This invention relates generally to the surgical field, and more specifically to a new and useful system and method for estimating the extracorporeal blood volume in a canister for use in surgical practice.
Overestimation and underestimation of patient blood loss is a significant contributor to high operating and surgical costs for hospitals, clinics and other medical facilities. Specifically, overestimation of patient blood loss results in wasted transfusion-grade blood and higher operating costs for medical institutions and can lead to blood shortages. Underestimation of patient blood loss is a key contributor of delayed resuscitation and transfusion in the event of hemorrhage and has been associated with billions of dollars in avoidable patient infections, re-hospitalizations, and lawsuits annually.
Thus, there is a need in the surgical field for a new and useful method for estimating a quantity of a blood component in a fluid canister. This invention provides such a new and useful system and method.
The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
1. Methods
As shown in
As shown in
The method S100 functions to implement machine vision to estimate the content of a blood component within a fluid canister. Generally, the method S100 can analyze an image of a fluid canister to determine a fluid volume within the canister in Block S140 and a concentration of the blood component in Block S160, data that can be combined to derive the content of the blood component within the canister in Block S170. The method S100 can therefore recite a variation of and/or implement techniques described in U.S. patent application Ser. No. 13/544,646, which is incorporated herein by reference.
The blood component can be any of whole blood, red blood cells, hemoglobin, platelets, plasma, or white blood cells. However, the method S100 can also implement Block S180, which recites estimating a quantity of a non-blood component within the canister based on the estimated volume and the concentration of the non-blood component within the canister. The non-blood component can be saline, ascites, bile, irrigant saliva, gastric fluid, mucus, pleural fluid, urine, fecal matter, or any other bodily fluid of a patient.
The fluid canister can be a suction canister implemented in a surgical or other medical, clinical, or hospital setting to collect blood and other bodily fluids, wherein the fluid canister can be translucent or substantially transparent such that the method S100 can identify and analyze fluid contained within the canister. The canister can alternatively be a blood salvage canister, an intravenous fluid bag, or any other suitable blood- or fluid-bearing container for collecting surgical waste or recovering biological fluid. For example, the canister can be a surgical fluid canister including: a translucent container configured to hold a fluid, the container including a wall and a series of horizontal fluid volume indicator markings arranged along the wall and visible from external the container; and an anti-glare strip arranged on an external surface of the wall. The anti-glare strip can be arranged on the container such that the area selected from an image of the canister in Block S120 of the method S100 includes at least a portion of the anti-glare strip. The anti-glare strip can therefore be positioned on the container to reduce glare on the portion of the container corresponding to the selected area of the image, thus reducing glare-induced errors in the estimated content of the blood component in the canister. The anti-glare strip can be an adhesive strip, such as Scotch tape by 3M or a marking printed on an external surface of the surgical fluid canister, and the anti-glare strip can include a dull, matte, satin, or other suitable anti-glare surface finish. The anti-glare strip can also be a narrow strip extending from proximal the bottom of the surgical fluid canister to proximal the top of the surgical fluid canister, though the anti-glare strip can be of any other form, geometry, material, or surface finish and can be applied to the surgical fluid canister in any other way. However, the fluid canister can be any other suitable type of canister including any other suitable feature.
Because any of the foregoing blood and non-blood fluids can be collected in the fluid canister in any quantity and concentration during a surgery or other medical event, and because fluid content and concentration cannot be estimated substantially in real time through canister volume readings alone, the method S100 can be useful in quantifying an amount and/or concentration of a blood component (e.g., hemoglobin) and/or other fluids (e.g., saline). Furthermore, from this derived data, the volume of extracorporeal blood in the fluid canister can be estimated, thus enabling substantially comprehensive blood loss monitoring, particularly when implemented alongside any of the method S100s described in U.S. patent application Ser. No. 13/544,646, which is incorporated herein by reference, which describes estimating extracorporeal blood volume in surgical sponges, in surgical towels, and/or on other surfaces.
The method S100 is can be implemented by a computer system as a fluid canister analyzer that analyzes a photographic image to estimate the content of a fluid canister. The computer system can be cloud-based (e.g., Amazon EC2 or EC3), a mainframe computer system, a grid-computer system, or any other suitable computer system. The method S100 can therefore be implemented by a handheld (e.g., mobile) computing device, such by a smartphone, digital music player, or tablet computer executing a native blood component analysis application as shown in
Alternatively, the method S100 can be implemented as a standalone blood volume estimation system including a fluid canister, a fluid canister stand, a camera, a camera stand configured to support the camera adjacent the fluid canister, a digital display, a processor configured to perform at least a portion of the method S100, and/or a communication module configured to communicate with a remote server that performs at least a portion of the method S100. In this implementation, the camera can be substantially non-transiently positioned relative to a fluid canister stand such that the camera remains in a suitable position to capture an image of a canister substantially throughout a surgery or other medical event and/or until the canister is full. This can enable the camera to regularly capture and analyze images of the fluid canister, such as every thirty seconds or every two minutes. This system implementing the method S100 can further communicate (e.g., via Bluetooth) with another one or more systems implementing any one or more of methods of U.S. patent application Ser. No. 13/544,646 to enable a substantially comprehensive estimate of extracorporeal blood volume and thus total patient blood loss. However, the method S100 can be implemented in or by any other computer system, computing device, or combination thereof.
As shown in
In one implementation, Block S102 captures the image of the canister according to a time schedule, such as every thirty seconds or every two minutes during a surgery. Alternatively, Block S102 can implement machine vision and/or machine recognition techniques to identify the canister within the field of view of the optical sensor and trigger image capture once a canister (or other blood-containing item) is detected. For example, Block S102 can capture an image of the field of view of the canister each time a user holds the camera (e.g., the computing device that incorporates the camera) up to the fluid canister. Similarly, Block S102 can cooperate with Block S140 to capture the image of the canister once a threshold increase is canister fluid volume is detected. Therefore, Block S112 can capture images of the canister automatically, such as based on a timer, changes in canister fluid volume, or availability of the canister for imaging, which can enable the method S100 to track fluid collection in the canister over time, as shown in
In the foregoing implementations, Block S102 can further guide a user in capturing the image of the fluid canister. For example, as shown in
Block S102 can also timestamp each image of the canister as the canister is filled, replaced, and/or emptied, which can further enable the method S100 to track changes in fluid level within the canister, map patient blood (and fluid) loss trends, etc. However, Block S102 can function in any other way to capture the image of the canister.
Block S110 of the method S100 recites, within an image of a canister, identifying a reference marker on the canister. Generally, Block S110 functions recognize a canister-related marker within the image. By identifying the marker, Block S110 can enable analysis of particular portions of the image in subsequent Blocks. Block S110 can implement any suitable machine vision technique and/or machine learning technique to identify the reference marker. For example, Block S120 can implement object localization, segmentation (e.g. edge detection, background subtraction, grab-cut-based algorithms, etc.), gauging, clustering, pattern recognition, template matching, feature extraction, descriptor extraction (e.g. extraction of texton maps, color histograms, HOG, SIFT, MSER (maximally stable extremal regions for removing blob-features from the selected area) etc.), feature dimensionality reduction (e.g. PCA, K-Means, linear discriminant analysis, etc.), feature selection, thresholding, positioning, color analysis, parametric regression, non-parametric regression, unsupervised or semi-supervised parametric or non-parametric regression, or any other type of machine learning or machine vision to estimate a physical dimension of the canister. Block S110 can further compensate for varying lighting conditions of the canister, variations in fluid compositions canister (e.g., widely varying color, transparency, refractive indices, etc.), lens- or software-based optical distortion in the image, or any other inconsistency or variable prevalent in any use scenario.
In one implementation, Block S110 identifies the reference marker that is a boundary between the canister and a background, which can enable Block S110 to remove a portion of the image corresponding to the background. In another implementation, Block S110 identifies the reference marker that is a symbol arranged on the canister, as shown in
Block S110 can additionally or alternatively implement machine vision techniques to identity the type of fluid canister. For example, Block S110 can implement template matching to determine the type of the canister, such as by accessing a template library of reference markers, each reference marker associated with a particular type of canister, such as from a particular manufacturer, of a particular size, and/or of a particular shape. In this implementation, or more subsequent Blocks of the method S100 can be tailored for a specific type of fluid canister, wherein Block S110 functions to set a particular implementation path for the subsequent Blocks dependent on the particular canister type. However, Block S110 can function in any other way to identify any other suitable reference marker in the image of the canister and/or the type of canister.
Block S112 of the method S100 recites removing a background from an image of a canister. Because the background is unlikely to contain useful information related to the volume and/or quality of fluid within the fluid canister, Block S112 excludes substantially unnecessary portions of the image, thus enabling subsequent Blocks of the method S100 to focus analysis on portions of the image (more likely) containing information pertinent to the quality and quantity of fluid in the canister, as shown in
In another implementation, Block S112 uses the identified reference marker to anchor a predefined canister perimeter to the image. Block S112 can then discard an area of the image that falls outside of the predefined canister perimeter. For example, Block S112 can select a particular predefined, canister-shaped boundary according to the size and/or geometry of the canister identified in the image in Block S10. Alternatively, Block S112 can receive an input from a user identifying the type of fluid canister and subsequently apply a predefined boundary filter according to the entered canister type. However, Block S112 can function in any other way to remove a background portion from the image of the fluid canister.
Block S120 of the method S100 recites selecting an area of the image based on the reference marker, as shown in
In one example implementation, as shown in
In another example implementation, Block S110 identifies the reference marker that is a volume marker on the canister, and Block S120 selects the area of the image that is a set of pixels adjacent a portion of the image corresponding to the volume marker. In this example implementation, Block S130 can identify a fluid meniscus within the set of pixels and compare the fluid meniscus to the volume marker in order to estimate the fluid level in the canister. For example, Block S120 can select a rectangular area of the image that is twenty pixels wide and one hundred pixels tall with upper right corner of the area offset from a left edge of the volume marker by ten pixels along the −x axis and twenty pixels along the +y axis of the image.
In yet another example implementation, Block S110 identifies horizontal volume indicator markings on the fluid canister, and Block S120 defines a first horizontal endpoint of the selected area in alignment with a common horizontal endpoint of the volume indicator markings. Block S120 further defines a second horizontal endpoint of the selected area as a median horizontal coordinate of pixels associated with the horizontal volume indicator markings, a first vertical endpoint of the selected area as the bottom boundary of the fluid-containing portion of the fluid canister, and a second vertical endpoint of the selected area on the identified surface of the fluid in the fluid canister. From these four endpoints, Block S120 can select and anchor a rectilinear area of the image. This selected area can thus capture image color information along the full vertical height of fluid in the fluid canister and substantially horizontally centered within the isolated image of the fluid-containing portion of the fluid canister.
In a further example implementation, Block S120 can define the selected area that overlaps substantially completely with the reference marker identified in Block S110. For example, Block S110 can identify the reference marker that is an anti-glare surface (e.g., anti-glare tape) on the canister, and Block S120 can define the selected area that overlaps substantially completely with the reference marker.
Block S120 can similarly recite correlating a segment of the image with a portion of the canister containing fluid, as shown in
Block S130 of the method S100 recites correlating a portion of the selected area with a fluid level within the canister. Generally, Bock S130 functions to identify a surface of fluid in the canister and a base of the canister (e.g., a lowest extent of fluid in the canister) and, from this data, estimate a level of fluid within the canister, as shown in
In one example implementation, Block S130 characterizes the color of each pixel (e.g., a redness value of each pixel) along a vertical line of pixels within the selected area. By scanning the line of pixels from the bottom of the line of pixels (i.e. from proximal the base of the canister) upward, Block S130 can identify a first abrupt shift in pixel color, which can be correlated with a lower bound of the surface of the fluid. By further scanning the line of pixels from the top of the line of pixels (i.e. from proximal the top of the canister) downward, Block S130 can identify a second abrupt shift in pixel color, which can be correlated with an upper bound of the surface of the fluid. Block S130 can average the upper and lower bounds of the surface of the fluid to estimate the level of the fluid within the canister. Alternatively, Block S130 can focus additional analysis on an abbreviated line of pixels between the upper and lower bounds, such as by scanning up and/or down the abbreviated line of pixels to identify more subtle changes in the color of pixels along the line. For example, Block S130 can correlate a subtle lightening of pixel color of higher pixels with a fluid meniscus. In another example, Block S130 can improve the resolution of the estimated surface of the fluid by reanalyzing pixels within subsequent abbreviated pixel lines.
Block S130 can similarly analyze two or more adjacent lines of pixels within the selected area and compare (e.g., average) results of each pixel line analysis to improve accuracy of an estimate of the location of the fluid surface. For example, Block S130 can compare the location of one border pixel in each of a set of pixel lines in the selected area to extract a curved border between a fluid-filled portion of the canister and an empty portion of the canister, and Block S130 can correlate this curved border with a fluid meniscus. Alternatively, Block S130 can estimate the fluid meniscus. For example, Block S130 can implement a lookup table of meniscus sizes and geometries, wherein the lookup table accounts for a type of canister, a fluid characteristic (e.g., redness value correlated with blood and water content in the canister), an angle between the camera and the canister, a distance between the camera and the canister, the level of fluid in the canister that is conical, and/or any other suitable variable.
Block S130 can additionally or alternatively analyze clusters of pixels, such as four-pixel by four-pixel dusters in a four-pixel-wide line of pixels within the pixel area. Block S130 can analyze discrete cluster or pixels or overlapping clusters or pixels, and Block S130 can average a characteristic, such as a redness value or color property, of the pixels in each cluster, such as to reduce error. However, Block S130 can function in any other way to identify the surface of the fluid in the canister.
Block S130 can determine a lower bound of the fluid in the canister by implementing similar methods of comparing pixel characteristics. Alternatively, Block can estimate the lower bound of the fluid to be at or proximal the determined lower boundary of the canister. However, Block S130 can function in any other way to identify the lower bound of the fluid in the canister.
Once Block S130 identifies both the upper and lower bounds of the fluid within the canister, Block S130 can calculate a pixel-based height of the fluid within the fluid canister, such as by counting the number of pixels between the lower and upper bounds at approximately the center of the portion of the image correlated with the canister. Block S130 can subsequently convert the pixel-based distance measurement to a physical distance measurement (e.g., inches, millimeters), such as by translating the pixel value according to the type of canister and/or an actual or estimated angle between the camera and the canister, distance between the camera and the canister, geometry of the canister (e.g., diameters at the canister base and at the fluid surface), and/or any other relevant metric of or between the canister and the camera. Alternately, Block S140 can directly convert the pixel-based fluid level measurement into an estimate fluid volume within the canister.
Block S120 can additionally or alternatively receive a manual input that selects or identifies the reference marker, and Block S130 can similarly additionally or alternatively receive a manual input that selects or identifies the surface of fluid or the height of fluid in the canister. For example, the method S100 can implement manual checks to teach or correct automatic selection of the reference marker and/or estimation of the canister fluid level. Block S120 and Block S130 can thus implement supervised or semi-supervised machine learning to improve selection of the reference marker and/or estimation of the canister fluid level with subsequent samples (i.e. images of one or more canisters). However, Block S120 and Block S130 can function in any other way to select the reference marker and/or estimate the canister fluid level, respectively.
Block S140 of the method 8100 recites estimating a volume of fluid within the canister based on the fluid level. Generally, Block S140 functions to convert the fluid level estimate of Block S130 into a fluid volume estimate based on a canister type and/or geometry, as shown in
In one example implementation, Block S110 implements object recognition to determine the particular type of canister in the image, Block S130 identifies a maximum number of pixels between the estimated surface of the fluid and the estimated bottom of the fluid canister, and Block S140 accesses a lookup table for the particular type of canister. The lookup table can correlate a maximum pixel number between the canister bottom and the fluid surface with canister fluid volume such that Block S140 can enter the maximum pixel number calculated in Block S130 and return the fluid volume in the canister.
In another example implementation, Block S120 implements machine vision techniques (e.g., edge detection) to determine the shape and/or geometry of the fluid canister, and Block S130 identifies the maximum number of pixels between the surface of the fluid and the bottom of the fluid canister and converts the pixel number to a physical dimension (e.g., inches, millimeters) of fluid level in the canister. Block S140 subsequently transforms the estimated fluid level into an estimated total fluid volume in the canister according to an estimated physical cross-section of the canister that is based on the determined the shape and/or geometry of the fluid canister from Block S130.
In yet another example implementation, Block S110 implements machine vision techniques to identify fluid level markings printed (or embossed, adhered, etc.) on the fluid canister and Block S130 identifies the surface of the fluid within the canister. Block S140 subsequently extrapolates the volume of fluid within the canister based on the fluid surface and one or more fluid level markings adjacent the fluid surface.
Alternatively, Block S140 can access a direct fluid level measurement from a fluid level sensor coupled to (e.g., arranged in) the fluid canister. Block S140 can also receive manual entry of a manual reading of the fluid level in the canister. For example, the method S100 can implement manual checks to teach or correct automatic fluid volume estimate. Block S140 can thus implement supervised or semi-supervised machine learning to improve canister fluid volume estimation over time. However, Block S140 can function in any other way to estimate or otherwise access a measurement of the volume of fluid in the canister.
Block S150 of the method S100 recites extracting a feature from the selected area. Generally, Block S150 functions to identify, in the select are of the image of the canister, features indicative of a quality of fluid in the canister. For Block S160 that implements parametric techniques to correlate the extracted featured with a concentration of a blood component within the canister, Block S150 can extract the feature, from one or more pixels within the selected area, that is a color (red), a color intensity (e.g., redness value), a luminosity, a hue, a saturation value, a brightness value, a gloss value, or other color-related value in one or more component spaces, such as the red, blue, green, cyan, magenta, yellow, key, and/or Lab component spaces. Block S150 can additionally or alternatively extract one or more features that is a histogram of various color or color-related values in a set of pixels within the selected area. As shown in
Therefore, as shown in
Block S150 can additionally or alternatively extract one or more features from the selected area, as described in U.S. patent application Ser. No. 13/544,646, which is incorporated herein in its entirety by the reference. However, Block S150 can function in any other way to extract a feature from the selected area.
As described in U.S. patent application Ser. No. 13/544,646, Block S150 can further access non-image features, such as actual or estimated current patient intravascular hematocrit, estimated patient intravascular hematocrit, historic patient intravascular hematocrit, weight of the fluid canister or direct measurement of canister fluid volume, clinician-estimated canister fluid volume, fluid volumes and/or qualities of previous fluid canisters, previous fluid volumes and/or qualities of the fluid canister, an ambient lighting condition, a type or other identifier of the fluid canister, directly-measured properties of fluid in the fluid canister, a patient vital sign, patient medical history, an identity of a surgeon, a type of surgery or operation in process, or any other suitable non-image feature. For example, as described below and in U.S. patent application Ser. No. 13/544,646, Block S160 and/or other Blocks of the method S100 can subsequently implement any of these non-image features to select template images for comparison with pixel clusters in the selected area, to select of a parametric model or function to transform the extracted feature(s) into a blood component estimate, to define alarm triggers for excess fluid or blood loss, to transform one or more extracted features into a blood quantity indicator, or to transform one or more extracted features into a quantity or quality of an other fluid or solid in the fluid canister. However, the method S100 can implement any of these non-image features to modify, enable, or inform any other function of the method S100.
As shown in
In one implementation, Block S150 extracts features from pixel clusters within the selected area of the image, and Block S160 tags each pixel cluster with a blood volume indicator based on a non-parametric correlation of each pixel cluster with a template image in a library of template images of known blood component concentration. For example, as shown in
In another implementation, Block S150 extracts features from pixel clusters within the selected area of the image, and Block S160 implements a parametric model or function to tag each pixel cluster with a blood component concentration. As described in U.S. patent application Ser. No. 13/544,646, Block S160 can insert one or more extracted features from one pixel cluster into a parametric function to substantially directly transform the extracted feature(s) from the pixel cluster into a blood component concentration. Block S160 can then repeat this for each other pixel cluster in the selected area. In one example, the extracted feature(s) can include any one or more of a color intensity in the red component space, a color intensity in the blue component space, and/or a color intensity in the green component space. In this example, the parametric function can be a mathematical operation or algorithm that relates color intensity to hemoglobin mass per unit fluid volume. As described in U.S. patent application Ser. No. 13/544,646, reflectance of oxygenated hemoglobin (HbO2) at certain wavelengths of light can be indicative of the concentration of hemoglobin per unit volume of fluid. Therefore, in another example, Block S150 can extract a reflectance values at a particular wavelength for each of a set of pixel clusters in the selected area, and Block S160 can convert each reflectance value into a hemoglobin concentration value by implementing a parametric model. Block S160 can then combine the hemoglobin concentration values to estimate the total (i.e. average) hemoglobin concentration in the canister. Furthermore, because the hemoglobin content of a wet (hydrated) red blood cell is typically about 35%, red blood cell concentration can be extrapolated from the hemoglobin concentration based on a static estimated hemoglobin content (e.g., 35%). Furthermore, Block S150 can access a recent measured hematocrit or estimate a current hematocrit of the patient (as described in U.S. Provisional Application No. 61/646,822), and Block S160 can implement the measured or estimated hematocrit to transform the estimated red blood cell concentration into an estimates extracorporeal blood concentration. However, Block S160 can implement any other parametric and/or non-parametric analysis of single pixels or pixel clusters within the selected area to estimate the concentration of any one or more blood components in fluid within the canister.
Block S170 of the method S100 recites estimating a quantity of the blood component within the canister based on the estimated volume and the concentration of the blood component within the canister. Generally, Block S170 functions to calculate a quantity (e.g., mass, weight, volume, cell count, etc.) of the blood component by multiplying the estimated volume of fluid in the canister by the estimated concentration of the blood component in the fluid in the canister, as shown in
As shown in
In one implementation similar to Blocks S150, S160, and S170 that estimate the blood component content in the fluid canister based on color properties (e.g., ‘redness’) of the fluid in the fluid canister, Block S180 analyzes other color properties of the fluid to estimate the content of other matter in the canister. For example, Block S180 can analyze the clarity of the fluid in the canister and correlate the estimated clarity of the fluid with a concentration or content of water or saline in the fluid canister. In another example, Block S180 can extract a ‘yellowness’ (e.g., color intensity in the yellow component space) of the fluid and correlate the yellowness with a concentration or content of plasma and/or urine in the fluid canister. Similarly, Block S150 can extract a ‘greenness’ (e.g., color intensities in the green and yellow component spaces) of the fluid and correlate the greenness with a concentration or content of bile in the fluid canister. However, Block S180 can estimate the quantity and/or concentration of any other fluid, particulate, or matter in the fluid canister.
As shown in
As shown in
2. Systems
As shown in
The system 100 functions to implement the method S100 described above, wherein the optical sensor (e.g., camera) implements Block S102 to capture the image of the canister, the processor implements Blocks S110, S120, S130, S140, S150, S160, S170, etc. described above to estimate the quantity and quality of fluid in a surgical suction canister. The system 100, optical sensor, processor, and display can include and/or function as any one or more components described in U.S. patent application Ser. No. 13/544,646. A surgeon, nurse, anesthesiologist, gynecologist, doctor, soldier, or other user can use the system 100 to estimate the quantity and/or quality of a fluid collected in fluid canister, such as during a surgery, child birth, or other medical event. The system 100 can also detect presence of blood in the canister, compute patient blood loss rate, estimate patient risk level (e.g., hypovolemic shock), and/or determine hemorrhage classification of a patient. However, the system 100 can perform any other suitable function.
The system 100 can be configured as a handheld (e.g., mobile) electronic device, such as a smartphone or tablet running an image-based blood estimation application (or app) and including the optical sensor 110, the processor 120, and the display 130. Alternatively, the components of the system 100 can be substantially discreet and distinct (i.e., not contained within a single housing). For example, the optical sensor 110 can be a camera substantially permanently arranged within an operating room, wherein the camera communicates with a local network or a remote server (including the processor 120) on which the image of the canister is analyzed (e.g., according to the method S100), and wherein a display 130 that is a computer monitor, a television, or a handheld (mobile) electronic device accesses and displays the output of the processor 120. However, the system 100 can be of any other form or include any other component.
The system 100 can be used in a variety of settings, including in a hospital setting, such as in a surgical operating room, in a clinical setting, such as in a delivery room, in a military setting, such as on a battlefield, or in a residential setting, such as aiding a consumer in monitoring blood loss due to menorrhagia (heavy menstrual bleeding) or epistaxis (nosebleeds). However, the system 100 can be used in any other setting.
The optical sensor 110 of the system 100 functions to capture the image of the canister. The optical sensor 110 functions to implement Block S102 of the method S100 and can be controlled by the software module 122. In one example implementation, the optical sensor no is a digital camera that captures a color image of the canister or an RGB camera that captures independent image components in the red, green, and blue fields. However, the optical sensor 110 can be any number and/or type of cameras, charge-coupled device (CCD) sensors, complimentary metal-oxide-semiconductor (CMOS) active pixel sensors, or optical sensors of any other type. However, the optical sensor 110 can function in any other way to capture the image of the canister, such as in any suitable form or across any suitable visible or invisible spectrum.
In one implementation, the optical sensor 110 is a camera arranged within a handheld electronic device. In another implementation, the optical sensor no is a camera or other sensor configured to be mounted on a pedestal for placement in an operating room, configured to be mounted to a ceiling over an operating table, configured for attachment to a battlefield helmet of a field nurse, configured to mount to a standalone blood volume estimation system including the processor 120, the display 130, and a staging tray that supports the canister for imaging, or configured for placement in or attachment to any other object or structure.
The software module 122 can also control the optical sensor no, such as by auto-focusing or auto-exposing the optical sensor. Additionally or alternatively, the software module 122 can filter out poor-quality images of the canister and selectively pass high- or sufficient-quality images to the processor 120 for analysis.
According to instructions from the software module 122, the processor 120 of the system 100 receives the image of the canister, estimates a volume of fluid within the canister, extracts a feature from an area of the image correlated with the volume of fluid, correlates the extracted featured with a concentration of a blood component within the canister, and estimates a quantity of the blood component within the canister based on the estimated volume and the concentration of the blood component within the canister. The processor 120 can therefore implement Blocks of the method S100 described above according to instructions from the software module 122. The processor 120 can also analyze different types of images (e.g., static, streaming, .MPEG, .JPG, .TIFF) and/or images from one or more distinct cameras or optical sensors.
The processor no can be coupled to the optical sensor 110, such as via a wired connection (e.g., a trace on a shared PCB) or a wireless connection (e.g., a Wi-Fi or Bluetooth connection), such that the processor 120 can access the image of the canister captured by the optical sensor 110 or visible in the field of view of the optical sensor 110. In one variation, the processor 120 is arranged within a handheld electronic device that also contains the optical sensor no and the display 130. In another variation, the processor 120 is a portion of or is tied to a remote server, wherein image data from the optical sensor 110 is transmitted (e.g., via an Internet or local network connection) to the remote processor 120, wherein the processor 120 estimates the extracorporeal blood volume in at least the portion of the canister by analyzing the image of the canister, and wherein the blood component volume estimate is transmitted to the display 130.
In one implementation and as described above, the processor 120 can pair the portion of the image of the canister to a template image via template matching, and the template image is one template image in a library of template images. For example, the system can further include a data storage module 160 configured to store a library of template images of known concentrations of the blood component. In this implementation, the processor can correlate the extracted featured with the concentration of the blood component by comparing the extracted feature with a template image in the library of template images, as described above. Alternatively and as described above, the processor 120 implements a parametric model to estimate the quantity of the blood component in the canister based on a feature extracted from the image.
The software module 122 of the system 100 functions to control the optical sensor 110, the processor 120, and the display 130 to capture the image of the camera, analyze the image, and display results of the analysis. The software module 122 can execute on the processor as an applet, a native application, firmware, software, or any other suitable form of code to control processes of the system 100. Generally, the software module controls application of Blocks of the method S100 described above, though the software module 122 can control and/or implement any other suitable process or method on or within the system 100.
In one example application, the software module 122 is a native application installed on the system 100 that is a handheld (i.e. mobile) computing device, such as a smartphone or tablet. When selected from a menu within on operating system executing on the computing device, the software module 122 opens, interfaces with a user to initialize a new case, controls the optical sensor 110 integrated into the computing device to capture the image, implements machine vision and executes mathematical algorithms on the processor to estimate the quantity of the blood component, and controls the display 130 to render the estimated quantity of the blood component. However, the software module 122 can be of any other form or type and can be implemented in any other way.
The display 130 of the system 100 depicts the estimated quantity of the blood component in the canister. The display 130 can be arranged within the handheld electronic device (e.g., smartphone, tablet, personal data assistant) that also contains the optical sensor no and the processor 120. Alternatively, the display can be a computer monitor, a television screen, or any other suitable display physically coextensive with any other device. The display 130 can be any of an LED, OLED, plasma, dot matrix, segment, e-ink, or retina display, a series of idiot lights corresponding to estimated quantity of the blood component, or any other suitable type of display. Finally, the display 130 can be in communication with the processor 120 via any of a wired and a wireless connection.
The display 130 can perform at least Block S192 of the method S100 by depicting the estimated quantity of the blood component in the canister and/or in multiple canisters. The blood volume estimate can be depicted in a common form, such as “ccs” (cubic centimeters). As described above, this data can be presented in the form of a dynamic augmented reality overlay on top of a live video stream of the canister that is also depicted on the display 130, wherein images from the optical sensor 110 are relayed substantially in real time, through the processor 120, to the display 130. The data can alternatively be presented in a table, chart, or graph depicting at least one of a time-elapse cumulative estimated quantity of the blood component across multiple samples analyzed over time and individual blood volume estimates for each canister. The display 130 can also render any of a previous image of the canisters, warnings, such as patient risk level (e.g., hypovolemic shock), or a hemorrhage classification of the patient, or suggestions, such as to begin blood transfusion. Any of these data, warnings, and/or suggestions can also be depicted across multiple screens or made available for access on any one of more displays.
One variation of the system 100 further includes a handheld housing 140 configured to contain the optical sensor 110, the processor 120, and the display 130. The handheld housing 140, with optical sensor 110, processor 120, and display 130, can define a handheld (mobile) electronic device capable of estimating blood volume in one or more canisters in any number of suitable environments, such as in an operating room or a delivery room. The housing 140 can be of a medical-grade material such that the system 100 that is a handheld electronic device can be suitable for use in an operating room or other medical or clinical setting. For example, the housing can be medical-grade stainless steel, such as 316L stainless steel, a medical-grade polymer, such as high-density polyethylene (HDPE), or a medical-grade silicone rubber. However, the housing can be of any other material or combination of materials.
In one variation of the system 100, the system 100 further includes a wireless communication module 150 that communicates the estimated quantity of the blood component in the canister to a remote server configured to store an electronic medical record of a patient. The system can also update the medical record with estimated blood loss over time, patient risk level, hemorrhage classification, and/or other blood-related metrics. The patient medical record can therefore be updated substantially automatically during a medical event, such as a surgery or childbirth.
The systems and methods of the preferred embodiments can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are executed by computer-executable components integrated with the system, the optical sensor, the processor, the display, hardware/firmware/software elements of a system or handheld computing device, or any suitable combination thereof. Other systems and methods of the preferred embodiments can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are executed by computer-executable components integrated by computer-executable components integrated with apparatuses and networks of the type described above. The computer-readable medium can be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is a processor but any suitable dedicated hardware device can (alternatively or additionally) execute the instructions.
As a person skilled in the art of estimating the extracorporeal blood volume in a canister will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application is a continuation of U.S. patent application Ser. No. 15/416,986, filed Jan. 26, 2017, which is a continuation of U.S. patent application Ser. No. 14/876,628 (now U.S. Pat. No. 9,595,104), filed Oct. 6, 2015, which is a continuation of U.S. patent application Ser. No. 14/613,807 (now U.S. Pat. No. 9,171,368), filed Feb. 4, 2015, which is a continuation of U.S. patent application Ser. No. 13/738,919 (now U.S. Pat. No. 8,983,167), filed Jan. 10, 2013, which claims the benefit of U.S. Provisional Patent Application No. 61/703,179, filed on Sep. 19, 2012, U.S. Provisional Patent Application No. 61/646,822, filed May 14, 2012, and U.S. Provisional Patent Application No. 61/722,780, filed on Nov. 5, 2012, all of which are incorporated in their entireties by this reference. This application is related to U.S. patent application Ser. No. 13/544,646, filed on 9 Jul. 2012, which is incorporated in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
2707955 | Borden | May 1955 | A |
3182252 | van den Berg | May 1965 | A |
3199507 | Kamm | Aug 1965 | A |
3367431 | Baker | Feb 1968 | A |
3646938 | Haswell | Mar 1972 | A |
3832135 | Drozdowski et al. | Aug 1974 | A |
3864571 | Stillman et al. | Feb 1975 | A |
3948390 | Ferreri | Apr 1976 | A |
4105019 | Haswell | Aug 1978 | A |
4149537 | Haswell | Apr 1979 | A |
4190153 | Olsen | Feb 1980 | A |
4244369 | McAvinn et al. | Jan 1981 | A |
4295537 | McAvinn et al. | Oct 1981 | A |
4313292 | McWilliams | Feb 1982 | A |
4402373 | Comeau | Sep 1983 | A |
4422548 | Cheesman et al. | Dec 1983 | A |
4429789 | Puckett | Feb 1984 | A |
4562842 | Morfeld et al. | Jan 1986 | A |
4583546 | Garde | Apr 1986 | A |
4642089 | Zupkas et al. | Feb 1987 | A |
4681571 | Nehring | Jul 1987 | A |
4773423 | Hakky | Sep 1988 | A |
4784267 | Gessler et al. | Nov 1988 | A |
4832198 | Alikhan | May 1989 | A |
4917694 | Jessup | Apr 1990 | A |
4922922 | Pollock et al. | May 1990 | A |
5009275 | Sheehan | Apr 1991 | A |
5029584 | Smith | Jul 1991 | A |
5031642 | Nosek | Jul 1991 | A |
5048683 | Westlake | Sep 1991 | A |
5119814 | Minnich | Jun 1992 | A |
5132087 | Manion et al. | Jun 1992 | A |
5190059 | Fabian et al. | Mar 1993 | A |
5227765 | Ishizuka et al. | Jul 1993 | A |
5231032 | Ludvigsen | Jul 1993 | A |
5236664 | Ludvigsen | Aug 1993 | A |
5285682 | Micklish | Feb 1994 | A |
5348533 | Papillon et al. | Sep 1994 | A |
5369713 | Schwartz et al. | Nov 1994 | A |
5443082 | Mewburn | Aug 1995 | A |
5492537 | Vancaillie | Feb 1996 | A |
5522805 | Vancaillie et al. | Jun 1996 | A |
5629498 | Pollock et al. | May 1997 | A |
5633166 | Westgard et al. | May 1997 | A |
5650596 | Morris et al. | Jul 1997 | A |
5709670 | Vancaillie et al. | Jan 1998 | A |
5807358 | Herweck et al. | Sep 1998 | A |
5851835 | Groner | Dec 1998 | A |
5923001 | Morris et al. | Jul 1999 | A |
5931824 | Stewart et al. | Aug 1999 | A |
5944668 | Vancaillie et al. | Aug 1999 | A |
5956130 | Vancaillie et al. | Sep 1999 | A |
5984893 | Ward | Nov 1999 | A |
5996889 | Fuchs et al. | Dec 1999 | A |
6006119 | Soller et al. | Dec 1999 | A |
6061583 | Ishihara et al. | May 2000 | A |
6359683 | Berndt | Mar 2002 | B1 |
6510330 | Enejder | Jan 2003 | B1 |
6640130 | Freeman et al. | Oct 2003 | B1 |
6641039 | Southard | Nov 2003 | B2 |
6699231 | Sterman et al. | Mar 2004 | B1 |
6728561 | Smith et al. | Apr 2004 | B2 |
6730054 | Pierce et al. | May 2004 | B2 |
6763148 | Sternberg et al. | Jul 2004 | B1 |
6777623 | Ballard | Aug 2004 | B2 |
6781067 | Montagnino | Aug 2004 | B2 |
6998541 | Morris et al. | Feb 2006 | B2 |
7001366 | Ballard | Feb 2006 | B2 |
7112273 | Weigel et al. | Sep 2006 | B2 |
7147626 | Goodman et al. | Dec 2006 | B2 |
7158030 | Chung | Jan 2007 | B2 |
7180014 | Farber et al. | Feb 2007 | B2 |
7255003 | Schneiter | Aug 2007 | B2 |
7274947 | Koo et al. | Sep 2007 | B2 |
7297834 | Shapiro | Nov 2007 | B1 |
7299981 | Hickle et al. | Nov 2007 | B2 |
7364545 | Klein | Apr 2008 | B2 |
7384399 | Ghajar | Jun 2008 | B2 |
7430047 | Budd et al. | Sep 2008 | B2 |
7430478 | Fletcher-Haynes et al. | Sep 2008 | B2 |
7469727 | Marshall | Dec 2008 | B2 |
7499581 | Tribble et al. | Mar 2009 | B2 |
7557710 | Sanchez et al. | Jul 2009 | B2 |
7641612 | Mccall | Jan 2010 | B1 |
D611731 | Levine | Mar 2010 | S |
7670289 | Mccall | Mar 2010 | B1 |
7703674 | Stewart | Apr 2010 | B2 |
7708700 | Ghajar | May 2010 | B2 |
7711403 | Jay | May 2010 | B2 |
7749217 | Podhajsky | Jul 2010 | B2 |
7795491 | Stewart et al. | Sep 2010 | B2 |
7819818 | Ghajar | Oct 2010 | B2 |
7872201 | Whitney | Jan 2011 | B1 |
7909806 | Goodman et al. | Mar 2011 | B2 |
7966269 | Bauer et al. | Jun 2011 | B2 |
7995816 | Roger et al. | Aug 2011 | B2 |
8025173 | Michaels | Sep 2011 | B2 |
8105296 | Morris et al. | Jan 2012 | B2 |
8181860 | Fleck et al. | May 2012 | B2 |
8194235 | Kosaka et al. | Jun 2012 | B2 |
8241238 | Hiruma et al. | Aug 2012 | B2 |
8279068 | Morris et al. | Oct 2012 | B2 |
8374397 | Shpunt et al. | Feb 2013 | B2 |
8398546 | Pacione et al. | Mar 2013 | B2 |
8472693 | Davis et al. | Jun 2013 | B2 |
8479989 | Fleck et al. | Jul 2013 | B2 |
8576076 | Morris et al. | Nov 2013 | B2 |
8626268 | Adler et al. | Jan 2014 | B2 |
8639226 | Hutchings et al. | Jan 2014 | B2 |
8693753 | Nakamura | Apr 2014 | B2 |
8704178 | Pollock et al. | Apr 2014 | B1 |
8768014 | Du et al. | Jul 2014 | B2 |
8792693 | Satish et al. | Jul 2014 | B2 |
8823776 | Tian et al. | Sep 2014 | B2 |
8897523 | Satish et al. | Nov 2014 | B2 |
8983167 | Satish et al. | Mar 2015 | B2 |
8985446 | Fleck et al. | Mar 2015 | B2 |
9047663 | Satish et al. | Jun 2015 | B2 |
9171368 | Satish et al. | Oct 2015 | B2 |
9347817 | Pollock et al. | May 2016 | B2 |
9594983 | Alattar | Mar 2017 | B2 |
9595104 | Satish et al. | Mar 2017 | B2 |
9646375 | Satish | May 2017 | B2 |
9652655 | Satish et al. | May 2017 | B2 |
9824441 | Satish et al. | Nov 2017 | B2 |
9936906 | Satish et al. | Apr 2018 | B2 |
10282839 | Satish et al. | May 2019 | B2 |
20030069509 | Matzinger et al. | Apr 2003 | A1 |
20030095197 | Wheeler et al. | May 2003 | A1 |
20030130596 | Von Der Goltz | Jul 2003 | A1 |
20040031626 | Morris et al. | Feb 2004 | A1 |
20040129678 | Crowley et al. | Jul 2004 | A1 |
20050051466 | Carter et al. | Mar 2005 | A1 |
20050163354 | Ziegler | Jul 2005 | A1 |
20050265996 | Lentz | Dec 2005 | A1 |
20060058593 | Drinan et al. | Mar 2006 | A1 |
20060178578 | Tribble et al. | Aug 2006 | A1 |
20060224086 | Harty | Oct 2006 | A1 |
20070004959 | Carrier et al. | Jan 2007 | A1 |
20070024946 | Panasyuk et al. | Feb 2007 | A1 |
20070108129 | Mori et al. | May 2007 | A1 |
20070243137 | Hainfeld | Oct 2007 | A1 |
20070287182 | Morris et al. | Dec 2007 | A1 |
20080029416 | Paxton | Feb 2008 | A1 |
20080030303 | Kobren et al. | Feb 2008 | A1 |
20080045845 | Pfeiffer et al. | Feb 2008 | A1 |
20080194906 | Mahony et al. | Aug 2008 | A1 |
20090076470 | Ryan | Mar 2009 | A1 |
20090080757 | Roger et al. | Mar 2009 | A1 |
20090257632 | Lalpuria et al. | Oct 2009 | A1 |
20090310123 | Thomson | Dec 2009 | A1 |
20090317002 | Dein | Dec 2009 | A1 |
20100003714 | Bachur | Jan 2010 | A1 |
20100007727 | Torre-Bueno | Jan 2010 | A1 |
20100025336 | Carter et al. | Feb 2010 | A1 |
20100027868 | Kosaka et al. | Feb 2010 | A1 |
20100066996 | Kosaka et al. | Mar 2010 | A1 |
20100087770 | Bock | Apr 2010 | A1 |
20100150759 | Mazur et al. | Jun 2010 | A1 |
20100152563 | Turner et al. | Jun 2010 | A1 |
20100280117 | Patrick et al. | Nov 2010 | A1 |
20110066182 | Falus | Mar 2011 | A1 |
20110118647 | Paolini et al. | May 2011 | A1 |
20110192745 | Min | Aug 2011 | A1 |
20110196321 | Wudyka | Aug 2011 | A1 |
20110200239 | Levine et al. | Aug 2011 | A1 |
20110275957 | Bhandari | Nov 2011 | A1 |
20110305376 | Neff | Dec 2011 | A1 |
20110316973 | Miller et al. | Dec 2011 | A1 |
20120000297 | Hashizume et al. | Jan 2012 | A1 |
20120064132 | Aizawa et al. | Mar 2012 | A1 |
20120065482 | Robinson et al. | Mar 2012 | A1 |
20120106811 | Chen et al. | May 2012 | A1 |
20120127290 | Tojo et al. | May 2012 | A1 |
20120210778 | Palmer et al. | Aug 2012 | A1 |
20120257188 | Yan et al. | Oct 2012 | A1 |
20120262704 | Zahniser et al. | Oct 2012 | A1 |
20120309636 | Gibbons et al. | Dec 2012 | A1 |
20120327365 | Makihira | Dec 2012 | A1 |
20120330117 | Grudic et al. | Dec 2012 | A1 |
20130010094 | Satish et al. | Jan 2013 | A1 |
20130011031 | Satish et al. | Jan 2013 | A1 |
20130011042 | Satish et al. | Jan 2013 | A1 |
20130034908 | Barstis et al. | Feb 2013 | A1 |
20130088354 | Thomas | Apr 2013 | A1 |
20130094996 | Janssenswillen | Apr 2013 | A1 |
20130170729 | Wardlaw et al. | Jul 2013 | A1 |
20130301901 | Satish et al. | Nov 2013 | A1 |
20130303870 | Satish et al. | Nov 2013 | A1 |
20130308852 | Hamsici et al. | Nov 2013 | A1 |
20140079297 | Tadayon et al. | Mar 2014 | A1 |
20140128838 | Satish et al. | May 2014 | A1 |
20140207091 | Heagle et al. | Jul 2014 | A1 |
20140294237 | Litvak et al. | Oct 2014 | A1 |
20140330094 | Pacione et al. | Nov 2014 | A1 |
20150046124 | Bhavaraju et al. | Feb 2015 | A1 |
20150154751 | Satish et al. | Jun 2015 | A1 |
20150294460 | Satish et al. | Oct 2015 | A1 |
20150310634 | Babcock et al. | Oct 2015 | A1 |
20160027173 | Satish et al. | Jan 2016 | A1 |
20160069743 | McQuilkin et al. | Mar 2016 | A1 |
20160123998 | MacIntyre et al. | May 2016 | A1 |
20160331248 | Satish et al. | Nov 2016 | A1 |
20160331282 | Satish et al. | Nov 2016 | A1 |
20170011276 | Mehring et al. | Jan 2017 | A1 |
20170023446 | Rietveld et al. | Jan 2017 | A1 |
20170186160 | Satish et al. | Jun 2017 | A1 |
20170351894 | Satish et al. | Dec 2017 | A1 |
20170352152 | Satish et al. | Dec 2017 | A1 |
20180199827 | Satish et al. | Jul 2018 | A1 |
20190008427 | Satish et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
2870635 | Oct 2013 | CA |
101505813 | Aug 2009 | CN |
101809432 | Aug 2010 | CN |
102216161 | Oct 2011 | CN |
109738621 | May 2019 | CN |
2850559 | Mar 2015 | EP |
59161801 | Oct 1984 | JP |
S-59-161801 | Oct 1984 | JP |
S-61-176357 | Aug 1986 | JP |
62144652 | Jun 1987 | JP |
S-62-144652 | Jun 1987 | JP |
H-06-510210 | Nov 1994 | JP |
H06510210 | Nov 1994 | JP |
H-07-308312 | Nov 1995 | JP |
H-11-37845 | Feb 1999 | JP |
2000-227390 | Aug 2000 | JP |
2002-331031 | Nov 2002 | JP |
2003-075436 | Mar 2003 | JP |
2005-052288 | Mar 2005 | JP |
3701031 | Sep 2005 | JP |
2006-280445 | Oct 2006 | JP |
2007-101482 | Apr 2007 | JP |
2008-055142 | Mar 2008 | JP |
2008-519604 | Jun 2008 | JP |
2010-516429 | May 2010 | JP |
2011-036371 | Feb 2011 | JP |
2011-515681 | May 2011 | JP |
2011-252804 | Dec 2011 | JP |
2013501937 | Jan 2013 | JP |
WO-9217787 | Oct 1992 | WO |
WO-1996039927 | Dec 1996 | WO |
WO-2006053208 | May 2006 | WO |
WO-2008094703 | Aug 2008 | WO |
WO-2008094703 | Aug 2009 | WO |
WO-2009117652 | Sep 2009 | WO |
WO-2011019576 | Feb 2011 | WO |
WO-2011145351 | Nov 2011 | WO |
WO-2013009709 | Jan 2013 | WO |
WO-2013138356 | Sep 2013 | WO |
WO-2013172874 | Nov 2013 | WO |
WO-2013173356 | Nov 2013 | WO |
WO-2013138356 | Dec 2013 | WO |
WO-2014025415 | Feb 2014 | WO |
WO-2013009709 | May 2014 | WO |
WO-2014071399 | May 2014 | WO |
WO-2014025415 | Jun 2015 | WO |
WO-2015160997 | Oct 2015 | WO |
Entry |
---|
ACOG (2012). “Optimizing protocols in obstetrics,” Series 2, 25 total pages. |
Adkins, A.R. et al. (2014). “Accuracy of blood loss estimations among anesthesia providers,” AANA Journal 82(4):300-306. |
Aklilu, A. Gauss Surgical Measures Blood Loss with a Smartphone. Jun. 14, 2012. <http://www.health2con.com/news/2012/06/14/gauss-surgical-measures-blood-loss-with-a-smartphone/>, 6 pages. |
Al-Kadri, H.M. et al. (2014). “Effect of education and clinical assessment on the accuracy of post partum blood loss estimation,” BMC Preg. Childbirth 14:110, 7 total pages. |
AWHONN Practice Brief (2014). “Quantification of blood loss: AWHONN practice brief No. 1,” AWHONN p. 1-3. |
Bellad, et al. (2009). “Standardized Visual Estimation of Blood Loss during Vaginal Delivery with Its Correlation Hematocrit Changes—A Descriptive Study.” South Asian Federation of Obstetrics and Gynecology 1:29-34. |
Bose, P. et al. (2006). “Improving the accuracy of estimated blood loss at obstetric haemorrhage using clinical reconstructions,” BJOG 113(8):919-924. |
Corrected Notice of Allowability dated Sep. 15, 2017, for U.S. Appl. No. 14/687,842, filed Apr. 15, 2015, 2 pages. |
Eipe, N. et al. (2006). “Perioperative blood loss assessment—How accurate?” Indian J. Anaesth. 50(1):35-38. |
Extended European Search Report dated Apr. 1, 2015, for EP Application No. 12 810 640.8, filed on Jul. 9, 2012, 8 pages. |
Extended European Search Report dated Nov. 23, 2015, for EP Application No. 13 790 688.9, filed on May 14, 2013, 9 pages. |
Extended European Search Report dated Nov. 17, 2015, for EP Application No. 13 790 449.6, filed on Jan. 10, 2013, 8 pages. |
Extended European Search Report dated Nov. 4, 2016, for EP Application No. 16 183 350.4, filed on Jul. 9, 2012, 9 pages. |
Extended European Search Report dated Jul. 26, 2017, for EP Application No. 15 780 653.0, filed on Apr. 15, 2015, 12 pages. |
Extended European Search Report dated Jul. 9, 2019, for EP Application No. 16 880 150.4, filed on Dec. 23, 2016, 9 pages. |
Extended European Search Report dated Jul. 12, 2019, for EP Application No. 19 156 549.8, filed on Jul. 9, 2012, 8 pages. |
Final Office Action dated Feb. 12, 2016, for U.S. Appl. No. 13/544,664, filed Jul. 9, 2012, 9 pages. |
Final Office Action dated Aug. 26, 2016, for U.S. Appl. No. 13/894,054, filed May 14, 2013, 7 pages. |
Final Office Action dated Jul. 26, 2016, for U.S. Appl. No. 14/876,628, filed Oct. 6, 2015, 5 pages. |
Habak, P.J. et al. (2016). “A comparison of visual estimate versus calculated estimate of blood loss at vaginal delivery,” British J. Med. Medical Res. 11(4):1-7. |
Holmes, A.A. et al. (2014). “Clinical evaluation of a novel system for monitoring surgical hemoglobin loss,” Anesth. Analg. 119(3):588-594. |
International Search Report dated Sep. 17, 2012, for PCT Application No. PCT/US2012/045969, filed on Jul. 9, 2012, 2 pages. |
International Search Report dated Sep. 24, 2013, for PCT Application No. PCT/US2013/040976, filed on May 14, 2013, 2 pages. |
International Search Report dated Mar. 26, 2013, for PCT Application No. PCT/US2013/021075, filed on Jan. 10, 2013, 2 pages. |
International Search Report dated Jul. 24, 2015, for PCT Application No. PCT/US2015/026036, filed on Apr. 15, 2015, 2 pages. |
International Search Report dated Mar. 30, 2017, for PCT Application No. PCT/US2016/068540, filed on Dec. 23, 2016, 3 pages. |
Jones, R. (2015). “Quantitative measurement of blood loss during delivery,” AWHONN p. S41. |
Kamiyoshihara, M. et al. (2008). “The Utility of an Autologous Blood Salvage System in Emergency Thoracotomy for a Hemothorax After Chest Trauma,” Gen. Thorac. Cardiovasc. Surg. 56:222. |
Lyndon, A. et al. (2010). “Blood loss: Clinical techniques for ongoing quantitative measurement,” CMQCC Obstetric Hemorrhage Toolkit, pp. 1-7. |
Lyndon, A. et al. (2015). “Cumulative quantitative assessment of blood loss,” CMQCC Obstetric Hemorrhage Toolkit Version 2.0, pp. 80-85. |
Manikandan, D. et al. (2015). “Measurement of blood loss during adenotonsillectomy in children and factors affecting it,” Case Reports in Clinical Medicine 4:151-156. |
Merck for Mother's Program (2012). Blood loss measurement: Technology opportunity assessment, 9 total pages. |
Non-Final Office Action dated Aug. 13, 2015, for U.S. Appl. No. 13/544,664, filed Jul. 9, 2012, 8 pages. |
Non-Final Office Action dated Aug. 2, 2016, for U.S. Appl. No. 13/544,664, filed Jul. 9, 2012, 6 pages. |
Non-Final Office Action dated May 9, 2014, for U.S. Appl. No. 13/544,679, filed Jul. 9, 2012, 7 pages. |
Non-Final Office Action dated Mar. 30, 2016, for U.S. Appl. No. 13/894,054, filed May 14, 2013, 8 pages. |
Non-Final Office Action dated Sep. 5, 2014, for U.S. Appl. No. 13/738,919, filed Jan. 10, 2013, 8 pages. |
Non-Final Office Action dated Mar. 20, 2015, for U.S. Appl. No. 14/613,807, filed Feb. 4, 2015, 8 pages. |
Non-Final Office Action dated Dec. 15, 2015, for U.S. Appl. No. 14/876,628, filed Oct. 6, 2015, 8 pages. |
Non-Final Office Action dated Mar. 24, 2017, for U.S. Appl. No. 14/687,842, filed Apr. 15, 2015, 27 pages. |
Non-Final Office Action dated Apr. 20, 2017, for U.S. Appl. No. 13/894,054, filed May 14, 2013, 7 pages. |
Non-Final Office Action dated Apr. 11, 2018, for U.S. Appl. No. 15/416,986, filed Jan. 26, 2017, 7 pages. |
Non-Final Office Action dated Oct. 19, 2018, for U.S. Appl. No. 15/390,017, filed Dec. 23, 2016, 12 pages. |
Non-Final Office Action dated Feb. 21, 2019, for U.S. Appl. No. 15/594,017, filed May 12, 2017, 23 pages. |
Notice of Allowance dated May 12, 2014, for U.S. Appl. No. 13/544,646, filed Jul. 9, 2012, 10 pages. |
Notice of Allowance dated Sep. 3, 2014, for U.S. Appl. No. 13/544,679, filed Jul. 9, 2012, 8 pages. |
Notice of Allowance dated Nov. 10, 2014, for U.S. Appl. No. 13/738,919, filed Jan. 10, 2013, 10 pages. |
Notice of Allowance dated Jun. 25, 2015, for U.S. Appl. No. 14/613,807, filed Feb. 4, 2015, 10 pages. |
Notice of Allowance dated Oct. 26, 2016, for U.S. Appl. No. 14/876,628, filed Oct. 6, 2015, 11 pages. |
Notice of Allowance dated Feb. 15, 2017, for U.S. Appl. No. 13/544,664, filed Jul. 9, 2012, 10 pages. |
Notice of Allowance dated Aug. 3, 2017, for U.S. Appl. No. 14/687,842, filed Apr. 15, 2015, 9 pages. |
Notice of Allowance dated Nov. 20, 2017, for U.S. Appl. No. 13/894,054, filed May 14, 2013, 8 pages. |
Notice of Allowance dated Jan. 24, 2019, for U.S. Appl. No. 15/416,986, filed Jan. 26, 2017, 9 pages. |
Notice of Allowance dated May 3, 2019, for U.S. Appl. No. 15/390,017, filed Dec. 23, 2016, 11 pages. |
Pogorelc, D. iPads in the OR: New Mobile Platform to Monitor Blood Loss During Surgery. MedCityNews, Jun. 6, 2012. http://medcitynews.com/2012/06/ipads-in-the-or-new-mobile-platform-to-monitor-blood-loss-during-surgery, 4 pages. |
Roston, A.B. et al. (2012). “Chapter 9: Blood loss: Accuracy of visual estimation,” in A comprehensive textbook of postpartum hemorrhage: An essential clinical reference for effective management, 2nd edition, Sapiens publishing, pp. 71-72. |
Sant, et al. “Exsanguinated Blood Volume Estimation Using Fractal Analysis of Digital Images.” Journal of Forensic Sciences 57.3 (2012): 610-17. |
Schorn, M.N. (2010). “Measurement of blood loss: Review of the literature,” J. Midwifery and Women's Health 55(1):20-27. |
Sukprasert, M. et al. (2006). “Increase accuracy of visual estimation of blood loss from education programme,” J. Med. Assoc. Thai 89(suppl. 4):S54-S59. |
Written Opinion of the International Searching Authority dated Sep. 17, 2012, for PCT Application No. PCT/US2012/045969, filed on Jul. 9, 2012, 4 pages. |
Written Opinion of the International Searching Authority dated Sep. 24, 2013, for PCT Application No. PCT/US2013/040976, filed on May 14, 2013, 4 pages. |
Written Opinion of the International Searching Authority dated Mar. 26, 2013, for PCT Application No. PCT/US2013/021075, filed on Jan. 10, 2013, 6 pages. |
Written Opinion of the International Searching Authority dated Jul. 24, 2015, for PCT Application No. PCT/US2015/026036, filed on Apr. 15, 2015, 6 pages. |
Written Opinion of the International Searching Authority dated Mar. 30, 2017, for PCT Application No. PCT/US2016/068540, filed on Dec. 23, 2016, 8 pages. |
“U.S. Appl. No. 13/738,919, Response filed Oct. 21, 2014 to Non Final Office Action dated Sep. 5, 2014”, 8 pgs. |
“U.S. Appl. No. 14/072,625, Notice of Allowance dated Feb. 17, 2015”, 10 pgs. |
“U.S. Appl. No. 14/072,632, Advisory Action dated May 24, 2016”, 3 pgs. |
“U.S. Appl. No. 14/072,632, Final Office Action dated Feb. 1, 2016”, 24 pgs. |
“U.S. Appl. No. 14/072,632, Non Final Office Action dated Aug. 4, 2015”, 21 pgs. |
“U.S. Appl. No. 14/072,632, Notice of Allowance dated Feb. 8, 2017”, 9 pgs. |
“U.S. Appl. No. 14/072,632, Notice of Allowance dated Jul. 5, 2016”, 9 pgs. |
“U.S. Appl. No. 14/072,632, Notice of Allowance dated Oct. 19, 2016”, 9 pgs. |
“U.S. Appl. No. 14/072,632, Response filed May 4, 2016 to Final Office Action dated Feb. 1, 2016”, 14 pgs. |
“U.S. Appl. No. 14/072,632, Response filed Oct. 28, 2015 to Non Final Office Action dated Aug. 4, 2015”, 16 pgs. |
“U.S. Appl. No. 14/613,807, Response filed Apr. 24, 2015 to Non Final Office Action dated Mar. 20, 2015”, 9 pgs. |
“U.S. Appl. No. 14/876,628, 312 Amendment filed Jan. 26, 2017”, 3 pgs. |
“U.S. Appl. No. 14/876,628, PTO Response to Rule 312 Communication dated Feb. 7, 2017”, 2 pgs. |
“U.S. Appl. No. 14/876,628, Response filed Apr. 11, 2016 to Non Final Office Action dated Dec. 15, 2015”, 11 pgs. |
“U.S. Appl. No. 14/876,628, Response filed Sep. 26, 2016 to Final Office Action dated Jul. 26, 2016”, 10 pgs. |
“U.S. Appl. No. 15/416,986, 312 Amendment filed Feb. 20, 2019”, 8 pgs. |
“U.S. Appl. No. 15/416,986, Examiner Interview Summary dated Jan. 11, 2019”, 2 pgs. |
“U.S. Appl. No. 15/416,986, Notice of Allowability dated Apr. 8, 2019”, 4 pgs. |
“U.S. Appl. No. 15/416,986, Preliminary Amendment filed Jan. 26, 2017”, 3 pgs. |
“U.S. Appl. No. 15/416,986, Preliminary Amendment filed Aug. 28, 2017”, 6 pgs. |
“U.S. Appl. No. 15/416,986, Response filed Oct. 11, 2018 to Non Final Office Action dated Apr. 11, 2018”, 13 pgs. |
“Chinese Application Serial No. 201380037022.9, Office Action dated Mar. 28, 2017”, with English translation of claims, 28 pgs. |
“Chinese Application Serial No. 201380037022.9, Office Action dated Jul. 10, 2018”, with English translation of claims, 8 pgs. |
“Chinese Application Serial No. 201380037022.9, Office Action dated Dec. 4, 2017”, with English translation of claims, 32 pgs. |
“Chinese Application Serial No. 201910039633.6, Office Action dated Nov. 15, 2019”, w/o English Translation, 12 pgs. |
“European Application Serial No. 13790449.6, Communication Pursuant to Article 94(3) EPC dated Apr. 9, 2019”, 5 pgs. |
“European Application Serial No. 13790449.6, Communication Pursuant to Article 94(3) EPC dated Feb. 14, 2018”, 7 pgs. |
“European Application Serial No. 13790449.6, Response filed Jun. 6, 2016 to Extended European Search Report dated Nov. 17, 2015”, 12 pgs. |
“European Application Serial No. 13790449.6, Response filed Jun. 18, 2015 to Communication pursuant to Rules 161 (2) and 162 EPC dated Dec. 23, 2014”, 10 pgs. |
“European Application Serial No. 13790449.6, Response filed Jun. 25, 2018 to Communication Pursuant to Article 94(3) EPC dated Feb. 14, 2018”, 7 pgs. |
“European Application Serial No. 13790449.6, Response filed Aug. 19, 2019 to Communication Pursuant to Article 94(3) EPC dated Apr. 9, 2019”, 10 pgs. |
“International Application Serial No. PCT/US2013/021075, International Preliminary Report on Patentability dated Nov. 27, 2014”, 8 pgs. |
“International Application Serial No. PCT/US2013/068576, International Preliminary Report on Patentability dated May 14, 2015”, 8 pgs. |
“International Application Serial No. PCT/US2013/068576, International Search Report dated Apr. 4, 2014”, 5 pgs. |
“International Application Serial No. PCT/US2013/068576, Invitation to Pay Additional Fees dated Jan. 23, 2014”, 2 pgs. |
“International Application Serial No. PCT/US2013/068576, Written Opinion dated Apr. 4, 2014”, 6 pgs. |
“International Application Serial No. PCT/US2016/032560, International Search Report dated Aug. 19, 2016”, 2 pgs. |
“International Application Serial No. PCT/US2016/032560, Written Opinion dated Aug. 19, 2016”, 6 pgs. |
“Japanese Application Serial No. 2015-512621, Office Action dated Jan. 12, 2016”, with English translation of claims, 8 pgs. |
“Japanese Application Serial No. 2015-512621, Office Action dated Aug. 23, 2016”, with English translation of claims, 6 pgs. |
“Japanese Application Serial No. 2015-512621, Response filed Apr. 11, 2016 to Office Action dated Jan. 12, 2016”, with English translation of claims, 7 pgs. |
“Japanese Application Serial No. 2016-246268, Office Action dated Oct. 31, 2017”, with English translation of claims, 6 pgs. |
“Japanese Application Serial No. 2016-246268, Response filed Apr. 25, 2018 to Office Action dated Oct. 31, 2017”, with English translation of claims, 6 pgs. |
Kamiyoshihara, M, et al., “The Utility of an Autologous Blood Salvage System in Emergency Thoracotomy for a Hemothorax After Chest Trauma”, Gen. Thorac. Cargiovasc. Surg. vol. 56, (2008), 222. |
Satish, S, et al., “Method for Projecting Blood Loss of a Patient During a Surgery”, U.S. Appl. No. 15/154,921, filed May 13, 2016, 50 pgs. |
Satish, S, et al., “System and Methods for Managing Blood Loss of a Patient”, U.S. Appl. No. 15/943,561, filed Apr. 2, 2018, 66 pgs. |
U.S. Appl. No. 13/738,919, U.S. Pat. No. 8,983,167, filed Jan. 10, 2013, System and Method for Estimating a Quantity of a Blood Component in a Fluid Canister. |
U.S. Appl. No. 14/613,807, U.S. Pat. No. 9,171,368, filed Feb. 4, 2015, System and Method for Estimating a Quantity of a Blood Component in a Fluid Canister. |
U.S. Appl. No. 14/876,628, U.S. Pat. No. 9,595,104, filed Oct. 6, 2015, System and Method for Estimating a Quantity of a Blood Component in a Fluid Canister. |
U.S. Appl. No. 15/416,986, U.S. Pat. No. 10,282,839, filed Jan. 26, 2017, System and Method for Estimating a Quantity of a Blood Component in a Fluid Canister. |
U.S. Appl. No. 14/072,625, U.S. Pat. No. 9,047,663, filed Nov. 5, 2013, Method for Triggering Blood Salvage. |
U.S. Appl. No. 14/072,632, U.S. Pat. No. 9,646,375, filed Nov. 5, 2013, Method for Setting a Blood Transfusion Parameter. |
Number | Date | Country | |
---|---|---|---|
20190385305 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
61722780 | Nov 2012 | US | |
61703179 | Sep 2012 | US | |
61646822 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15416986 | Jan 2017 | US |
Child | 16392345 | US | |
Parent | 14876628 | Oct 2015 | US |
Child | 15416986 | US | |
Parent | 14613807 | Feb 2015 | US |
Child | 14876628 | US | |
Parent | 13738919 | Jan 2013 | US |
Child | 14613807 | US |