The present disclosure relates to borehole drilling. In particular, the present disclosure relates to a system and method for controlling a drill string in a borehole.
Exploration and production of oil and gas in the deep subsurface, where hydrocarbon reservoirs are found at depths between 2,000 and 30,000 feet, requires that a narrow borehole, between 4 and 24 inches in diameter, be drilled using a slender drill-string through a varied downhole environment and along an often snaking well path. Drill string vibrations, and their negative consequences on the Rate of Penetration (ROP) and equipment, are a well known phenomenon when drilling for hydrocarbons. In particular, the torsional oscillations known as stick slip are considered to be some of the most prevalent vibrations. These stick-slip oscillations are characterized by a series of stopping—“sticking”—and releasing—“slipping” events of the bit.
Off-bottom stick slip is a well known phenomenon from the field, and when mentioned in literature is hypothesized to be caused by a negative difference between static and dynamic along-string Coulomb-type friction. This is an important phenomena as it indicates that non-linear frictional forces along the drill-string (and not just the bit rock interaction), in deviated or horizontal wells, plays a significant role in the torsional oscillatory behavior of drill-strings. Hence, models which only incorporate the bit rock interaction as the cause of torsional stick slip fail to explain off-bottom stick slip vibrations, as observed in field data after connections and in back-reaming operations.
The distributed effects of the drill string becomes an increasingly prominent feature of torsional dynamics in long wells, and perhaps especially wellbores with high-inclination laterals. The nonlinear nature of the Coulomb friction can excite a wide range of frequencies where higher order modes become essential for representing the dynamics of the system, in particular for long wells. Hence, lumped approximations of the drill string easily fall short, and it is desirable to employ distributed model representations of the torsional dynamics.
Therefore, improvements in the art of drilling for hydrocarbons are desirable.
The present discloses an apparatus and method that provides insight to a drill operator with respect to the downhole behavior of a drill-string. The insight provided to the drill operator allows the operator to adjust the surface parameters of the drill-string in order to maximize ROP and/or other parameter of the drill-string. The surface parameters that can be adjusted by the drill operator include the angular velocity of the drill-string, the torque applied by the motor rotating the drill-string, and the weight applied to the bit attached at the distal end of the drill-string. The insight provided by the present disclosure can be in the form of displayed parameters such as, for example, the static coefficient of the drill-string, the dynamic coefficient of friction of the drill-string, the drill-string twist, the release torque, the sensor gains, the angular displacement of the drill-string, etc.
The estimates produced by the algorithm can be displayed to a driller in real time in an advisory system, and the result can be built on to help optimize the drilling operation, detect faults and unwanted incidents, aid on-site decision making, and improve control of directional drilling.
In a first aspect, the present disclosure provides a system for controlling a drill string located in a borehole, the drill string having a top portion and a bottom hole assembly (BHA) coupled to the top portion. The system comprises: a processor; sensors coupled to the top portion of the drill string, the sensors being further coupled to the processor, the sensors configured to measure values of variables of the top portion of the drill string, to obtain top portion measured values; a non-transitory, tangible computer readable medium having instructions recorded thereon, the instructions to be carried out by the processor to obtain a soft sensor to generate estimated values of variables of the BHA in accordance with the top portion measured values and in accordance with angular motion equations of the drill string; and a drill string controller configured to generate a control signal in accordance with the estimated values of variables of the BHA, the drill string controller to control the top portion in accordance with the control signal.
Other aspects and features of the present disclosure will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments in conjunction with the accompanying figures.
For the purpose of promoting an understanding of the principles of the disclosure, reference will now be made to the features illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Any alterations and further modifications, and any further applications of the principles of the disclosure as described herein are contemplated as would normally occur to one skilled in the art to which the disclosure relates. It will be apparent to those skilled in the relevant art that some features that are not relevant to the present disclosure may not be shown in the drawings for the sake of clarity.
A ‘soft-sensor’ as described herein, combines measurements from physical sensors with a model of system dynamics to provide estimates of various variables and parameters describing the state of the system. Without limitation, the variables may include, the rotational velocity of each section of the drill string and bottom hole assembly (BHA), the angular displacement at each section of the drill string and BHA, and the static and dynamic friction coefficients. The soft-sensor may comprise an observer algorithm. Observers include dynamical systems whose states are the estimates of the aforementioned variables. State dynamics may include a combination of: (i) ‘open-loop’ terms based on the equations of physics describing the behavior of the system; and/or (ii) ‘closed-loop’ terms that correct the dynamics based on the value of the measurements.
Disclosed herein is a soft-sensor system and method for drilling, comprising sensors for measuring operational parameters of a drill string, including detecting torque and angular velocity from a top drive, and incorporating a distributed model of the drill string with the Coulomb friction given as a source term implemented as an inclusion, where the states are propagated according to the Filipov solution [63]. The distributed nature of the model enables it to capture a large part of the possible dynamics for a significantly extended range of well lengths and surveys compared to the more standard lumped approximations. At the same time, the relative mathematical simplicity of the formulation, a one-dimensional (1-D) wave equation with a source term with ordinary differential equations (ODEs) as boundary conditions, enables the use of results from control theory to effectively derive a soft sensor as a Luenberger Observer. This soft sensor can in turn estimate dynamic and static friction factors as well as the distributed states of the system including drill string orientation and angular strain.
In accordance with the present disclosure, a soft sensor may utilize a distributed parameter model, i.e., a model described by a Partial Differential Equation (PDE) of a drill-string, with Coulomb stiction modeled as an inclusion, to estimate static and dynamic friction along the drill string and the angular displacement of the various drill string components. This method may initialize with the well plan (the wellbore survey) and the drill string configuration and then utilize real time sensed RPM and Torque from the top drive as inputs to an observer to provide an estimate of downhole behavior. The observer design may incorporate a backstepping observer design of a coupled ODE-PDE-ODE system and includes adaption to estimate the parameters of the Coulomb Stiction inclusion.
Without limitation, and in accordance with the present disclosure, the system and method for drilling may: estimate static and dynamic friction factors while drilling to help optimize the drilling operation, detect faults and unwanted incidents and aid on-site decision making; avoid or limit torsional oscillations; and, improve estimates of drill string orientation and the distribution of torque which may further enhance applications for directional drilling.
In a first embodiment of a model in accordance with the present disclosure, we use a model similar to the one proposed by Ulf Jakob F. Aarsnes and Ole Morten Aamo: Linear stability analysis of self-excited vibrations in drilling using an infinite dimensional model. Journal of Sound and Vibration, 360:239-259, January 2016. The main difference being that we only consider here the torsional dynamics.
Torsional Dynamics of Drill String
Table 1 identifies parameters used throughout the present disclosure. Table 2 identifies dependent variables used throughout the present disclosure. Table 3 identifies independent variables used throughout the present disclosure.
In an embodiment of the torsional dynamic model in accordance with the present disclosure, for the angular motion, we denote the angular velocity and torque as ω(t,x), τ(t,x) which are functions of (t,x) evolving in {(t,x)| 0<t<T, x∈[0, L]} (where L is the total length of the drill string and T a positive time), see
we have τ(t,x)=JG(ϕ(t,x)−ϕ(t,x+dx))/dx, where J is the polar moment of inertia and G is the shear modulus. Hence the equations for the angular motion are given by
where the source term is due to frictional contact with the borehole and is modeled as
S(t,x)=−ktρJω(t,x)−(ω,τ,x), (3)
where kt is a constant damping term representing the viscous shear stresses between the pipe and drilling mud, and (ω,τ,x) is a differential inclusion, that still has to be described, representing the Coulomb friction between the drill string and the borehole.
Discontinuities of a Multiple Sectioned Drill String
The lowermost section of the drill string is typically made up of drill collars which may have a great impact on the drill string dynamic due to their added inertia. In particular, the transition from the pipes to collars in the drill string will cause reflections in the travelling waves due to the change in characteristic line impedance.
We split the drill string into a pipe section with polar moment of inertia and lengths Jp, Lp and a collar section with the same parameters given as Jc, Lc. We use τ+,ω+ to denote the strain and velocity at the top of the drill collar and τ−, ω− at the bottom of the pipe, see
ω+=ω−, τ+=τ−. (4)
Coulomb Friction as an Inclusion
The Coulomb friction is modeled as an inclusion
where FN is the normal force acting between the drill string and the borehole wall, ωc is the threshold on the angular velocity where the Coulomb friction switches from static to kinetic, μs, μk are the static and kinetic friction factors, respectively. Here, we distinguish between the kinetic and static friction factors: Static friction is friction between two or more solid objects that are not moving relative to each other. Kinetic friction, also known as dynamic friction or sliding friction, occurs when two objects are moving relative to each other and rub together. The function (ω,τ,x)∈[−μsFN(x),μsFN (x)] denotes the inclusion where
and take the boundary values ±μsFN(x) if this relation does not hold. The normal force profile of the drill string should be obtained from an appropriate torque and drag model, see e.g. S. Menand. AADE-13-FTCE-21 Borehole Tortuosity Effect on Maximum Horizontal Drilling Length Based on Advanced Buckling Modeling, In AADE National Technical Conference and Exhibition, Oklahoma, 2013.
Boundary Condition
At the topside boundary, the top drive is actuated by a motor delivering a torque τm which we assume to be the control input. The topdrive has the inertia ITD and hence satisfies the dynamics
and finally, the angular velocity at the top of the drill string is equal the top drive velocity ω(t,x=0)=ω0.
Derivation of Riemann Invariants
The Riemann invariants of a Hyperbolic PDE are the states corresponding to a transformation of the system which has a diagonalized transport matrix, i.e. the system can be written as a series of transport equations only coupled through the source terms; see R. J. LeVeque: Finite volume methods for hyperbolic problems. Cambridge university press, 2002. On the set {(t,x)| 0<t<T, x∈[0, L]}, we define the Riemann invariants as
is the velocity of the torsional wave. This transformation enables us to rewrite (1)-(2) in variables α, β as the diagonalized PDE system
where the source term is defined by
where is the inclusion given in (5) (expressed as a function of α and β). In the Riemann coordinates, the boundary conditions (4) rewrite as follows
where we have denoted the relative magnitude of the impedance as
The boundary condition (7) rewrites
In the case of the same material being used at both sides of the discontinuity, the only change is in the polar moment of inertia. That is, for a pipe-collar sections of e.g. steel, we have, following
Note the meaning of (12)-(13) as reflections of incoming waves from both sides, as they are split into an upward and a downward traveling wave.
Upwind Scheme
In the numerical treatment of the model, is implemented as follows. For cell size Δx and and time step Δt, and at cell #j and time step #k
and limited by
The model is updated with an upwind scheme according to
Model Validity
Here, we briefly discuss the effectiveness of the present modeling approach by briefly considering the open-loop fit of the model to full scale field data shown in
In both the cases of
These fits were achieved by tuning the friction factors of the model to get the simulation results to match the data. The model is capable to replicate the full scale field dynamics in most cases when this tuning is good. The goal of the present paper is to obtain an automated algorithm, the adaptive observer (a.k.a. soft sensor), which performs this tuning online. The design and testing of this adaptive observer is done in the following.
Semi-Lumped Approximation
In this section we derive a model for observer design by using a lumped approximation of the drill collar section. This amenable model approximation will be used for the observer design.
Lumped BHA
The approximation entails lumping the effect of the source term (11) into the lumped dynamics of the BHA. This is a reasonable approximation for many drill-strings as much of the torque acting on the drill string will come from stabilizers located in, or close to, the BHA; see U. J. F Aarsnes, F. Di Meglio, and R. J. Shor. Avoiding stick slip vibrations in drilling through startup trajectory design; Journal of Process Control, 70:24-35, October 2018. The inertia of the lumped BHA is
I
BHA
−ρL
c
J
c, (22)
and hence the angular velocity of the BHA is governed by
where d(t) accounts for the now lumped effect of the distributed source term, i.e.:
d(t)≈∫0LS(ω,x). (24)
Here, (24) is meant for illustration and is not used directly. When we later employ the flat formulation, facilitated by this approximation, for estimation d(t) will be treated as an uncertain disturbance.
Using this lumped approximation of BHA, we obtain what we will refer to as the semi-lumped formulation, given by the distributed wave-equation for the pipe section
defined on {(t,x)| 0<t<T, x∈[0, Lp]} with the boundary conditions ωp(t, x=0)=ω0, ωp(t, x=Lp)=ωLp governed by
The fit of this approximation and how to quantify any resulting error is discussed in U. J. F Aarsnes, F. Di Meglio, and R. J. Shor; Avoiding stick slip vibrations in drilling through startup trajectory design. Journal of Process Control, 70:24-35, October 2018.
In Riemann Invariants
Using the Riemann Variables (α,β) as states, the semi-lumped system (25)-(28) defined on {(t,x)| 0<t<T, x∈[0, Lp]}, rewrites:
with the boundary conditions
where the frequency constants given as
They are expressed in seconds' and they respectively represent the inertia of the top-drive and BHA, relative to the line impedance of the pipe section of the drill string
The solution to (29)-(30) can be written as the delay equations:
αp(t,x=Lp)=αp(t−tD,x0) (35)
βp(t,x=0)=βp(t−tD,x=Lp), (36)
where tD=Lp/ct. Thus, we note that this system is characterized by three time constants
1/a0: Top drive time constant.
1/aL
tD: Drill string travel time.
Soft Sensor (Observer) Design
The core of the approach is a ‘soft-sensor’ combining measurements from physical sensors with a model of the system dynamics to provide estimates of states and side-forces. The soft-sensor is based on an observer algorithm. Observers are dynamical systems whose states are the estimates of the aforementioned variables. The observer state dynamics are a combination of
The task of design an observer is to engineer the combination of ‘open-loop’ and closed-loop correction terms. Often, the correction terms are linear function of the estimation error of the measured states. These correction terms are then used to update the estimated states as new measurement data become available. In our case, they appear in the observer dynamics as spatially-varying and lumped gains called observer gains. We will use the specific observer gains using a backstepping method which guarantees fast and robust convergence of the estimates assuming the model is correct. More precisely, a proof of asymptotic convergence of the estimates to the true states can be found for the linearised dynamics, i.e. close to the constant homogeneous velocity profile.
The soft sensor is adaptive in that it estimates the side forces and then updates the observer model kinetic or static friction factor iteratively for each time step depending on if the drill string BHA is stuck or sliding. The algorithm presented here is not able to simultaneously update the transition velocity ωc in (5), hence this value has to be fixed. We remark that it is known that this transition velocity can have a significant impact on model behavior in some cases, which might limit the performance of the proposed algorithm.
Observer System Equations
The observer equations are given as a copy of the plant equations plus the correction terms. The measured output of the system corresponds to the top drive angular velocity ω0.
We denote an estimated variable with the “{circumflex over ( )}” superscript. We define the measured estimation error as: e={circumflex over (ω)}0−ω0.
In the following pα(⋅), pβ(⋅), p0, p1, P0, P1, ls and lk denote the observer gains, which still have to be defined. The estimation of the top drive angular velocity is given by
For the pipe section, the estimation of the Riemann invariant is given by
For the collar section, the estimation of the Riemann invariant is given by
Finally, the boundary conditions are
The source term in each section are computed from the estimated states and friction factors
where (t,x) is the inclusion given in (5), and the estimates of the friction factor is updated according to
Finally, the following saturation is used to improve robustness of the method:
{circumflex over (μ)}s=max({circumflex over (μ)}s,{circumflex over (μ)}k). (49)
The initial condition of (37)-(45) can be arbitrarily chosen.
Semi-Lumped Approximation and Error System
We want to design the observer gains using the approach proposed in F. Di Meglio, P.-O. Lamare, and U. J. F. Aarsnes. Robust output feedback stabilization of an ODE-PDE-ODE interconnection; Submitted, (October):1-11, 2018, to ensure the convergence of the observer state (solution of (37)-(45)) to the real state (solution of (9)-(15)). To do so, we need to rewrite the observer system in a suitable form (i.e. without the inclusion). This is done using the lumped approximation of the drill collar section introduced elsewhere in the present disclosure. More precisely, the observer dynamics (37)-(45) can be rewritten
with the boundary conditions
{circumflex over (α)}p(t,0)=2{circumflex over (ω)}0(t)−{circumflex over (β)}p(t,0)−P0e, (54)
{circumflex over (β)}p(t,Lp)=2{circumflex over (ω)}L
The term {circumflex over (d)} accounts for the now lumped effect of the distributed source term (obviously depending on the expression given in (46)). For the design of observer gains, we consider the term d as a constant lumped disturbance, normalized by
(thus, {circumflex over (d)} is also assumed to be constant). Subtracting system (29)-(75) from system (50)-(55) and denoting the error variables with the {tilde over (⋅)} superscript (i.e {tilde over (α)}p={circumflex over (α)}p−αp for instance), we get the following error system
with the boundary conditions
{tilde over (α)}p(t,0)=2{tilde over (ω)}0(t)−{tilde over (β)}p(t,0)−P0e, (61)
βp(t,Lp)=2{tilde over (ω)}L
Control Dual Problem
The backstepping approach proposed in F. Di Meglio, P.-O. Lamare, and U. J. F. Aarsnes. Robust output feedback stabilization of an ODE-PDE-ODE interconnection; Submitted, (October):1-11, 2018, provides an explicit method to design a robust output feedback boundary control law for an ODE-PDE-ODE interconnection. However, it has been proved in J. Auriol and F. Di Meglio. Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes, IEEE Trans-actions on Automatic Control, 63(8):2421-2436, 2018, that the gains of such a control law correspond to the gain of the observer of the dual problem (this has actually been proved in the case of a system of n+m PDEs, but the proof can be easily adjusted to an ODE-PDE-ODE interconnection). More precisely, adjusting the methods proposed in J. Auriol and F. Di Meglio, Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes, IEEE Trans-actions on Automatic Control, 63(8):2421-2436, 2018, we can prove that the system (56)-(62) has the same stability properties as those of the system defined on {(t,x)| 0<t<T, x∈[0, 1]} by
with the boundary conditions
This new system (which is the adjoint of (56)-(62)) has exactly the structure which is considered in J. Auriol and F. Di Meglio, Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes. IEEE Trans-actions on Automatic Control, 63(8):2421-2436, 2018. This immediately gives us the expression of the observer gains (we choose to not rewrite them here for sake of clarity). More precisely, these observer gains only depends on three tuning parameters (namely, η1, z and p) that can be tuned to shape the observer top-side reflection and place the poles of the down-hole “error system”. Considering the adaptive update law, the gain lk, is derived from the observer assuming a constant lumped disturbance, and then normalized by
The gain for the update law of the static friction factor is then chosen to be two times this ls=2lk. With these gains we can ensure the convergence of the observer states to the real states in presence of a constant disturbance. One must be aware that this assumption is only an approximation and does not hold in the real case. However, due to the robustness properties of the observer, we can still have the convergence of the different states to their real values when considering the real inclusion term. Considering the estimations of the friction terms, we do not have any guarantee of convergence, but, due to the robustness properties of the observer, they should converge close to the real friction terms. This is experimentally validated in the next section.
Field Application
The observer detailed in the previous section may be used to provide online parameter estimation for the friction parameters of the drillstring model presented above can also be used as a method to estimate BHA rotation and torque. This can be of particular usefulness in directional drilling scenarios where real-time estimation of tool face angle—BHA angular orientation—is essential, and in feedforward stick-slip mitigation systems.
The envisioned industrial implementation of the estimation algorithm is briefly described in this section. The flow of data is show in
Output of the estimation algorithm may include an estimate of the drillstring state as a function of measure depth, and a time series of the friction coefficient, estimated drillstring twist and the soft sensor (observer) gains.
We now consider a test of the estimation algorithm (37)-(48). We want to evaluate the real time estimation of the friction coefficients and of the BHA and top drive rotation in two different situations: (1) comparison against a simulation model (2) comparison against field data. In each situation, we run the observer using high frequency measurements (100 Hz) but also downsampled 5 Hz and 1 Hz measurements. These examples are of particular note since a majority of supervisory control systems currently deployed on drilling rigs in the field operate at 5 to 10 Hz.
Test Against Simulation Model
We test our observer against the simulation model with the wellbore survey shown in
The kinetic friction is chosen to be equal to 0.187, while the static friction is chosen to be equal to 0.6 which is similar to values reported using traditional friction tests in the field. The well represents a simple build and hold well used throughout the world.
We have pictured in
We have pictured in
Test on Field Data
We now test our observer against field data obtained from an onshore well with the wellpath shown in
We have pictured in
Tracking and Control
Model for Control Design
To simplify analysis and controller design, it is an amenable approximation to represent the BHA section of the drill string, including the collar section, as a single lumped inertial element. The inertia of the lumped BHA is
I
BHA
=μL
c
L
c (70)
Now, we define the frequency constants
both with dimensions seconds−1, representing the inertia of the top-drive and BHA, respectively, relative to the line impedance of the drill string ζp. Then, we will express the solution of (9)-(10) as delay equations. This approximation entails lumping the effect of the source term (11) into the lumped dynamics of the BHA. This is a reasonable approximation for most drill-strings as much of the torque acting on the drill string will come from stabilizers located in, or close to, the BHA. The delay equations write:
αL(t)=α0(t−D), β0(t)=βL(t−D). (71)
where D=Lp/ct. The semi-lumped approximation of the dynamics then writes as
We note that this system is characterized by the three time constants
1/a0: Top drive time constant.
1/aL: BHA time constant.
D: Drill string travel time.
Control Architecture
The control signal is composed of three terms:
τmm=uc+uf+ud, (76)
where uc(t)=−(C*(ωSP−ω0))(t) is a feedback term, uf is a feed-forward term to ensure tracking and ud=(D*{circumflex over (d)}) a disturbance canceling term, with the controller impulses C(t), D(t) to be designed. This conforms to a canonical 3DOF controller architecture, see
Baseline Feedback Control: SoftSpeed/SoftTorque
The current industry standard in handling torsional vibrations are the two products NOV's SoftSpeed (A. Kyllingstad, P. J. Nessjøen, A new stick-slip prevention system, Proc. SPE/IADC Drill. Conf. Exhib. No. (2009, March) 17-19.) and Shell's SoftTorque (S. Dwars, Recent advances in soft torque rotary systems, in: Proc. 2015SPE/IADC Drill. Conf. No., London, United Kingdom, 2015, March, pp. 17-19.) The essential approach of all solutions is to reduce the reflection coefficient at the top drive in a certain key frequency range.
Assuming for the moment a constant set-point, and defining the controller transfer function
we obtain the relation:
while the topside reflection coefficient is given as:
Typically, a PI or PID controller is employed, that is, on the form
τm=Kpe+Ki∫0te(ξ)dξ+Kdė (79)
e=ω
TD−ωSP, (80)
This results in the feedback relation
that is
where-from we see that impedance matching (R≈0) is obtained with the tuning:
The problem with this approach is that −Kd>ITD leads to instability, while −Kd<ITD rapidly degrades performance. Furthermore, the high Kd term leads to excessive noise sensitivity. The approach of Softspeed is to remove the negative integral-action altogether, set the proportional action to
K
p=4ζp, (83)
and then tune the integral gain according to
K
i=(2πfc)2ITD2, (84)
where fc is the frequency (in Hertz) where the minimum of R(ω) is achieved.
For the PID controller, minimum of the reflection coefficient is obtained at
In the following we will use the SoftTorque-like controller, (83),(84) as our baseline controller, as this type of controller is the most widely used of the stick-slip mitigating controllers in the field. It is worth noting that the industry standard controller that is most often used is a high gain PI control to ensure rapid tracking of the top drive set-point. We will also consider this kind of controller for comparisons and will in this case use the gains
K
p=100ζp, Ki=5ITD. (86)
Disturbance Cancellation
Note from (72)-(75) that the down-hole velocity ωL, which is what we want to control and keep constant, is the signal α0 delayed and low-pass filtered. Hence, ωL can be controlled by controlling α0. We have
Hence, to try to cancel the effect of the disturbance, we will use the disturbance canceling term
where {circumflex over (d)} is an estimate of the disturbance.
This disturbance canceling term results in the following contribution to the top drive velocity set-point
Estimating the Disturbance Magnitude
The disturbance will be assumed to take the form of a Heaviside step function acting the instant the BHA releases from the stick phase. Hence, the task of estimating the disturbance equates to estimating the offset time and magnitude of this function. Considering the case of a stick slip limit cycle being initiated for a industry standard high-gain PI controller, the controller keeps the topdrive angular velocity ω0 approximately constant, while the changes in motor torque τm is due to the disturbance, see
Hence, considering the field data of
Alternatively, if the dry and sliding friction coefficient of the drill-string-wellbore interface is known, a disturbance magnitude estimate could be computed directly from a torque and drag model of the well.
Tracking
In this Section, we take advantage of the flatness property of the system to solve the trajectory planning problem. Recalling the semi-lumped delay formulation of the model (72)-(75), and writing the flat output z(t)=ωL(t), the flatness of the system allows us to write the other variables as functions of z and its derivatives:
α0=z(t+D)+ż(t+D)/aL (93)
β0=z(t−D)−ż(t−D)/aL (94)
αL=z(t)+ż(t)/aL (95)
βL=z(t)−ż(t)/aL (96)
Thus the feed-forward tracking contribution to the top drive set-point becomes
while the actuation contribution term is
Plugging a reference trajectory zref (t) into (97), (98) yields the associated feed-forward control law F.
We will use a mollifier (semi-analytical function) to construct transition trajectories that are booth smooth, and have vanishing derivatives at the end and start points. Specifically we use the integral of the “bump” function as a smooth approximation of the step function with vanishing derivatives:
u
m(t)=∫0tϕ(ξ−1)dξ (99)
where the bump function is given as
This mollifier step function and its derivatives is illustrated in
The resulting feed-forward terms are illustrated in
Simulations
We will argue for the benefit for each of the three components of the control design by considering a series of simulations showing their impact on the dynamics.
Free Drill String
To highlight certain features of the model dynamics, we initially consider the case of a drill string spinning freely with a uniform velocity of 60 RPM and then change the velocity set-point. We will consider the three cases
while for case c) Eq. (102) is used as the desired trajectory zref to generate the set-point and actuation contributions ωf and uf according to (97) and (98).
The simulation results are shown in
Stick Slip
Next we consider a rotation startup such as is required after each pipe connection procedure while drilling a well. In this scenario the stationary drill string is initially kept in place by the Coulomb friction until enough torque is built up to overcome it. At which point, pipe-rotation is initiated and the Coulomb friction is reduced as it changes from static to dynamic. The resulting release of the stored energy potentially pushes the drill string into a destructive stick slip limit cycle. Field data examples of this is shown in
This stick slip limit cycle behavior is considered a significant problem in drilling and was the chief motivation for the development of the SoftSpeed/Torque controllers. Indeed, the SoftSpeed/Torque controllers work for certain cases, and it is not difficult to construct parameter sets where using only this feedback is sufficient for avoiding stick slip. However, the reason this topic is still an area receiving significant ongoing research interest is that the SoftSpeed/Torque controllers are often insufficient to avoid stick slip, which is indeed the case here as well, see
The novel approach proposed in the present paper is to handle the reduction between static and dynamic Coulomb friction as a disturbance that is estimated from previous startups and then canceled with the feed-forward disturbance canceling term derived above. The timing of this approach is summarized in
The result of this approach is shown in
Effect of Torque Constraints
In field scenarios, the amount of power available to the rig—due to a constraint in on-site generating capacity—or presence of torque limiters in the top drive controller will set a maximum torque constraint. On typical AC top drives, torque is proportional to electric current, and a large increase in current may cause a power overload. Similarly, a large increase in torque may also exceed the torque limits on gearing or other components in the top drive or near-surface rotary equipment. This constraint on motor torque can limit the effectiveness of the feedforward disturbance canceling part of the controller. This is illustrated in
Robustness Analysis
Since the approach is based on employing the estimate of the the disturbance, {circumflex over (d)}, which is not a-priori known, it is of interest to gage to what degree uncertainty in this estimate can be tolerated. Towards this end, a comprehensive sensitivity study has been carried out where various timings tτ and magnitudes |{circumflex over (d)}| of the disturbance estimate was repeatedly used for the same start-up to find the required total transition time tτ+tsd, see
We see that the least amount of total transition time is required around the |{circumflex over (d)}|=12 kNm, tτ=tD=0.81, which corresponds to the magnitude and timing that was computed a priori. Further, we note that a great deal of uncertainty is allowed by the approach when the transition time is allowed to be sufficiently large, in this case ttt≈0 30-35 seconds of total transition time enables us to avoid stick slip even for a very-wide range of disturbance estimates.
We conclude from the robustness analysis that there is a trade-off between performance, parametrized in total transition-time ttt, and robustness, parametrized in allowable uncertainty in {circumflex over (d)}. And, that if a sufficient lenient total transition-time ttt is chosen, the proposed approach is robust to the aforementioned uncertainties.
Error of Lumped Approximation
We will derive the input-output description of the drill string between the input ω0 and the output τ0, without the top-drive (as it acts as a lowpass filter masking the approximation error). Denote this transfer function
For a two-section drill string, ignoring the non-linear part of the source term, it can be found that:
and with the load impedance ZL=0 for the case of bit off bottom.
Now consider the following approximation of the two-section drill string, where the collar section has been lumped into a single inertia element:
This approximation is shown in
The fit is good for lower frequencies, but becomes gradually worse for very high frequencies, which is what we would expect from a lumped approximation.
The system of
The system of
The control signal can be any suitable type of electrical signal. The drill string controller 108 can include any suitable type of circuitry configured to receive sensor signals from the sensors 98, 100 and 102 and any suitable type of circuitry to generate the control signal to control the top portion of the drill string 96. As will be understood by the skilled worker and even though not shown, one or more than one motor configured to rotate the drill string is operationally connected to the top of the drill string and the control signal can control the one or more than one motor, and; there can be additional sensors connected to the drill string, at any portion of the drill string, to measure drill string variables along the length of the drill string. In some embodiments, the control signal can include an optical control signal and the drill string controller can include circuitry to generate the optical control signal. In such embodiments, the top portion of the drill string can be configured to receive the optical control signal and to convert the optical control signal into an electrical signal to control one or more than one motor configured to rotate the top portion of the drill string. As will also be understood by the skilled worker, the present disclosure does not exclude the presence or use of any suitable, known drilling equipment in the practice of the present disclosure.
In the preceding description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the embodiments. However, it will be apparent to one skilled in the art that these specific details are not required. In other instances, well-known electrical structures and circuits are shown in block diagram form in order not to obscure the understanding. For example, specific details are not provided as to whether the embodiments described herein are implemented as a software routine, hardware circuit, firmware, or a combination thereof.
Embodiments of the disclosure can be represented as a computer program product stored in a machine-readable medium (also referred to as a computer-readable medium, a processor-readable medium, or a computer usable medium having a computer-readable program code embodied therein). The machine-readable medium can be any suitable tangible, non-transitory medium, including magnetic, optical, or electrical storage medium including a diskette, compact disk read only memory (CD-ROM), memory device (volatile or non-volatile), or similar storage mechanism. The machine-readable medium can contain various sets of instructions, code sequences, configuration information, or other data, which, when executed, cause a processor to perform steps in a method according to an embodiment of the disclosure. Those of ordinary skill in the art will appreciate that other instructions and operations necessary to implement the described implementations can also be stored on the machine-readable medium. The instructions stored on the machine-readable medium can be executed by a processor or other suitable processing device, and can interface with circuitry to perform the described tasks.
The above-described embodiments are intended to be examples only. Alterations, modifications and variations can be effected to the particular embodiments by those of skill in the art. The scope of the claims should not be limited by the particular embodiments set forth herein, but should be construed in a manner consistent with the specification as a whole.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2019/050655 | 5/15/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62671742 | May 2018 | US |