1. Technical Field
This invention relates to remote sensing in general, and particularly to systems for determining the ocean's surface velocity based on changes in sea surface temperature from satellite-based thermal imagers.
2. Background Technology
Imaging of the world's oceans from space provides large-area synoptic views, and sequential images of the same scene allow us to calculate sea surface velocities. These two-dimensional velocity fields can be very useful in understanding the dynamics of the ocean. Researchers have employed a number of schemes to calculate sea surface velocities from Sea Surface Temperature (SST), but perhaps the two that have received the most widespread use are the Maximum Cross Correlation (MCC) technique of Emery et al. “An Objective Method for Computing Advective Surface Velocities from Sequential Infrared Satellite Images”, J. Geophys. Res., Vol. 91, pp. 12865-12878, 1986, and the heat equation INVerse model (INV) described in Kelly, K. A., (1989), “An Inverse Model for Near-Surface Velocity from Infrared Images”, J. Phys. Ocean., Vol. 19, pp. 1845-1864, 1989 and in Kelly, K. A., and P. T. Strub, “Comparison of Velocity Estimates from Advanced Very High-Resolution Radiometer in the Coastal Transition Zone, J. Geophys. Res., Vol. 97, pp. 9653-9668, (1992).
The INV model has also been used to infer the properties of the ocean surface mixed layer. For example, Ostrovskii and Piterbarg have inverted an advection-diffusion equation for the upper ocean mixed layer in different areas of the Pacific Ocean for velocity, as well as vertical mixed layer entrainment velocity and horizontal diffusivity, as described in A. Ostrovskii and L. Piterbarg, “Inversion for Heat Anomaly Transport from Sea-Surface Temperature Time-Series in the Northwest Pacific, J. Geophys. Res., Vol. 100, pp. 4845-4865, (1995) and in Ostrovskii AG, L. I. Piterbarg, “Inversion of Upper Ocean Time Series for Entrainment, Advection, and Diffusivity”, J. Phys. Ocean., Vol. 30, pp. 201-204, (2000).
In Vigan, X., C. Provost, R. Bleck, and P. Courtier, (2000), “Sea surface velocities from sea surface temperature image sequences 1. Method and validation using primitive equation model output”, J. Geophys. Res., 105, 19499-19514 and Vigan. X. et al., “Sea Surface Velocities from Sea Surface Temperature Image Sequences 2. Application to the Brazil-Malvinas Confluence Area”, J. Geophys. Res., 105, 19515-19534. (2000), model-generated data is used to demonstrate the method in the Brazil-Malvinas confluence region. In Zavialov, P. O. et al., “An Inverse Model for Seasonal Circulation over the Southern Brazilian Shelf: Near-Surface Velocity from the Heat Budget,” J. Phys. Ocean., 28, 545-562, 1998, a similar calculation was performed for the same region using sea surface temperature mapped from in-situ measurements.
An aspect of the invention is directed to a computer based method for estimating surface velocity based on a time series of at least two images of a same portion of the ocean surface, with a heat equation having unknown parameters being a heat source term s, an x-component of the surface velocity, and a y-component of the surface velocity. The method includes assigning a pattern of sub-arrays with a number of pixels in each sub-array, the number of pixels in each sub-array being at least as large as the product of the number of unknown parameters in the heat equation times the number of corner pixels in each sub-array. For each sub-array, the unknown parameters for each interior pixel are defined using bilinear interpolation based on the adjacent corner pixels. The method also includes using linear regression to solve for the unknown parameters u, v, and s for each corner pixel by minimizing total error of the heat equation in finite difference form at all pixels.
A computer based method for estimating velocity based on a time series of at least two images of a same portion of the ocean surface, with an optical flow equation having unknown parameters including an x-component of the surface velocity and a y-component of the surface velocity includes assigning a pattern of sub-arrays with a number of pixels in each sub-array, the number of pixels in each sub-array being at least as large as the product of the number of unknown parameters in the heat equation times the number of corner pixels in each sub-array. For each sub-array, the unknown parameters for each interior pixel are defined using bilinear interpolation based on the adjacent corner pixels. The method includes using linear regression to solve for the unknown parameters u and v for each corner pixel by minimizing total error of the heat equation in finite difference form at all pixels.
A computer readable medium including programmed instructions stored thereon, said instructions configured for estimating surface velocity based on a time series of at least two images of a same portion of the ocean surface, with a heat equation having unknown parameters being a heat source term s, an x-component of the surface velocity, and a y-component of the surface velocity. The instructions are for instructions for assigning a pattern of sub-arrays with a number of pixels in each sub-array, the number of pixels in each sub-array being at least as large as the product of the number of unknown parameters in the heat equation times the number of corner pixels in each sub-array. For each sub-array, the unknown parameters for each interior pixel are defined using bilinear interpolation based on the adjacent corner pixels. The instructions also are for using linear regression to solve for the unknown parameters u, v, and s for each corner pixel by minimizing total error of the heat equation in finite difference form at all pixels.
The images can be thermal imagery, in an infrared wavelength, or in other types of imagery. One source of thermal imagery is Advanced Very High Resolution Radiometer (AVHRR) image sequences.
The thermal imager carried by a satellite captures sequential images of the same portion of the ocean surface. The satellite can capture an image as it passes over the portion of the ocean surface, and on the next passage over the same portion of the ocean surface, capture a second image. Alternatively, if the satellite is in geostationary orbit, the imagery can be captured at a desired interval between images. The thermal images will have an intensity for each pixel, which represents the sea surface temperature at that pixel. An initial step of the method is receiving 110 the imagery sequence.
Direction and amplitude of the surface velocity is determined based on an image sequence of the sea surface, as described below.
The evolution of the temperature field in a three-dimensional (3D) ocean is governed by the heat equation
where r=(x, y, z) is a position vector, T=T(r,t) is the temperature field, v=v(r,t)=(u, v, w) is the velocity, and κ is a diffusion coefficient. In the near-surface mixed layer, the variable S=S(r,t) is a source term containing the effects of air-sea interaction and turbulent processes within the mixed-layer. In this region, the flow is generally modeled as depth independent or locally barotropic, so that an integral over the mixed-layer depth h of Eq. (1) yields
T
t
+uT
x
+vT
y
=s, (2)
where now, T and (u, v) are functions of only x and y. The term T may thus be viewed as the Sea Surface Temperature (SST). The term s contains the depth-integrated (and unknown) meteorological forcing and mixed layer entrainment terms (see, e.g., Frankignoul, 1985; Ostrovskii and Piterbarg, 1995), and is given by
Additional information on the source term s is found in Frankignoul, C., “Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes”, J. Geophys. Res., Vol. 23, pp. 357-390, 1985 and in A. Ostrovskii and L. Piterbarg, “Inversion for Heat Anomaly Transport from Sea-Surface Temperature Time-Series in the Northwest Pacific, J. Geophys. Res., Vol. 100, pp. 4845-4865, (1995).
The influence of horizontal diffusion can be neglected, as it is usually an order of magnitude less than the advective acceleration term.
The temporal and spatial derivatives of the SST fields in equation (2) can be calculated from the temperature fields on the thermal images. The problem is considered under-determined, however, because three unknowns (u, v, and s) must be derived from a single conservation statement (2) at each of these pixel points.
One way to address the mismatch between the number of unknowns and conservation statements has been to represent the velocity field with a two-dimensional truncated Fourier series is shown in Kelly, K. A., (1989), “An Inverse Model for Near-Surface Velocity from Infrared Images”, J. Phys. Ocean., Vol. 19, pp. 1845-1864, 1989. Kelly further constrained the solution to the heat equation by generating a cost function with divergence, vorticity, and energy norms. This strategy results in an over-determined system, which can then be solved by a least-squares method. Another approach has been to combine a finite element method and a variational approach to solve the problem, as discussed in Vigan, X., C. Provost, R. Bleck R, and P. Courtier, (2000), “Sea surface velocities from sea surface temperature image sequences 1. Method and validation using primitive equation model output”, J. Geophys. Res., 105, 19499-19514 and Vigan. X. et al., “Sea Surface Velocities from Sea Surface Temperature Image Sequences 2. Application to the Brazil-Malvinas Confluence Area”, J. Geophys. Res., Vol. 105, pp. 19515-19534, (2000).
It is noted that the distance the isotherms are advected by currents between two consecutive observations can be several pixels wide, so only current velocities having spatial scales of variation greater than several pixels can be resolved from SST motion. The velocity variation over several pixels may thus be represented by low-order polynomials. A low-order polynomial representation of the velocity variation over several pixels can be used to obtain an over-determined set of heat equation constraints for the unknown velocity and sources without resorting to additional constraints.
Referring next to
In
Any bilinear function ƒ(x, y) may be represented over a sub-array in terms of its corner points (xp,yq) by
Similarly, the terms s, u, and v can be written as
where Xi j p q is a two-dimensional bilinear Lagrange polynomial interpolation formula defined by
where i and j are pixel indices over the entire image scene,
are knot indices, where [ ] denotes an integer operator, and n−1 is the number of interpolation points between two knots.
The heat equation (2) can be written in finite difference form for all image pixels {i, j} as
which can be written in more compact form as
in which the row and column indices {p, q} have been converted to the sequential vector index α, and aα and Bαij are defined as
This step is shown at
Equations (7) or (8) each have three unknown parameters for each of the independent knots in the sub-array. For example, the three unknown parameters in Equation (7) are the source parameter Si
As another example, for a sub-array with N=4 (n=4), the number of unknown parameters for the sub-array is 12, and the number of equations is 25. Since the number of equations is greater than the number of unknowns, this system is over-determined.
If the sub-array had N=3 (n=2), the number of equations would be 9. Since the number of equations would be less than the number of unknowns, the system would be under-determined.
The over-determined system of equation (7) or (8) can be solved by a least-squares method on a square pixel sub-array if the number of unknown parameters, 3×NL, is less than the number of equations, or (n+1)2. Since NL=4, the condition that we have an over-determined system is satisfied for n≧3, which has important implications for the minimum resolvable velocity structure using GOS. When n=3,
Thus, referring again to
As discussed in further detail in later paragraphs, the optimum accuracy is not achieved unless the scale of the velocity structure is greater than V·Δt, where V is the velocity amplitude and Δt is the time interval between images.
Just as in
The pixel sub-arrays can be assembled to form an arbitrary shape, in which a linear equation system with unknown variables aα at knot points can be solved uniquely if the total number of pixels in the selected area is greater than the total number of aα times the total number of knots (NL). In this example, the number of unknown variables is 3 (u, and v, and source term s).
The two-dimensional bilinear Lagrange polynomial function of equation (6) is written as in a form compatible with Eq. (8) as:
The function blocks (Xijpq) define a window within a local area (separated by dashed lines 351, 352, 353, 354, 355, 356, 357, 358, and 359) as shown in
where the index α extends over all the sub-array corner pixels (knots) in the image.
As shown in
A chi function χ2 expresses the error in fitting a set of aα to the data, and is defined by
where N1 and N2 the total number of selected indices (i.e., where there exist actual data points as seen in
A global optimal solution is obtained by minimizing χ2 with respect to the aα and noting that ∂(aαBα i j)/∂aβ=Bβ i j. This minimization procedure is a linear regression problem, which results in the following linear system of equations for the matrix a(≡aα):
a=L−1b (14)
where
L is a NT×NT matrix, and b is a NT dimensional vector. Since NT is dependent on the number of pixels for a particular image pair and the number of interpolation points, NT will normally be on the order of hundreds to thousands. An inversion of the heat equation thus becomes a global linear optimization problem, and a velocity field and pseudo-sources on knots can be obtained over the whole image by solving the linear system of equations for the matrix a (Equation 14).
Thus, at step 122 of
At step 124 of
A velocity field plot can be generated at step 126 of
This method can also be used to solve an optical flow equation having a form similar to Equation (1), (7), or (8). In the optical flow equation, the source term can be set equal to zero, with the equation being solved for two unknown parameters u and v. Alternatively, the source s can be non-zero, with the equation being solved for the three unknowns u, v, and s, with the source term s representing light or illumination changes between different images, or another variable.
To assess the ability of the present method to obtain surface velocities, the solution of a numerical model can be used as a benchmark, with a surface tracer field as an initial condition. Next, invert the evolving tracer field for velocity, and compare these derived velocity fields directly with the known model velocity fields. This approach also allows the addition of a known amount of noise to the model tracer fields to determine how robust the GOS technique would be in yielding velocity fields from noisy image data. This solution is also used to compare the accuracy of the result to that of a velocity field from the MCC approach. For the model benchmark test, S≈0, and consider the inversion for u and v only; i.e., α=1, 2.
A simulated flow field and its advection of sea surface temperature are obtained by solving the following 3D nonlinear fluid dynamical equations and the equation for the tracer (e.g., the temperature). The temperature T can treated simply as a passive tracer with a weak diffusivity added for numerical stability for the purpose of testing the model. The equations are
where the velocity vector is v=(u, v, w) in the Cartesian coordinate system; the Coriolis frequency is ƒ=(0,0, 8.76×10−5)/s; the gravitational vector is g=(0,0, 9.8) m/s2; P is the pressure divided by density (assumed constant), v is the eddy viscosity, and κ is the eddy diffusivity. The subscript, H, denotes the horizontal components of the velocity vector and ∇ is the gradient vector. Use the solution procedure of Shen, C. Y., T. E. Evans, R. P. Mied, and S. R. Chubb, “A velocity projection framework for inferring shallow water currents from surface tracer fields”, Cont. Shelf Res., Vol. 28, pp. 849-864, 2008, based on a pseudo-spectral calculation. The 3D domain of this model has a rigid flat surface at the top and bottom and open periodic boundary conditions on the four sides. The horizontal dimension of the model domain is L=50 km. The depth of the domain is 30 m, and the horizontal resolution (0.521 km) results from an evenly spaced grid with 96 points on each side. In the vertical direction, a 25-point cosine grid is used, which has a variable spacing from 0.128 m near the surface to 1.96 m at the mid-depth. The horizontal diffusivity of T is 1.904×10−2 m2/s. The horizontal eddy viscosity for velocity is 1.904×10−2 m2/s and the vertical is 5.96×10−2 m2/s.
The initial T field has the functional form T=T0 sin(2πx/L)sin(2πy/L) prescribed at the top surface, and its motion is governed only by the surface components of the evolving 3D velocity field. Similarly, the initial velocity field is defined in terms of the first three Fourier components (i.e., 2π/L, 4π/L, and 6π/L), but each of these are uncorrelated in phase. This flow, governed by the above fluid dynamical equations, is allowed to evolve freely without forcing.
The inversion of the simulated SST for surface flow is performed using the global optimal solution method of
The three velocity vector fields in
Another indicator of the velocity retrieval fidelity is the root mean square error (RMSE) between the GOS (or MCC) and modeled velocity fields. We define this to include a comparison between both velocity components:
where (ui, vi) come from either the GOS or MCC and (ûi, {circumflex over (v)}i) are velocity components from the numerical model. The RMSE is a function of the number of interpolation points n. As the tracer evolves, however, we anticipate that another effect may come into play. The initial tracer distribution (T=T0 sin(2πx/L)sin(2πy/L)) has only four closed cells in the L×L computational domain, while the pattern at 18 hours (
We investigate the sensitivity of this n dependence and the effect of the filter in
The root mean square error (RMSE) that results from applying velocity inversions using GOS unfiltered and filtered methods, and from applying a Maximum Cross Correlation (MCC) technique described in Emery et al. “An Objective Method for Computing Advective Surface Velocities from Sequential Infrared Satellite Images”, J. Geophys. Res., Vol. 91, pp. 12865-12878, 1986, at a time interval of 2 hours are shown in
These curves can also be used to optimize the appropriate values for the time interval Δt and for n. By comparing the RMSE values for a particular value of n in
The GOS curves of
The autocorrelation surface as a function of x and y for the tracer patterns in
An important issue in applying the GOS method to actual Advanced Very High Resolution Radiometer (AVHRR) images is the ability of the technique to deal with image noise. In order to assess this quantitatively before applying the GOS technique to actual AVHRR images, white noise is added to the computed tracer by adding a random number Ri j in the range min {Tij}≦Ri j≦max {Tij} to the tracer value Ti j at each point, so that the simulated noisy tracer field becomes Ti j+rRi j, where r is 0.05 and 0.10.
In an exemplary embodiment, the GOS method of
As one example, a velocity field is derived from five NOAA satellite images of the New York Bight, east of the New Jersey coast and south of Long Island, N.Y. taken on Feb. 28, 2004 at times ti=11:13, 14:36, 16:15, 19:02, and 22:32 UT, respectively. Velocities are calculated each of the four image pairs at contiguous times. The pixel resolution for the images is 1.15 km in the north-south and east-west directions. The temporal separations between images are thus Δti≡ti+1−ti=3.383 h, 1.650 h, 2.783 h, and 3.500 h, respectively. Note that these time periods are not very different than the two hour and four hour time intervals considered above. We examine the results over the New York Bight for the pair with the largest temporal separation (3.5 h), and then compare the details of the flows and statistical results of all four velocity fields in the smaller region where corroborating shore-based Doppler radar coverage exists.
While evidence of organized flows is clearly evident, it is also possible to make a detailed comparison between the derived GOS and MCC velocity fields and a “ground truth” realization of the same velocity field obtained from the Rutgers University Coastal Ocean Dynamics Radar (CODAR).
This CODAR array has a resolution of 6 km, and velocity magnitude and direction accuracies of ±0.04 cm/s and ±1°, respectively, according to Kohut et al., 2004.
In each of the CODAR, GOS, and MCC velocity vector plots, a flow from the north toward the south is apparent for all four time intervals. The northern half of the CODAR footprint shows an anticlockwise eddy with diameter of approximately 50 km and centered around (200 km, 425 km), which is present in
A quantitative comparison can be made between the GOS and MCC predictions and CODAR velocities by comparing their magnitudes and directions, by using the complex correlation coefficient ρ, which is defined as
where ω represents the surface velocity field (u,v) (for either the GOS or MCC result) as a complex number defined by
ω=u+i·v,
ω*=u−i·v, (22)
with ωCODAR defined similarly for the CODAR velocity. The correlation coefficient magnitude |ρ| is thus
|ρ|=[(Re(ρ))2+(Im(ρ))2]1/2 (23)
and an average angular phase difference between the derived (GOS or MCC) velocity field and the CODAR ones. We define the phase by
φ=tan−1└Im(ρ)/Re(ρ)┘. (24)
The phase of ρ indicates that φ is as an average angular difference between the derived and CODAR velocities. Anticlockwise angles are positive, so φ>0 represents a scenario in which derived velocities are oriented anticlockwise with respect to the CODAR vectors.
The results of calculating the correlation coefficient magnitude and phase angle are summarized in Table 1 for both the GOS and MCC velocity fields for the four time intervals, as well as the RMSE calculated according to Equation (20).
Table 1 illustrates several trends. The GOS error values are smaller than those for the MCC for each of the time intervals. For the last time interval (19:02-22:32 UT), the GOS and MCC values are quite close, while they differ greatest for the first time interval (11:13-14:36 UT). Nevertheless, the GOS velocities are more accurate (have smaller RMSE) than the MCC velocity results for each time interval.
In Table 1 also lists the correlation magnitude and its phase. For each of the four times, the phase agreement between the MCC and CODAR is slightly better than that between the GOS and CODAR (by an average of 2.4°); that is, |φ(MCC)|<|φ(GOS)|. For the magnitude of the complex correlation, the opposite is true. The correlation magnitude for the GOS exceeds that of the MCC for all time increments, or |ρ(GOS)|>|ρ(MCC)| by an average of 0.762 vs. 0.663.
The method described above is a Global Optimal Solution (GOS) inverse technique suitable to obtain near-surface velocity from sequential infrared images. Two-dimensional bilinear Lagrange interpolation over a small pixel array is used to convert the inverse problem from a locally under-determined system of equations to an over-determined one without using divergence and vorticity constraints. The bilinear interpolation is then extended over the ensemble of the remaining array subsets to form a representation of the entire image area. At those locations where the land or clouds occupy a portion of a bilinear array, that array is discarded (as shown in
The resulting GOS velocity fields have also been compared with those from the numerical model and from the MCC technique. A histogram of the difference between GOS and numerical model velocities is narrower and more peaked than that with the MCC/model comparison. Calculation of the root mean square error difference between the GOS (and MCC) results and the model velocities indicates that the GOS/model error is only half that of the MCC/model error. With actual AVHRR data however, the difference between the two techniques is smaller, but significant in correlation magnitude, as seen in Table 1.
The number of interpolation points between neighboring knot points can be optimized. For a small number of interpolation points n between neighboring knot points, the system is not well determined and the RMSE is large. As the number of interpolation points becomes large, the number of knots, and hence the number of pixel subsets used to tile the image, decreases, with a concomitant increase in RMSE. An optimum intermediate value of n thus exists for which the RMSE is a minimum. The optimal interpolation points n must be larger than V·Δt to optimize the number of interpolation points. However, the dependence between the polynomial approximation of the velocity and accuracy of the tracer advection appears to be subtle. At this time, it is clear that improvement is possible using this global approach within a range of interpolation points n. Moreover, it appears that increasing the time interval from Δt=2 hours to 4 hours has only a small effect upon the accuracy of velocity vector retrieval.
A concern in deriving a velocity field from an image pair is the impact pixel noise has upon the accuracy of the result. In order to investigate the effect of this, the model-generated tracer fields have been contaminated with known amounts of white noise. It is noted that when as much as 10% white noise is added to the images, convolving the contaminated images with a Gaussian filter effectively nullifies the effect of the simulated pixel noise.
This approach can provide an accurate technique to estimate sea surface velocities from satellite SST fields. When optimized for the number of knot points, the technique is capable of producing velocities that may exceed those derived with the MCC technique. And indeed, application of GOS and MCC to four pairs of NOAA AVHRR images shows that when compared with CODAR, the RMSE is a little lower for the GOS results than it is for the MCC velocities. Additionally, the complex correlation magnitude between GOS and CODAR is greater than the one between MCC and CODAR. However, the MCC and CODAR results appear to agree in angle more than do those of the GOS and CODAR.
Embodiments of the invention also are directed a computer software application configured as programmed instructions for implementing the hyperspectral image data compression method described herein, and to non-transitory computer readable media storing computer readable instructions thereon for implementing the method. The system can be implemented in Microsoft Visual C++, and operated on a Microsoft Windows computer operating system, although other programming languages and operating systems are also suitable.
The computer-based system can also include storage capabilities. All the acquired data, including original and compressed hyperspectral data cubes, individual images, can be stored locally in addition to being transmitted over a communications link.
In an exemplary embodiment, the system can operate without human control for compression and transmission of the compressed data, or can receive instructions via a communication link and user interface.
Other embodiments include computer software and computer programs, as well as computer systems and computer readable media having programs for implementing the methods discussed above. A computer system is generally applicable for the various embodiments described according to the present invention. The computer system can include a processor, a volatile memory, e.g., RAM, a keyboard, a pointing device, e.g., a mouse, a nonvolatile memory, e.g., ROM, hard disk, floppy disk, CD-ROM, and DVD, and a display device having a display screen. Memory can store program instructions that are executable by a processor to implement various embodiments of a method in accordance with the present invention. A communications device may also be connected to enable information exchange between the computer system and other devices.
It should be understood that the term “computer system” is intended to encompass any device having a processor that executes instructions from a memory medium. The memory medium preferably stores instructions (also known as a “software program”) for implementing various embodiments of a method in accordance with the present invention. In various embodiments the one or more software programs are implemented in various ways, including procedure-based techniques, component-based techniques, and/or object-oriented techniques, among others. Specific examples include FORTRAN, C, C++, Java, Python and Perl.
By way of example, and not limitation, computer-readable media comprise media implemented in any method or technology for storing information. Examples of stored information include computer-useable instructions, data structures, program modules, and other data representations. Media examples include, but are not limited to information-delivery media, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile discs (DVD), holographic media or other optical disc storage, magnetic cassettes, magnetic tape, magnetic disk storage, and other magnetic storage devices.
Although this invention has been described in relation to several exemplary embodiments thereof, it is well understood by those skilled in the art that other variations and modifications can be affected on the preferred embodiments without departing from scope and spirit of the invention as set forth in the following claims.
This application is a non-provisional application under 35 USC 119(e) and claims the benefit of U.S. Provisional Application 61/248,508 filed on Oct. 5, 2009, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61248508 | Oct 2009 | US |