The present invention generally relates to internal combustion engines and, more particularly, to a system and method for enhancing internal combustion engine aftertreatment applications by superheated fuel injection.
As environmental concerns have led to increasingly strict regulation of engine emissions by governmental agencies, reduction of nitrogen-oxygen compounds (NOx) in exhaust emissions from internal combustion engines has become increasingly important. Current indications are that this trend will continue.
Future emission levels of diesel engines will have to be reduced in order to meet Environmental Protection Agency (EPA) regulated levels. In the past, the emission levels of US diesel engines have been regulated according to the EPA using the Federal Test Procedure (FTP) cycle, with a subset of more restrictive emission standards for California via the California Air Resources Board (CARB). For example, the Tier II emission standards, which are being considered for 2004, are 50% lower than the Tier I standards. Car and light truck emissions are measured over the FTP 75 test and expressed in gm/mi. Proposed Ultra-Low Emissions Vehicle (ULEV) emission levels for light-duty vehicles up to model year 2004 are 0.2 gm/mi NOx and 0.08 gm/mi particulate matter (PM). Beginning with the 2004 model year, all light-duty Low Emission Vehicles (LEVs) and ULEVs in California would have to meet a 0.05 gm/mi NOx standard to be phased in over a three year period. In addition to the NOx standard, a full useful life PM standard of 0.01 gm/mi would also have to be met.
Traditional methods of in-cylinder emission reduction techniques such as exhaust gas recirculation (EGR) and injection rate shaping by themselves will not be able to achieve these low emission levels required by the standard. Aftertreatment technologies will have to be used, and will have to be further developed in order to meet the future low emission requirements of the diesel engine.
NOx adsorber catalysts have the potential for great NOx emission reduction (70-90%) and for extending engine life. However, low temperature operation of adsorbers seems to be a problem. The main reason for this problem seems to be the fact that the reductants, especially D2 fuel, starts to boil at around 180 degrees Celsius. At temperatures below this, the injected fuel has a strong tendency to condense and does not participate in the release and reduction step of NOx adsorbers (catalytic converters). Also, if the droplet size is large, atomization is not good and the fuel does not vaporize easily even at the higher temperature, thereby limiting adsorber performance.
Current devices on their own, such as spraying system nozzles and injectors cannot do anything about the condensation at low temperature. Also, the droplet size measurement shows that they have a sauter mean diameter (SMD) in the range of 30-60 μm. If this droplet size can be reduced further, the vaporization will become faster and easier. This will improve the reductant participation in the catalyst reactions and improve the NOx adsorber capacity and NOx conversion efficiency.
There is therefore a need for a system and method for enhancing internal combustion engine aftertreatment applications that can reduce emission levels for diesel engines. The present invention is directed toward meeting this need.
It is an object of the present invention to provide a system and process for enhancing internal combustion engine aftertreatment applications by superheated fuel injection. It is a further object of the present invention to provide a system and process for reducing emission levels of diesel engines.
These objects and others are achieved by various forms of the present invention. According to one aspect of the invention, a system and process for enhancing internal combustion engine aftertreatment applications by superheated fuel injection is disclosed. The system includes a fuel supply upstream of a pressurized fuel injector or nozzle of an aftertreatment application. The system also includes a heater for heating the fuel in the pressurized fuel supply to a desired temperature. A temperature controller can be used to maintain the heated fuel in a liquid form. When liquid fuel in the pressurized fuel supply is heated, the pressure of the fuel drops rapidly upon exiting the injector, resulting in atomization of the liquid. The vaporized fuel thereby produced is comprised of extremely small droplets and is elevated in temperature, which reduces the possibility of condensation on internal surfaces of the aftertreatment system. This fine droplet size and resistance to condensation enhances the NOx conversion efficiency of adsorbers. Premature aging of catalysts due to hydrocarbon masking, especially at low temperatures, is also avoided. In addition, the fuel penalty is reduced due to better hydrocarbon utilization.
In another aspect of the invention, a system for enhancing internal combustion engine aftertreatment applications by superheated fuel injection is disclosed, comprising a heater for heating fuel to a point where the fuel vaporizes when injected into an exhaust stream.
In yet another aspect of the invention, a system for enhancing internal combustion engine aftertreatment applications by superheated fuel injection is disclosed, comprising: a NOx adsorber; a nozzle operatively coupled to the NOx adsorber; a pressurized fuel supply located upstream of the nozzle; and a heater operatively coupled to the pressurized fuel supply for heating fuel in the pressurized fuel supply so the fuel vaporizes when injected by the nozzle into the NOx adsorber.
According to a still further aspect of the invention, a method for enhancing internal combustion engine aftertreatment applications by superheated fuel injection is disclosed, comprising: (a) pressurizing a fuel in a pressurized fuel supply while keeping the fuel in liquid form; (b) heating the fuel in the pressurized fuel supply with a heater; and (c) injecting the fuel into an exhaust stream, at which point the fuel becomes vaporized into small droplets due to a sudden decrease in pressure.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiment illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, and alterations and modifications in the illustrated device, and further applications of the principles of the invention as illustrated therein are herein contemplated as would normally occur to one skilled in the art to which the invention relates.
The present invention provides a system and method for enhancing internal combustion engine aftertreatment applications by superheated fuel injection.
Referring to
Referring now to
The heated, yet still liquid, fuel is then injected by the fuel injector 14 into the NOx adsorber 16 of the exhaust stream (step 214). As the fuel comes out of the injector 14, it experiences sudden expansion and atomizes in a fine mist due to the sudden decrease in pressure. The fuel thus moves from point 104 in the liquid region to point 106 in the vapor region. The fuel almost instantaneously breaks up into sub-micron size droplets. The droplet size of this fine mist is below Malvern measuring capability. The temperature of the fuel is still elevated higher than the saturation vapor pressure, which resists instant condensation even when injected into a system at a lower temperature. This allows the catalyst to combust the fuel more efficiently for heat release and to participate in NOx reduction reactions. The process then ends at point 215.
Note that without the heating step, point 102 just comes back to point 100 during the injection process. This is undesirable because, as described in the background section, the injected fuel has a strong tendency to condense and does not participate in the release and reduction step of NOx adsorbers.
As shown in
Some advantages to the system and method for enhancing internal combustion engine aftertreatment applications presented in the present invention therefore include: (1) The NOx conversion efficiency (catalyst activity) is greatly improved. (2) The superheated fuel resists instant condensation, which allows longer reaction time on the catalyst surface. (3) Premature aging of catalysts due to hydrocarbon masking, especially at low temperatures, is avoided. (4) The fuel penalty is reduced due to improved hydrocarbon utilization. (5) Cold start conditions or cold operation may be improved.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
Number | Name | Date | Kind |
---|---|---|---|
3988890 | Abthoff et al. | Nov 1976 | A |
4719751 | Kume et al. | Jan 1988 | A |
5282355 | Yamaguchi | Feb 1994 | A |
5370720 | Duncan | Dec 1994 | A |
5381659 | Loving et al. | Jan 1995 | A |
5381660 | Loving et al. | Jan 1995 | A |
5397550 | Marino, Jr. | Mar 1995 | A |
5449390 | Duncan et al. | Sep 1995 | A |
5634330 | Achleitner et al. | Jun 1997 | A |
5673555 | Achleitner | Oct 1997 | A |
5845487 | Fraenkle et al. | Dec 1998 | A |
5884475 | Hofmann et al. | Mar 1999 | A |
5907950 | Enderle et al. | Jun 1999 | A |
6041594 | Brenner et al. | Mar 2000 | A |
6076348 | Falandino et al. | Jun 2000 | A |
6173568 | Zurbig et al. | Jan 2001 | B1 |
6264899 | Caren et al. | Jul 2001 | B1 |
6269633 | van Nieuwstadt et al. | Aug 2001 | B1 |
6330794 | Caren et al. | Dec 2001 | B1 |
20010049936 | Kenneth et al. | Dec 2001 | A1 |
20020134074 | Huthwohl et al. | Sep 2002 | A1 |
20030101715 | Huthwohl | Jun 2003 | A1 |
20040025498 | Lambert et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
06066208 | Mar 1994 | JP |
WO 9606303 | Feb 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20040154287 A1 | Aug 2004 | US |