responsive to detecting the customer failing to comply with the service performance level, performing an operation to address a failure by the customer to comply with the service performance level associated with the subscription.
  • 13. The system of claim 12, wherein the analyzing whether the metadata complies with the service performance level by the enforcement logic comprises determining whether the metadata associated with operations performed on the data submitted to the cloud-based malware detection system by the first customer submitter indicates that a first rate of data submissions to the cloud-based malware detection system set for the customer within a prescribed period of time exceeds a second rate of data submissions set for the subscription, a first data submission of the data submissions for use in retrieval of the object for analysis by the cloud-based malware detection system.
  • 14. The system of claim 13, wherein the performing of the operation to address the failure by the customer to comply with the service performance level associated with the subscription by the enforcement logic comprises transmitting an alert to an administrator for the customer by the enforcement logic of the cloud-based malware detection system, the alert providing suggested measures for altering the subscription to increase the first rate of data submissions to coincide with a number of data submissions being provided by the customer over the prescribed period of time to the cloud-based malware detection system.
  • 15. The system of claim 13, wherein the performing of the operation to address the failure by the customer to comply with the service performance level associated with the subscription by the enforcement logic comprises forcing a re-enrollment of at least the first customer submitter by changing data submissions be transmitted to a first cluster of a plurality of clusters of the cloud-based malware system to a second cluster that is different than the first cluster.
  • 16. The system of claim 12, wherein the analyzing whether the metadata complies with the service performance level by the enforcement logic comprises determining whether the metadata associated with operations performed on the data submitted to the cloud-based malware detection system by the first customer submitter indicates that the data being submitted by a plurality of customer submitters, including the first customer submitter, is greater than a predetermined number of customer submitters authorized by the subscription to communicate with the cloud-based malware detection system.
  • 17. The system of claim 16, wherein the performing of the operation to address the failure by the customer to comply with the service performance level associated with the subscription by the enforcement logic comprises transmitting an alert to an administrator for the customer by the enforcement logic of the cloud-based malware detection system, the alert providing suggested measures for altering the subscription to increase the predetermined number of customer submitters authorized to communicate with the cloud-based malware detection system.
  • 18. The system of claim 12, wherein the analyzing whether the metadata complies with the service performance level by the enforcement logic comprises determining whether the metadata associated with operations performed on the data submitted to the cloud-based malware detection system by the first customer submitter indicates that the data is being submitted by a plurality of customer submitters, including the first customer submitter, is analyzed by a cluster residing within a geographic location as set by a service attribute of the one or more service attributes of the subscription.
  • 19. The system of claim 18, wherein the performing of the operation to address the failure by the customer to comply with the service performance level associated with the subscription by the enforcement logic comprises transmitting an alert to a system administrator of the cloud-based malware detection system, the alert identifying non-compliance with the service attribute to prompt an addition of a cluster or compute nodes operating with the geographic location to comply with the service attribute.
  • 20. The system of claim 3, wherein the subscriber management system includes enforcement logic that (i) collects and aggregates metadata associated with data submissions to the cloud-based malware detection system from a plurality of customer submitters including the first customer submitter associated with the customer and controlled by the subscriber management system, (ii) receives a portion of the subscription information including one or more service attributes establishing a service performance level for the subscription, (iii) analyzes whether the aggregated metadata associated with the data submissions to the cloud-based malware detection system complies with the service performance level established by the one or more service attributes associated with the subscription, and (iv) responsive to detecting that the customer failing to comply with the service performance level, performs an operation to address a failure by the customer in complying with the service performance level associated with the subscription.
  • 21. The system of claim 20, wherein the analyzing whether the metadata complies with the service performance level by the subscriber management system includes enforcement logic comprises determining whether the aggregated metadata indicates that the customer has exceeded a predetermined rate of data submissions set for the customer within a prescribed period of time to the cloud-based malware detection system.
  • 22. The system of claim 21, wherein the performing, by the subscriber management system, of the operation to address the failure by the customer to comply with the service performance level associated with the subscription comprises notifying an administrator for the customer via an alert message issued by the enforcement logic of the subscriber management system to alter the subscription to increase the predetermined rate of data submissions for the customer to support a number of data submissions being provided by the customer to the cloud-based malware detection system over the prescribed period of time.
  • 23. The system of claim 21, wherein the performing, by the subscriber management system, of the operation to address the failure by the customer to comply with the service performance level associated with the subscription comprises altering operations of at least the first customer submitter to reduce a number of data submissions transmitted to the cloud-based malware detection system over the prescribed period of time, the first customer submitter includes a sensor to (i) capture network traffic and (ii) perform a preliminary analysis on the network traffic to determine whether at least the object is suspicious by (a) comparing content of the object to content associated with known malware to produce a result, and (b) comparing the result to an attack threshold being a minimum percentage of content shared with known malware.
  • 24. The system of claim 23, wherein the altering of the operations by at least the first customer submitter to reduce the number of data submissions transmitted to the cloud-based malware detection system comprises increasing an attack threshold identifying that the objects extracted from the network traffic are potentially associated with a cyber-attack thereby reducing the number of suspicious objects provided by the first customer submitter to the cloud-based malware detection system.
  • 25. The system of claim 1, wherein the object analyzer comprises at least one virtual machine to monitor behaviors resulting from processing of the object, and correlation logic to determine whether the monitored behaviors correlate to behaviors corresponding to a cyber-attack.
  • 26. The system of claim 1, wherein the cluster comprises a cluster management system communicatively coupled with the cluster broker to enforce the plurality of requirements of the subscription to the cloud-based malware detection system.
  • 27. The system of claim 1, wherein the portal being accessible over a public network by a plurality of customers including the customer, and the data store of the subscription review service to store subscription information for each of the plurality of customers.
  • 28. A computerized method for enforcing compliance with a plurality of requirements of a subscription to a malware detection system, the method comprising: receiving, by enforcement logic, operational metadata from the malware detection system, the operational metadata being metadata associated with operations performed on one or more objects submitted from a customer submitter associated with a customer in determining whether any object of the one or more objects is associated with a cyber-attack;determining, by the enforcement logic, whether an interaction between the customer submitter associated with the customer of the malware detection system is in compliance with the plurality of requirements of the subscription to the malware detection system by at least analyzing whether the operational metadata associated with operations performed on the one or more objects, submitted by the customer submitter to the malware detection system to determine whether the one or more objects are associated with a cyber-attack, complies with a service performance level that is set by one or more service attributes associated with the subscription stored in memory and accessible by the enforcement logic by at least determining whether a predetermined rate of data submissions within a prescribed period of time has been exceeded, andresponsive to detecting that the customer is failing to comply with the service performance level, performing an operation to address a failure by the customer to comply with the service performance level associated with the subscription.
  • 29. The method of claim 28, wherein the analyzing whether the operational metadata complies with the operations performed on the one or more objects comprises determining whether the operational metadata associated with operations performed on the data submitted to the cloud-based malware detection system by the first customer submitter indicates that the customer has exceeded a predetermined rate of data submissions within a prescribed period of time to the cloud-based malware detection system set for the customer, a first data submission of the data submissions for use in retrieval of an object of the objects for analysis by the cloud-based malware detection system.
  • 30. The method of claim 29, wherein the performing of the operation to address the failure by the customer to comply with the service performance level associated with the subscription comprises transmitting an alert to an administrator for the customer by the enforcement logic of the cloud-based malware detection system, the alert providing suggested measures for altering the subscription to increase the predetermined rate of data submissions for the customer to coincide with a number of data submissions being provided by the customer over the prescribed period of time to the cloud-based malware detection system.
  • 31. The method of claim 28, wherein the analyzing whether the operational metadata complies with the service performance level comprises determining whether the operational metadata associated with operations performed on the data submitted to the cloud-based malware detection system by the first customer submitter indicates that the data being submitted by a plurality of customer submitters, including the first customer submitter, is greater than a predetermined number of customer submitters authorized by the subscription to communicate with the cloud-based malware detection system.
  • 32. The method of claim 31, wherein the performing of the operation to address the failure by the customer to comply with the service performance level associated with the subscription comprises transmitting an alert to an administrator for the customer by the enforcement logic of the cloud-based malware detection system, the alert providing suggested measures for altering the subscription to increase the predetermined number of customer submitters authorized to communicate with the cloud-based malware detection system.
  • 33. The method of claim 28, wherein the analyzing whether the operational metadata complies with the service performance level comprises determining whether the operational metadata associated with operations performed on the data submitted to the cloud-based malware detection system by the first customer submitter indicates that the data is being submitted by a plurality of customer submitters, including the first customer submitter, is analyzed by a cluster residing within a geographic location as set by a service attribute of the one or more service attributes of the subscription.
  • 34. The method of claim 33, wherein the performing of the operation to address the failure by the customer to comply with the service performance level associated with the subscription comprises transmitting an alert to a system administrator of the cloud-based malware detection system, the alert identifying non-compliance with the service attribute to prompt an addition of a cluster or compute nodes operating with the geographic location to comply with the service attribute.
  • 35. The method of claim 34, wherein the performing of the operation to address the failure by the customer to comply with the service performance level associated with the subscription comprises altering operations of at least the first customer submitter to reduce a number of data submissions transmitted to the cloud-based malware detection system over the prescribed period of time, the first customer submitter includes a sensor to (i) capture network traffic and (ii) perform a preliminary analysis on the network traffic to determine whether at least the object is suspicious by (a) comparing content of the object to content associated with known malware to produce a result, and (b) comparing the result to an attack threshold being a minimum percentage of content shared with known malware.
  • 36. The method of claim 35, wherein the altering of the operations by at least the first customer submitter to reduce the number of data submissions transmitted to the cloud-based malware detection system comprises increasing the attack threshold that reduces the number of suspicious objects provided by the first customer submitter to the cloud-based malware detection system.
  • 37. The method of claim 28, wherein the subscriber management system includes enforcement logic that (i) collects and aggregates metadata associated with data submissions to the cloud-based malware detection system from a plurality of customer submitters including the first customer submitter associated with the customer and controlled by the subscriber management system, (ii) receives a portion of the subscription information including one or more service attributes establishing a service performance level for the subscription, and (iii) analyzes whether the aggregated metadata associated with the data submissions to the cloud-based malware detection system complies with the service performance level established by the one or more service attributes associated with the subscription, and (iv) responsive to detecting that the customer failing to comply with the service performance level, performing an operation to address a failure by the customer in complying with the service performance level associated with the subscription.
  • 38. The method of claim 28, wherein the performing of the operation to address the failure by the customer to comply with the service performance level associated with the subscription comprises notifying an administrator for the customer via an alert message issued by the enforcement logic of the subscriber management system to alter the subscription to increase the predetermined rate of data submissions for the customer to support a number of data submissions being provided by the customer to the cloud-based malware detection system over the prescribed period of time.
  • 39. The method of claim 28 further comprising: monitoring, by a subscription management system, objects including the object being submitted by the submitter for analysis to the cloud-based malware detection system and enforce compliance with the plurality of requirements of the subscription to the cloud-based malware detection service on operations performed by at least the first customer submitter.
US Referenced Citations (733)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5319776 Hile et al. Jun 1994 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5802277 Cowlard Sep 1998 A
5842002 Schnurer et al. Nov 1998 A
5960170 Chen et al. Sep 1999 A
5978917 Chi Nov 1999 A
5983348 Ji Nov 1999 A
6088803 Tso et al. Jul 2000 A
6092194 Touboul Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6154844 Touboul et al. Nov 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6424627 Sorhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7058822 Edery et al. Jun 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7546638 Anderson et al. Jun 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937387 Frazier et al. May 2011 B2
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7984503 Edwards Jul 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8413209 Aldera et al. Apr 2013 B2
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8549645 Tang et al. Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8555392 Golovkin Oct 2013 B2
8561177 Aziz et al. Oct 2013 B1
8566476 Shiffer et al. Oct 2013 B2
8566946 Aziz et al. Oct 2013 B1
8578491 McNamee Nov 2013 B2
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8683593 Mahaffey Mar 2014 B2
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8763127 Yao Jun 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793278 Frazier et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881271 Butler, II Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8949257 Shiffer et al. Feb 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9027138 Glenn May 2015 B2
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106630 Frazier et al. Aug 2015 B2
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9159035 Ismael et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
9197664 Aziz et al. Nov 2015 B1
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett et al. Jan 2016 B1
9251343 Vincent et al. Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9268936 Butler Feb 2016 B2
9275229 LeMasters Mar 2016 B2
9282109 Aziz et al. Mar 2016 B1
9292686 Ismael et al. Mar 2016 B2
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
9344447 Cohen et al. May 2016 B2
9355247 Thioux et al. May 2016 B1
9356944 Aziz May 2016 B1
9363280 Rivlin et al. Jun 2016 B1
9367681 Ismael et al. Jun 2016 B1
9374381 Kim Jun 2016 B2
9398028 Karandikar et al. Jul 2016 B1
9413781 Cunningham et al. Aug 2016 B2
9426071 Caldejon et al. Aug 2016 B1
9430646 Mushtaq et al. Aug 2016 B1
9432389 Khalid et al. Aug 2016 B1
9438613 Paithane et al. Sep 2016 B1
9438622 Staniford et al. Sep 2016 B1
9438623 Thioux et al. Sep 2016 B1
9450840 Denis Sep 2016 B2
9459901 Jung et al. Oct 2016 B2
9467460 Otvagin et al. Oct 2016 B1
9483644 Paithane et al. Nov 2016 B1
9495180 Ismael Nov 2016 B2
9497213 Thompson et al. Nov 2016 B2
9507935 Ismael et al. Nov 2016 B2
9516054 Malachi Dec 2016 B2
9516057 Aziz Dec 2016 B2
9519782 Aziz et al. Dec 2016 B2
9536091 Paithane et al. Jan 2017 B2
9537972 Edwards et al. Jan 2017 B1
9560059 Islam Jan 2017 B1
9565202 Kindlund et al. Feb 2017 B1
9591015 Amin et al. Mar 2017 B1
9591020 Aziz Mar 2017 B1
9594904 Jain et al. Mar 2017 B1
9594905 Ismael et al. Mar 2017 B1
9594912 Thioux et al. Mar 2017 B1
9609007 Rivlin et al. Mar 2017 B1
9626509 Khalid et al. Apr 2017 B1
9628498 Aziz et al. Apr 2017 B1
9628507 Haq et al. Apr 2017 B2
9633134 Ross Apr 2017 B2
9635039 Islam et al. Apr 2017 B1
9641546 Manni et al. May 2017 B1
9654485 Neumann May 2017 B1
9661009 Karandikar et al. May 2017 B1
9661018 Aziz May 2017 B1
9674298 Edwards et al. Jun 2017 B1
9680862 Ismael et al. Jun 2017 B2
9690606 Ha et al. Jun 2017 B1
9690933 Singh et al. Jun 2017 B1
9690935 Shiffer et al. Jun 2017 B2
9690936 Malik et al. Jun 2017 B1
9736179 Ismael Aug 2017 B2
9740857 Ismael et al. Aug 2017 B2
9747446 Pidathala et al. Aug 2017 B1
9756074 Aziz et al. Sep 2017 B2
9773112 Rathor et al. Sep 2017 B1
9781144 Otvagin et al. Oct 2017 B1
9787700 Amin et al. Oct 2017 B1
9787706 Otvagin et al. Oct 2017 B1
9792196 Ismael et al. Oct 2017 B1
9824209 Ismael et al. Nov 2017 B1
9824211 Wilson Nov 2017 B2
9824216 Khalid et al. Nov 2017 B1
9825976 Gomez et al. Nov 2017 B1
9825989 Mehra et al. Nov 2017 B1
9832216 Kaloroumakis Nov 2017 B2
9838408 Karandikar et al. Dec 2017 B1
9838411 Aziz Dec 2017 B1
9838416 Aziz Dec 2017 B1
9838417 Khalid et al. Dec 2017 B1
9846776 Paithane et al. Dec 2017 B1
9876701 Caldejon et al. Jan 2018 B1
9888016 Amin et al. Feb 2018 B1
9888019 Pidathala et al. Feb 2018 B1
9910988 Vincent et al. Mar 2018 B1
9912644 Cunningham Mar 2018 B2
9912681 Ismael et al. Mar 2018 B1
9912684 Aziz et al. Mar 2018 B1
9912691 Mesdaq et al. Mar 2018 B2
9912698 Thioux et al. Mar 2018 B1
9916440 Paithane et al. Mar 2018 B1
9921978 Chan et al. Mar 2018 B1
9934376 Ismael Apr 2018 B1
9934381 Kindlund et al. Apr 2018 B1
9946568 Ismael et al. Apr 2018 B1
9954890 Staniford et al. Apr 2018 B1
9973531 Thioux May 2018 B1
10002252 Ismael et al. Jun 2018 B2
10019338 Goradia et al. Jul 2018 B1
10019573 Silberman et al. Jul 2018 B2
10025691 Ismael et al. Jul 2018 B1
10025927 Khalid et al. Jul 2018 B1
10027689 Rathor et al. Jul 2018 B1
10027690 Aziz et al. Jul 2018 B2
10027696 Rivlin et al. Jul 2018 B1
10033747 Paithane et al. Jul 2018 B1
10033748 Cunningham et al. Jul 2018 B1
10033753 Islam et al. Jul 2018 B1
10033759 Kabra et al. Jul 2018 B1
10050998 Singh Aug 2018 B1
10068091 Aziz et al. Sep 2018 B1
10075455 Zafar et al. Sep 2018 B2
10083302 Paithane et al. Sep 2018 B1
10084813 Eyada Sep 2018 B2
10089461 Ha et al. Oct 2018 B1
10097573 Aziz Oct 2018 B1
10104102 Neumann Oct 2018 B1
10108446 Steinberg et al. Oct 2018 B1
10121000 Rivlin et al. Nov 2018 B1
10122746 Manni et al. Nov 2018 B1
10133863 Bu et al. Nov 2018 B2
10133866 Kumar et al. Nov 2018 B1
10146810 Shiffer et al. Dec 2018 B2
10148693 Singh et al. Dec 2018 B2
10165000 Aziz et al. Dec 2018 B1
10169585 Pilipenko et al. Jan 2019 B1
10176321 Abbasi et al. Jan 2019 B2
10181029 Ismael et al. Jan 2019 B1
10191861 Steinberg et al. Jan 2019 B1
10192052 Singh et al. Jan 2019 B1
10198574 Thioux et al. Feb 2019 B1
10200384 Mushtaq et al. Feb 2019 B1
10210329 Malik et al. Feb 2019 B1
10216927 Steinberg Feb 2019 B1
10218740 Mesdaq et al. Feb 2019 B1
10242185 Goradia Mar 2019 B1
10476906 Siddiqui Nov 2019 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030021728 Sharpe et al. Jan 2003 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040006473 Mills et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Glide et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070019286 Kikuchi Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080018122 Zierler et al. Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080184367 McMillan et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320562 Creamer et al. Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090198651 Shiffer et al. Aug 2009 A1
20090198670 Shiffer et al. Aug 2009 A1
20090198689 Frazier et al. Aug 2009 A1
20090199274 Frazier et al. Aug 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100030996 Butler, II Feb 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St Hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110099635 Silberman et al. Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173213 Frazier et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120096553 Srivastava et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120331553 Aziz et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074143 Bu et al. Mar 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130232576 Karnikis Sep 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130247186 LeMasters Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20130318038 Shiffer et al. Nov 2013 A1
20130318073 Shiffer et al. Nov 2013 A1
20130325791 Shiffer et al. Dec 2013 A1
20130325792 Shiffer et al. Dec 2013 A1
20130325871 Shiffer et al. Dec 2013 A1
20130325872 Shiffer et al. Dec 2013 A1
20140032875 Butler Jan 2014 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140181131 Ross Jun 2014 A1
20140189687 Jung et al. Jul 2014 A1
20140189866 Shiffer et al. Jul 2014 A1
20140189882 Jung et al. Jul 2014 A1
20140237600 Silberman et al. Aug 2014 A1
20140280245 Wilson Sep 2014 A1
20140283037 Sikorski et al. Sep 2014 A1
20140283063 Thompson et al. Sep 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140344926 Cunningham et al. Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140380473 Bu et al. Dec 2014 A1
20140380474 Paithane et al. Dec 2014 A1
20150007312 Pidathala et al. Jan 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150096023 Mesdaq et al. Apr 2015 A1
20150096024 Haq et al. Apr 2015 A1
20150096025 Ismael Apr 2015 A1
20150180886 Staniford et al. Jun 2015 A1
20150186645 Aziz et al. Jul 2015 A1
20150199513 Ismael et al. Jul 2015 A1
20150199531 Ismael et al. Jul 2015 A1
20150199532 Ismael et al. Jul 2015 A1
20150220735 Paithane et al. Aug 2015 A1
20150372980 Eyada Dec 2015 A1
20160004869 Ismael et al. Jan 2016 A1
20160006756 Ismael et al. Jan 2016 A1
20160036855 Gangadharappa et al. Feb 2016 A1
20160044000 Cunningham Feb 2016 A1
20160127393 Aziz et al. May 2016 A1
20160191547 Zafar et al. Jun 2016 A1
20160191550 Ismael et al. Jun 2016 A1
20160197951 Lietz et al. Jul 2016 A1
20160261612 Mesdaq et al. Sep 2016 A1
20160285914 Singh et al. Sep 2016 A1
20160301703 Aziz Oct 2016 A1
20160335110 Paithane et al. Nov 2016 A1
20170083703 Abbasi et al. Mar 2017 A1
20170300693 Zhang et al. Oct 2017 A1
20170329968 Wachdorf Nov 2017 A1
20180013770 Ismael Jan 2018 A1
20180048660 Paithane et al. Feb 2018 A1
20180063177 Yamada Mar 2018 A1
20180121316 Ismael et al. May 2018 A1
20180219891 Jain Aug 2018 A1
20180288077 Siddiqui et al. Oct 2018 A1
Foreign Referenced Citations (11)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
0206928 Jan 2002 WO
0223805 Mar 2002 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (63)
Entry
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001).
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14.
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-d/1035069? [retrieved on Jun. 1, 2016].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013).
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.--N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
PCT/US2018/025329 filed Mar. 30, 2018 International Search Report and Written Opinion dated Jun. 20, 2018.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
PCT/US2018/025329 filed Mar. 30, 2018 International Preliminary Report on Patentability dated Oct. 1, 2019.
U.S. Appl. No. 15/721,630, filed Sep. 29, 2017 Notice of Allowance dated May 23, 2019.
U.S. Appl. No. 15/940,307, filed Mar. 29, 2018 Non-Final Office Action dated Jan. 10, 2020.
U.S. Appl. No. 15/940,352, filed Mar. 29, 2018 Non-Final Office Action dated Dec. 12, 2019.
U.S. Appl. No. 15/940,410, filed Mar. 29, 2018 Non-Final Office Action dated Feb. 3, 2020.
Provisional Applications (3)
Number Date Country
62479208 Mar 2017 US
62523121 Jun 2017 US
62523123 Jun 2017 US