This disclosure relates generally to the field of recovery of subterranean resources, and more particularly to a system and method for enhancing permeability of a subterranean zone at a well bore.
Reservoirs are subterranean formations of rock containing oil, gas, and/or water. Unconventional reservoirs include coal and shale formations containing gas and, in some cases, water. A coal bed, for example, may contain natural gas and water.
Coal bed methane (CBM) is often produced using vertical wells drilled from the surface into a coal bed. Vertical wells drain a very small radius of methane gas in low permeability formations. As a result, after gas in the vicinity of the vertical well has been produced, further production from the coal seam through the vertical well is limited.
To enhance production through vertical wells, the wells have been fractured using conventional and/or other stimulation techniques. Horizontal patterns have also been formed in coal seams to increase and/or accelerate gas production.
A system and method for enhancing permeability of a subterranean zone at a horizontal well bore are provided. In one embodiment, the method determines a drilling profile for drilling a horizontal well in a subterranean zone. At least one characteristic of the drilling profile is selected to aid in well bore stability during drilling. A liner is inserted into the horizontal well bore. The horizontal well bore is collapsed around the liner.
More specifically, in accordance with a particular embodiment, a non-invasive drilling fluid may be used to control a filter cake formed on the well bore during drilling. In these and other embodiments, the filter cake may seal the boundary of the well bore.
In another embodiment, a method is provided for obtaining resources from a coal seam disposed between a first aquifer and/or a second aquifer. The method includes forming a well bore including a substantially horizontal well bore formed in the coal seam. The well bore may in certain embodiments be collapsed or spalled. The well bore may also or instead include one or more laterals.
Technical advantages of certain embodiments include providing a system and method for enhancing permeability of a subterranean zone at a well bore. In particular, a subterranean zone, such as a coal seam, may be collapsed around a liner to increase the localized permeability of the subterranean zone and thereby, resource production.
Another technical advantage of certain embodiments may be the use of non-invasive drilling fluid to create a filter cake in the well bore. The filter cake may seal the well bore and allow stability to be controlled. For example, negative pressure differential may be used to instigate collapse of the well bore. A positive pressure differential may be maintained during drilling and completion to stabilize the well bore.
Other technical advantages will be readily apparent to one skilled in the art from the following figures, description, and claims. Moreover, while specific advantages have been enumerated above, various embodiments may include all, some, or none of the enumerated advantages.
In the illustrated embodiment, system 10 includes an articulated well bore 40 extending from surface 20 to penetrate subterranean zone 30. In particular embodiments, the subterranean zone 30 may be a coal seam. Subterranean zone 30, such as a coal seam, may be accessed to remove and/or produce water, hydrocarbons, and other fluids in the subterranean zone 30, to sequester carbon dioxide or other pollutants in the subterranean zone 30, and/or for other operations. Subterranean zone 30 may be a fractured or other shale or other suitable formation operable to collapse under one or more controllable conditions.
For ease of reference and purposes of example, subterranean zone 30 will be referred to as coal seam 30. However, it should be understood that the method and system for enhancing permeability may be implemented in any appropriate subterranean zone. In certain embodiments, the efficiency of gas production from coal seam 30 may be improved by collapsing the well bore 40 in the coal seam 30 to increase the localized permeability of the coal seam 30. The increased localized permeability provides more drainage surface area without hydraulically fracturing the coal seam 30. Hydraulic fracturing comprises pumping a fracturing fluid down-hole under high pressure, for example, 1000 psi, 5000 psi, 10,000 psi or more.
Although
Articulated well bore 40 is drilled using articulated drill string 50 that includes a suitable down-hole motor and drill bit 52. Well bore 40 may include a well bore pattern with a plurality of lateral or other horizontal well bores, as it discussed in more detail with respect to
During the process of drilling well bore 40, drilling fluid or mud is pumped down articulated drill string 50, as illustrated by arrows 60, and circulated out of drill string 50 in the vicinity of drill bit 52, as illustrated by arrows 62. The drilling fluid flows into the annulus between drill string 50 and well bore walls 49 where the drilling fluid is used to scour the formation and to remove formation cuttings and coal fines. The cuttings and coal fines (hereinafter referred to as “debris”) are entrained in the drilling fluid, which circulates up through the annulus between the drill string 40 and the well bore walls 49, as illustrated by arrows 63, until it reaches surface 20, where the debris is removed from the drilling fluid and the fluid is re-circulated through well bore 40.
This drilling operation may produce a standard column of drilling fluid having a vertical height equal to the depth of the well bore 40 and produces a hydrostatic pressure on well bore 40 corresponding to the depth of well bore 40. Because coal seams, such as coal seam 30, tend to be porous, their formation pressure may be less than such hydrostatic pressure, even if formation water is also present in coal seam 30. Accordingly, when the full hydrostatic pressure is allowed to act on coal seam 30, the result may be a loss of drilling fluid and entrained debris into the cleats of the formation, as illustrated by arrows 64. Such a circumstance is referred to as an over-balanced drilling operation in which the hydrostatic fluid pressure in well bore 40 exceeds the pressure in the formation.
In certain embodiments, the drilling fluid may comprise a brine. The brine may be fluid produced from another well in the subterranean zone 30 or other zone. If brine loss exceeds supply during drilling, solids may be added to form a filter cake 100 along the walls of the well bore 40. Filter cake 100 may prevent or significantly restrict drilling fluids from flowing into coal seam 30 from the well bore 40. The filter cake 100 may also provide a pressure boundary or seal between coal seam 30 and well bore 40 which may allow hydrostatic pressure in the well bore 40 to be used to control stability of the well bore 40 to prevent or allow collapse. For example, during drilling, the filter cake 100 aids well bore stability by allowing the hydrostatic pressure to act against the walls of the well bore 40.
The depth of the filter cake 100 is dependent upon many factors including the composition of the drilling fluid. As described in more detail below, the drilling fluid may be selected or otherwise designed based on rock mechanics, pressure and other characteristics of the coal seam 30 to form a filter cake that reduces or minimizes fluid loss during drilling and/or to reduces or minimizes skin damage to the well bore 40.
The filter cake 100 may be formed with low-loss, ultra low-loss, or other non-invasive or other suitable drilling fluids. In one embodiment, the solids may comprise micelles that form microscopic spheres, rods, and/or plates in solutions. The micelles may comprise polymers with a range of water and oil solubilities. The micelles form a low permeability seal over pore throats of the coal seam 30 to greatly limit further fluid invasion or otherwise seal the coal seam boundary.
In certain embodiments, fluid movement apparatus 72 may comprise a pump coupled to tubing string 72 that is operable to draw fluid from well bore 40 through tubing string 72 to surface 25 and reduce the pressure within well bore 40. In the illustrated embodiment, fluid movement apparatus 74 comprises a fluid injector, which may inject gas, liquid, or foam into well bore 40. Any suitable type of injection fluid may be used in conjunction with system 70. Examples of injection fluid may include, but are not limited to: (1) production gas, such as natural gas, (2) water, (3) air, and (4) any combination of production gas, water, air and/or treating foam. In particular embodiments, production gas, water, air, or any combination of these may be provided from a source outside of well bore 40. In other embodiments, gas recovered from well bore 40 may be used as the injection fluid by re-circulating the gas back into well bore 40. Rod, positive displacement and other pumps may be used. In these and other embodiments, a cavity may be formed in the well bore 40 in or proximate to curved portion 46 with the pump inlet positioned in the cavity. The cavity may form a junction with a vertical or other well in which the pump is disposed.
The fluid extraction system 70 may also include a liner 75. The liner 75 may be a perforated liner including a plurality of apertures and may be loose in the well bore or otherwise uncemented. The apertures may be holes, slots, or openings of any other suitable size and shape. The apertures may allow water and gas to enter into the liner 75 from the coal seal 30 for production to the surface. The liner 75 may be perforated when installed or may be perforated after installation. For example, the liner may comprise a drill or other string perforated after another use in well bore 40.
The size and/or shape of apertures in the liner 75 may in one embodiment be determined based on rock mechanics of the coal seam. In this embodiment, for example, a representative formation sample may be taken and tested in a tri-axial cell with pressures on all sides. During testing, pressure may be adjusted to simulate pressure in down-hole conditions. For example, pressure may be changed to simulate drilling conditions by increasing hydrostatic pressure on one side of the sample. Pressure may also be adjusted to simulate production conditions. During testing, water may be flowed through the formation sample to determine changes in permeability of the coal at the well bore in different conditions. The tests may provide permeability, solids flow and solids bridging information which may be used in sizing the slots, determining the periodicity of the slots, and determining the shape of the slots. Based on testing, if the coal fails in blocks without generating a large number of fines that can flow into the well bore, large perforations and/or high clearance liners with a loose fit may be used. High clearance liners may comprise liners one or more casing sizes smaller than a conventional liner for the hole size. The apertures may, in a particular embodiment, for example, be holes that are ½ inch in size.
In operation of the illustrated embodiment, fluid injector 74 injects a fluid, such as water or natural gas, into tubing string 72, as illustrated by arrows 76. The injection fluid travels through tubing string 72 and is injected into the liner 75 in the well bore 40, as illustrated by arrows 78. As the injection fluid flows through the liner 75 and annulus between liner 75 and tubing string 72, the injection fluid mixes with water, debris, and resources, such as natural gas, in well bore 40. Thus, the flow of injection fluid removes water and coal fines in conjunction with the resources. The mixture of injection fluid, water, debris, and resources is collected at a separator (not illustrated) that separates the resource from the injection fluid carrying the resource. Tubing string 72 and fuel injector 74 may be omitted in some embodiments. For example, if coal fines or other debris are not produced from the coal seam 30 into the liner 75, fluid injection may be omitted.
In certain embodiments, the separated fluid is re-circulated into well bore 40. In a particular embodiment, liquid, such as water, may be injected into well bore 40. Because liquid has a higher viscosity than air, liquid may pick up any potential obstructive material, such as debris in well bore 40, and remove such obstructive material from well bore 40. In another particular embodiment, air may be injected into well bore 40. Although certain types of injection fluids are described, any combination of air, water, and/or gas that are provided from an outside source and/or re-circulated from the separator may be injected back into well bore 40.
In certain embodiments, after drilling is completed, the drilling fluid may be left in well bore 40 while drill string 50 is removed and tubing string 72 and liner 75 are inserted. The drilling fluid, and possibly other fluids flowing from the coal seam 30, may be pumped or gas lifted (for example, using a fluid injector) to surface 20 to reduce, or “draw down,” the pressure within well bore 40. As pressure is drawn down below reservoir pressure, fluid from the coal seam 30 may begin to flow into the well bore 40. This flow may wash out the filter cake 100 when non-invasive or other suitable drilling fluids are used. In other embodiments, the filter cake 100 may remain. In response to the initial reduction in pressure and/or friction reduction in pressure, the well bore 40 collapses, as described below. Collapse may occur before or after production begins. Collapse may be beneficial in situations where coal seam 30 has low permeability. However, coal seams 30 having other levels of permeability may also benefit from collapse. In certain embodiments, the drilling fluid may be removed before the pressure drop in well bore 40. In other embodiments, the pressure within well bore 40 may be reduced by removing the drilling fluid.
As previously described, use of a non-invasive fluid may create a relatively shallow filter cake 100, resulting in a relatively low amount of drilling fluid lost into the cleats 102 of the coal seam 30. In certain embodiments, a filter cake 100 may have depth 110 between two and four centimeters thick. A thin filter cake 100 may be advantageous because it will not cause a permanent blockage, yet strong enough to form a seal between coal seam 30 and well bore 40 to facilitate stability of the well bore 40 during drilling. Optimum properties of the filter cake 100 may be determined based on formation type, rock mechanics of the formation, formation pressure, drilling profile such as fluids and pressure and production profile.
During collapse, a shear plane 120 may be formed along the sides of the well bore 40. The shear planes 120 may extend into the coal seam 30 and form high permeability pathways connected to cleats 102. In some embodiments, multiple shear planes 120 may be formed during spalling. Each shear plane 120 may extend about the well bore 40.
Collapse may generate an area of high permeability within and around the pre-existing walls 49 of the well bore 40. This enhancement and localized permeability may permit a substantially improved flow of gas or other resources from the coal seam 30 into liner 75 than would have occurred without collapse. In an embodiment where the well bore 40 includes a multi-lateral pattern, the main horizontal bore and lateral bores may each be lined with liner 75 and collapsed by reducing hydrostatic pressure in the well bores.
At step 204, the well bore 40 is drilled in the coal seam 30. As previously described, the well bore 40 may be drilled using the drill string 50 in connection with the drilling fluid determined at step 202. Drilling may be performed at the down-hole hydrostatic pressure determined at step 202. During drilling, the drilling fluid forms the filter cake 100 on the walls 49 of the well bore 40.
At step 206, the drill string 50 used to form well bore 40 is removed from well bore 40. At step 208, at least a portion of fluid extraction system 70 is inserted into well bore 40. As previously described, the fluid extraction system 70 may include a liner 75. In a particular embodiment, the drill string 50 may remain in the well bore and be perforated to form the liner 75. In this and other embodiments, ejection tube 72 may be omitted or may be run outside the perforated drill string.
At step 210, fluid extraction system 70 is used to pump out the drilling fluid in well bore 40 to reduce hydrostatic pressure. In an alternate embodiment of step 210, the pressure reduction may be created by using fluid extraction system 70 to inject a fluid into well bore 40 to force out the drilling fluid and/or other fluids. At step 212, the pressure reduction or other down-hole pressure condition causes collapse of at least a portion of the coal seam 30. Collapse increase the permeability of coal seam 30 at the well bore 40, thereby increasing resource production from coal seam 30. At step 214, fluid extraction system 70 is used to remove the fluids, such as water and methane, draining from coal seam 30.
Although an example method is illustrated, the present disclosure contemplates two or more steps taking place substantially simultaneously or in a different order. In addition, the present disclosure contemplates using methods with additional steps, fewer steps, or different steps, so long as the steps remain appropriate for subterranean zones.
The articulated well bore 320 includes a substantially vertical portion 322, a substantially horizontal portion 324, and a curved or radiused portion 326 interconnecting the substantially vertical and substantially horizontal portions 322 and 324. The substantially horizontal portion 324 lies substantially in the plane of subterranean zone 330. Substantially vertical portion 322 and at least a portion of radiused portion 326 may be lined with a suitable casing 328 to prevent fluid contained within aquifer 340 and aquaclude and/or aquatards 350, through which well bore 320 is formed, from flowing into well bore 320. Articulated well bore 320 is formed using articulated drill string that includes a suitable down-hole motor and drill bit, such as drill string 50 and drill bit 52 of
In the illustrated embodiment, the subterranean zone is a coal seam 330. Subterranean zones, such as coal seam 330, may be accessed to remove and/or produce water, hydrocarbons, and other fluids in the subterranean zone. In certain embodiments, well bore 320 may be formed in a substantially similar manner to well bore 40, discussed above. The use of a horizontal well bore 320 in this circumstance may be advantageous because the horizontal well bore 320 has enough drainage surface area within subterranean zone 330 that hydraulic fracturing is not required. In contrast, if a vertical well bore was drilled into subterranean zone 330, fracturing may be required to create sufficient drainage surface area, thus creating a substantial or other risk that a fracture could propagate into the adjacent aquifers 340 and through aquacludes or aquatards 350.
The use of collapse may be beneficial for well bore 320 is drilled between two aquifers 340. As discussed above, collapse may be advantageous because it allows for the increase in drainage surface area of the coal seam 330, while avoiding the need to hydraulically fracture the coal seam 330. The increase in drainage surface area enhances production from the coal seam by allowing, for example, water and gas to more readily flow into well bore 320 for production to the surface 310. In a system such as system 300, hydraulically fracturing coal seam 330 to increase resource production may be undesirable because there is a substantial risk that a fracture could propagate vertically into the adjacent aquifers 340 and aquacludes or aquatards 350. This would cause the water in aquifers 340 to flow past the aquacludes or aquatards 350 and into coal seam 330, which would detrimentally affect the ability to reduce pressure in the coal seam and make it difficult to maintain a sufficient pressure differential for resource production.
Although the present disclosure has been described with several embodiments, various changes and modifications may be suggested to one skilled in the art. It is intended that the present invention encompasses such changes and modifications as fall within the scope of the appended claims.
This application is a continuation-in-part of, and therefore claims priority from, U.S. patent application Ser. No. 10/723,322, filed on Nov. 26, 2003 now U.S. Pat. No. 7,163,063.
Number | Name | Date | Kind |
---|---|---|---|
54144 | Hamar | Apr 1866 | A |
274740 | Douglass | Mar 1883 | A |
526708 | Horton | Oct 1894 | A |
639036 | Heald | Dec 1899 | A |
1189560 | Gondos | Jul 1916 | A |
1285347 | Otto | Nov 1918 | A |
1467480 | Hogue | Sep 1923 | A |
1485615 | Jones | Mar 1924 | A |
1488106 | Fitzpatrick | Mar 1924 | A |
1520737 | Wright | Dec 1924 | A |
1674392 | Flansburg | Jun 1928 | A |
1777961 | Capeliuschnicoff | Oct 1930 | A |
2018285 | Schweitzer et al. | Oct 1935 | A |
2069482 | Seay | Feb 1937 | A |
2150228 | Lamb | Mar 1939 | A |
2169718 | Böll et al. | Aug 1939 | A |
2335085 | Roberts | Nov 1943 | A |
2450223 | Barbour | Sep 1948 | A |
2490350 | Grable | Dec 1949 | A |
2679903 | McGowen, Jr. et al. | Jun 1954 | A |
2726063 | Ragland et al. | Dec 1955 | A |
2726847 | McCune et al. | Dec 1955 | A |
2783018 | Lytle | Feb 1957 | A |
2847189 | Shook | Aug 1958 | A |
2911008 | Du Bois | Nov 1959 | A |
2980142 | Turak | Apr 1961 | A |
3208537 | Scarborough | Sep 1965 | A |
3347595 | Dahms et al. | Oct 1967 | A |
3443648 | Howard | May 1969 | A |
3473571 | Dugay | Oct 1969 | A |
3503377 | Beatenbough et al. | Mar 1970 | A |
3528516 | Brown | Sep 1970 | A |
3530675 | Turzillo | Sep 1970 | A |
3684041 | Kammerer, Jr. et al. | Aug 1972 | A |
3692041 | Bondi | Sep 1972 | A |
3757876 | Pereau | Sep 1973 | A |
3757877 | Leathers | Sep 1973 | A |
3800830 | Etter | Apr 1974 | A |
3809519 | Garner | May 1974 | A |
3825081 | McMahon | Jul 1974 | A |
3828867 | Elwood | Aug 1974 | A |
3874413 | Valdez | Apr 1975 | A |
3887008 | Canfield | Jun 1975 | A |
3902322 | Watanabe | Sep 1975 | A |
3907045 | Dahl et al. | Sep 1975 | A |
3934649 | Pasini, III et al. | Jan 1976 | A |
3957082 | Fuson et al. | May 1976 | A |
3961824 | Van Eek et al. | Jun 1976 | A |
4011890 | Andersson | Mar 1977 | A |
4022279 | Driver | May 1977 | A |
4037658 | Anderson | Jul 1977 | A |
4073351 | Baum | Feb 1978 | A |
4089374 | Terry | May 1978 | A |
4116012 | Abe et al. | Sep 1978 | A |
4134463 | Allen | Jan 1979 | A |
4156437 | Chivens et al. | May 1979 | A |
4169510 | Meigs | Oct 1979 | A |
4189184 | Green | Feb 1980 | A |
4194580 | Messenger | Mar 1980 | A |
4220203 | Steeman | Sep 1980 | A |
4221433 | Jacoby | Sep 1980 | A |
4224989 | Blount | Sep 1980 | A |
4245699 | Steeman | Jan 1981 | A |
4257650 | Allen | Mar 1981 | A |
4278137 | Van Eek | Jul 1981 | A |
4283088 | Tabakov et al. | Aug 1981 | A |
4296785 | Vitello et al. | Oct 1981 | A |
4299295 | Gossard | Nov 1981 | A |
4303127 | Freel et al. | Dec 1981 | A |
4303274 | Thakur | Dec 1981 | A |
4305464 | Masszi | Dec 1981 | A |
4312377 | Knecht | Jan 1982 | A |
4317492 | Summers et al. | Mar 1982 | A |
4328577 | Abbott et al. | May 1982 | A |
4333539 | Lyons et al. | Jun 1982 | A |
4366988 | Bodine | Jan 1983 | A |
4372398 | Kuckes | Feb 1983 | A |
4386665 | Dellinger | Jun 1983 | A |
4390067 | Willman | Jun 1983 | A |
4396076 | Inoue | Aug 1983 | A |
4397360 | Schmidt | Aug 1983 | A |
4401171 | Fuchs | Aug 1983 | A |
4407376 | Inoue | Oct 1983 | A |
4437706 | Johnson | Mar 1984 | A |
4442896 | Reale et al. | Apr 1984 | A |
4494616 | McKee | Jan 1985 | A |
4512422 | Knisley | Apr 1985 | A |
4519463 | Schuh | May 1985 | A |
4527639 | Dickinson, III et al. | Jul 1985 | A |
4532986 | Mims et al. | Aug 1985 | A |
4544037 | Terry | Oct 1985 | A |
4558744 | Gibb | Dec 1985 | A |
4565252 | Campbell et al. | Jan 1986 | A |
4573541 | Josse et al. | Mar 1986 | A |
4599172 | Gardes | Jul 1986 | A |
4600061 | Richards | Jul 1986 | A |
4605076 | Goodhart | Aug 1986 | A |
4611855 | Richards | Sep 1986 | A |
4618009 | Carter et al. | Oct 1986 | A |
4638949 | Mancel | Jan 1987 | A |
4646836 | Goodhart | Mar 1987 | A |
4651836 | Richards et al. | Mar 1987 | A |
4674579 | Geller et al. | Jun 1987 | A |
4702314 | Huang et al. | Oct 1987 | A |
4705431 | Gadelle et al. | Nov 1987 | A |
4715440 | Boxell et al. | Dec 1987 | A |
4754819 | Dellinger | Jul 1988 | A |
4756367 | Puri et al. | Jul 1988 | A |
4763734 | Dickinson et al. | Aug 1988 | A |
4773488 | Bell et al. | Sep 1988 | A |
4830105 | Petermann | May 1989 | A |
4830110 | Perkins | May 1989 | A |
4836611 | El-Saie | Jun 1989 | A |
4842081 | Parant | Jun 1989 | A |
4844182 | Tolle | Jul 1989 | A |
4852666 | Brunet et al. | Aug 1989 | A |
4883122 | Puri et al. | Nov 1989 | A |
4929348 | Rice | May 1990 | A |
4978172 | Schwoebel et al. | Dec 1990 | A |
5016710 | Renard et al. | May 1991 | A |
5035605 | Dinerman et al. | Jul 1991 | A |
5036921 | Pittard et al. | Aug 1991 | A |
5074360 | Guinn | Dec 1991 | A |
5074365 | Kuckes | Dec 1991 | A |
5074366 | Karlsson et al. | Dec 1991 | A |
5082054 | Kiamanesh | Jan 1992 | A |
5099921 | Puri et al. | Mar 1992 | A |
5111893 | Kvello-Aune | May 1992 | A |
5135058 | Millgard et al. | Aug 1992 | A |
5148875 | Karlsson et al. | Sep 1992 | A |
5165491 | Wilson | Nov 1992 | A |
5168942 | Wydrinski | Dec 1992 | A |
5174374 | Hailey | Dec 1992 | A |
5193620 | Braddick | Mar 1993 | A |
5194859 | Warren | Mar 1993 | A |
5197553 | Leturno | Mar 1993 | A |
5197783 | Theimer et al. | Mar 1993 | A |
5199496 | Redus et al. | Apr 1993 | A |
5201817 | Hailey | Apr 1993 | A |
5217076 | Masek | Jun 1993 | A |
5240350 | Yamaguchi et al. | Aug 1993 | A |
5242017 | Hailey | Sep 1993 | A |
5242025 | Neill et al. | Sep 1993 | A |
5246273 | Rosar | Sep 1993 | A |
5255741 | Alexander | Oct 1993 | A |
5271472 | Leturno | Dec 1993 | A |
5289881 | Schuh | Mar 1994 | A |
5301760 | Graham | Apr 1994 | A |
5363927 | Frank | Nov 1994 | A |
5385205 | Hailey | Jan 1995 | A |
5394950 | Gardes | Mar 1995 | A |
5402851 | Baiton | Apr 1995 | A |
5411082 | Kennedy | May 1995 | A |
5411085 | Moore et al. | May 1995 | A |
5411088 | LeBlanc et al. | May 1995 | A |
5411104 | Stanley | May 1995 | A |
5411105 | Gray | May 1995 | A |
5419396 | Palmer et al. | May 1995 | A |
5431220 | Lennon et al. | Jul 1995 | A |
5435400 | Smith | Jul 1995 | A |
5447416 | Wittrisch | Sep 1995 | A |
5450902 | Matthews | Sep 1995 | A |
5454419 | Vloedman | Oct 1995 | A |
5458209 | Hayes et al. | Oct 1995 | A |
5462116 | Carroll | Oct 1995 | A |
5462120 | Gondouin | Oct 1995 | A |
5469155 | Archambeault et al. | Nov 1995 | A |
5477923 | Jordan, Jr. et al. | Dec 1995 | A |
5485089 | Kuckes | Jan 1996 | A |
5494121 | Nackerud | Feb 1996 | A |
5499687 | Lee | Mar 1996 | A |
5501273 | Puri | Mar 1996 | A |
5501279 | Garg et al. | Mar 1996 | A |
5533573 | Jordan et al. | Jul 1996 | A |
5562159 | Smith et al. | Oct 1996 | A |
5584605 | Beard et al. | Dec 1996 | A |
5613242 | Oddo | Mar 1997 | A |
5615739 | Dallas | Apr 1997 | A |
5653286 | McCoy et al. | Aug 1997 | A |
5655605 | Matthews | Aug 1997 | A |
5669444 | Riese et al. | Sep 1997 | A |
5680901 | Gardes | Oct 1997 | A |
5690390 | Bithell | Nov 1997 | A |
5706871 | Andersson et al. | Jan 1998 | A |
5720356 | Gardes | Feb 1998 | A |
5727629 | Blizzard, Jr. et al. | Mar 1998 | A |
5735350 | Longbottom et al. | Apr 1998 | A |
5771976 | Talley | Jun 1998 | A |
5775433 | Hammett et al. | Jul 1998 | A |
5785133 | Murray et al. | Jul 1998 | A |
5832958 | Cheng | Nov 1998 | A |
5853054 | McGarian et al. | Dec 1998 | A |
5853056 | Landers | Dec 1998 | A |
5853224 | Riese | Dec 1998 | A |
5863283 | Gardes | Jan 1999 | A |
5868202 | Hsu | Feb 1999 | A |
5868210 | Johnson et al. | Feb 1999 | A |
5879057 | Schwoebel et al. | Mar 1999 | A |
5884704 | Longbottom et al. | Mar 1999 | A |
5917325 | Smith | Jun 1999 | A |
5934390 | Uthe | Aug 1999 | A |
5938004 | Roberts et al. | Aug 1999 | A |
5941308 | Malone et al. | Aug 1999 | A |
5957539 | Durup et al. | Sep 1999 | A |
5971074 | Longbottom et al. | Oct 1999 | A |
6012520 | Yu et al. | Jan 2000 | A |
6015012 | Reddick | Jan 2000 | A |
6024171 | Montgomery et al. | Feb 2000 | A |
6050335 | Parsons | Apr 2000 | A |
6056059 | Ohmer | May 2000 | A |
6065550 | Gardes | May 2000 | A |
6119771 | Gano et al. | Sep 2000 | A |
6123159 | Brookey et al. | Sep 2000 | A |
6135208 | Gano et al. | Oct 2000 | A |
6179054 | Stewart | Jan 2001 | B1 |
6209636 | Roberts et al. | Apr 2001 | B1 |
6280000 | Zupanick | Aug 2001 | B1 |
6349769 | Ohmer | Feb 2002 | B1 |
6357523 | Zupanick | Mar 2002 | B1 |
6357530 | Kennedy et al. | Mar 2002 | B1 |
6425448 | Zupanick et al. | Jul 2002 | B1 |
6439320 | Zupanick | Aug 2002 | B2 |
6450256 | Mones | Sep 2002 | B2 |
6454000 | Zupanick | Sep 2002 | B1 |
6457540 | Gardes | Oct 2002 | B2 |
6478085 | Zupanick | Nov 2002 | B2 |
6497556 | Zupanick et al. | Dec 2002 | B2 |
6561277 | Algeory | May 2003 | B2 |
6561288 | Zupanick | May 2003 | B2 |
6566649 | Mickael | May 2003 | B1 |
6571888 | Comeau et al. | Jun 2003 | B2 |
6575235 | Zupanick et al. | Jun 2003 | B2 |
6577129 | Thompson et al. | Jun 2003 | B1 |
6585061 | Radzinski et al. | Jul 2003 | B2 |
6590202 | Mickael | Jul 2003 | B2 |
6591903 | Ingle et al. | Jul 2003 | B2 |
6598686 | Zupanick | Jul 2003 | B1 |
6604580 | Zupanick et al. | Aug 2003 | B2 |
6604910 | Zupanick | Aug 2003 | B1 |
6607042 | Hoyer et al. | Aug 2003 | B2 |
6636159 | Winnacker | Oct 2003 | B1 |
6639210 | Odom et al. | Oct 2003 | B2 |
6646441 | Thompson et al. | Nov 2003 | B2 |
6653839 | Yuratich et al. | Nov 2003 | B2 |
6662870 | Zupanick et al. | Dec 2003 | B1 |
6668918 | Zupanick | Dec 2003 | B2 |
6679322 | Zupanick | Jan 2004 | B1 |
6681855 | Zupanick et al. | Jan 2004 | B2 |
6688388 | Zupanick | Feb 2004 | B2 |
6708764 | Zupanick | Mar 2004 | B2 |
6725922 | Zupanick | Apr 2004 | B2 |
6732792 | Zupanick | May 2004 | B2 |
6745855 | Gardes | Jun 2004 | B2 |
6758289 | Kelly et al. | Jul 2004 | B2 |
7037881 | Growcock et al. | May 2006 | B2 |
7063164 | Hilsman et al. | Jun 2006 | B2 |
20020074120 | Scott | Jun 2002 | A1 |
20020096336 | Zupanick et al. | Jul 2002 | A1 |
20020189801 | Zupanick et al. | Dec 2002 | A1 |
20030066686 | Conn | Apr 2003 | A1 |
20030075334 | Haugen et al. | Apr 2003 | A1 |
20030217842 | Zupanick et al. | Nov 2003 | A1 |
20040007389 | Zupanick | Jan 2004 | A1 |
20040007390 | Zupanick | Jan 2004 | A1 |
20040035582 | Zupanick | Feb 2004 | A1 |
20040050552 | Zupanick | Mar 2004 | A1 |
20040050554 | Zupanick et al. | Mar 2004 | A1 |
20040055787 | Zupanick | Mar 2004 | A1 |
20040118558 | Rial et al. | Jun 2004 | A1 |
20040149428 | Kvernstuen et al. | Aug 2004 | A1 |
20050109505 | Seams | May 2005 | A1 |
20060006004 | Terry et al. | Jan 2006 | A1 |
20060131076 | Zupanick | Jun 2006 | A1 |
20060201714 | Seams et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
2 278 735 | Jan 1998 | CA |
653 741 | Jan 1986 | CH |
0 875 661 | Nov 1998 | EP |
0 952 300 | Oct 1999 | EP |
2 255 033 | Oct 1992 | GB |
2 297 988 | Aug 1996 | GB |
2 347 157 | Aug 2002 | GB |
750108 | Jun 1975 | SU |
1448078 | Mar 1987 | SU |
1770570 | Mar 1990 | SU |
WO 94 21889 | Sep 1994 | WO |
WO 9835133 | Aug 1998 | WO |
WO 9960248 | Nov 1999 | WO |
WO 0031376 | Jun 2000 | WO |
WO 0079099 | Dec 2000 | WO |
WO 01414620 | Jun 2001 | WO |
WO 0151760 | Jul 2001 | WO |
WO 0151760 | Jul 2001 | WO |
WO 0218738 | Mar 2002 | WO |
WO 02059455 | Aug 2002 | WO |
WO 02061238 | Aug 2002 | WO |
WO 03102348 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050183859 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10723322 | Nov 2003 | US |
Child | 11035537 | US |