Referring initially to
As shown in cross-reference to
In an example embodiment the splint 10 advantageously is made of shape memory metal such as Nitinol. Other materials may be used, e.g., polyolefin, acetal, or teflon. Furthermore, the splint 10 may be coated with a drug or otherwise be drug-eluting for delivering, e.g., anti-inflammatory drugs.
As shown in
Accordingly and turning to
When the splint 10 is used as the tunneling element, the splint 10, which is biased to its preset curved shape, can be loaded in the device in a more open configuration, indeed in an almost a straight configuration. As the splint 10 is driven out by a rod pusher or other mechanism, e.g., small rollers, the splint 10 starts to curve assume its biased (non-constrained) configuration. In such an embodiment the splint can have a sharpened or pointed distal tip.
Furthermore, the thermal setting characteristics of Nitinol may be used to load the splint in one shape then cause it to assume another shape upon application of heat.
The body 22 is formed with or attached to a distal L-shaped stop member 26. The distance between the stop member 26 and the tunneling element 24 is established to approximate the distance between the esophageal sphincter and the junction of the fundus and esophagus as will be illustrated further below.
A pin 28 or other vertical support may extend proximally from the L-shaped stop member 26 as shown. Accordingly, as perhaps best shown in
With the above in mind, as shown in
The device 20 may then be retracted proximally as shown in
It may now be appreciated that by establishing the distance between the tunneler 24 and stop member 26, and by causing the stop member 26 to abut the esophagus-stomach fundus junction, the tunneler element 24 is securely located at the esophageal sphincter. Furthermore, by appropriately establishing the depth of the bight 30, the depth into the sphincter wall at which the splint is implanted is established.
As mentioned above, a hollow splint 40 may be provided, in which case a fluid infusion opening 42 may be formed in the splint to infuse fluid into the hollow core of the splint. One or more fluid exhaust ports 44 may also be formed in the splint. With this stricture fluid can be infused into the splint and the pressure monitored to determine proper splint placement, with a slowly decaying pressure indicating proper placement and with a quickly decaying pressure indicating improper placement (i.e., not entirely intramurally into the wall of the sphincter). Alternatively, radiological contrast media may be used as the fluid and visualized radiologically to determine leakage and, hence, proper splint placement. Methyl blue can alternatively be used to visually look for leaks.
With this structure, the balloons 62, 64 can be deflated and then the device advanced through the mouth and esophagus 32 until the distal balloon 64 clears the esophagus and is disposed in the stomach 34. The distal balloon 64 can then be inflated and the device retracted proximally until the distal balloon 64 abuts the junction of the esophagus and fundus as shown in
Then, in cross-reference to
While the particular SYSTEM AND METHOD FOR ESOPHAGEAL SPHINCTER REPAIR is herein shown and described in detail, it is to be understood that the subject matter which is encompassed by the present invention is limited only by the claims. For example, while natural orifice placement of the splint is envisioned, the splint alternatively may be placed laparoscopically.
This application claims priority from U.S. provisional patent application 60/990,481, filed Nov. 27, 2007. I. Field of the Invention The application relates generally to repairing the esophageal or cardiac sphincter located at the gastroesophageal junction. II. Background of the Invention Gastro esophageal reflux disease (GERD), in which contents in the stomach pass back (“reflux”) into the esophagus, is primarily caused by a weakened esophageal sphincter. The esophageal sphincter is a circular muscle, essentially a one-way valve, at the bottom end of the esophagus that, when functioning properly in the absence of nausea, allows food to pass from the esophagus into the stomach while preventing stomach contents from passing back into the esophagus. GERD can be treated by dietary changes, medicine, and when these treatments are insufficient, by surgery. For example, a procedure known as “fundoplication” has been introduced in which the upper curve of the stomach (the fundus) is wrapped around the esophagus and sewn into place so that the lower portion of the esophagus passes through a small tunnel of stomach muscle. This surgery strengthens the esophageal sphincter, which stops acid from backing up into the esophagus as easily. However, as understood herein the surgery is invasive even when executed laparoscopically, raising the risk of complications including infection by resistant strains of bacteria that attend all invasive procedures. Implants have been introduced that surround the esophagus from the outside to grip it. As understood by present principles, not only does placement of such implants entail invasive surgery, but such implants can cause the swallowing disorder known as “dysphagia”. Moreover, the external implants typically can move on the esophagus, eroding tissue and in extreme cases causing death. A device includes an arcuate non-flaccid splint formed with two ends facing each other. The splint is configured for advancement through a patient's mouth into the esophagus by an introducer device. The splint is configured for implantation completely into the wall of the esophageal sphincter to strengthen the sphincter (intramural implantation). To this end, the splint is biased toward a narrow configuration, wherein the splint urges the wall of the sphincter inwardly. However, the splint can be moved by food passing from the esophagus into the stomach to a wide configuration wherein the ends are spaced from each other such that the sphincter can open sufficiently to allow the food to enter the stomach. This mimics and reinforces the natural tendency of the sphincter, resulting in both an anatomic and physiologic repair. The splint may be made of Nitinol or other material, e.g., polyolefin, acetal, or teflon. If desired, the splint can be drug-eluting. Also, the splint can be hollow and can be formed with at least one opening. In example embodiments the splint has a rounded cross-section, and the splint may have a smooth exterior or an externally barbed or textured exterior for enhancing tissue engagement. In another aspect, an introducer device includes a device body advanceable through the mouth of a patient into the esophagus. The body is configured to hold at least one esophageal sphincter splint. The device with splint is configured for forming a passage in the wall of the esophageal sphincter for placement of the splint therein. A stop member is positioned on the body a predetermined distance from the splint. The stop member is configured for abutting the esophagus-stomach fundus junction to thereby securely locate the splint at the esophageal sphincter. In one example, the stop member is an inflatable balloon juxtaposed with a distal end of the device body. In another example, the stop member is a distal L-shaped member forming a bight with the device body. The device can be advanced into the stomach and retracted to trap a portion of the fundus and esophagus in the bight. In another aspect, a method includes advancing a tightening element, such as a splint or an elastic suture thread, through the mouth of a patient to the esophageal sphincter. The method then includes implanting the tightening element inside the wall of the esophageal sphincter to urge the sphincter closed. The tightening element is sufficiently flexible to permit the sphincter to open when food passes through the sphincter into the stomach. The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:
Number | Date | Country | |
---|---|---|---|
60990481 | Nov 2007 | US |