The present disclosure relates to compressors and more particularly to a system and method for evaluating the parameters of a refrigeration system with a variable speed compressor.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Compressors may be used in a wide variety of industrial and residential applications to circulate refrigerant within a refrigeration, heat pump, HVAC, or chiller system (generically “refrigeration systems”) to provide a desired heating or cooling effect. In any of the foregoing applications, the compressor should provide consistent and efficient operation to insure that the particular application (i.e., refrigeration, heat pump, HVAC, or chiller system) functions properly. A variable speed compressor may be used to vary compressor capacity according to refrigeration system load. Operating parameters of the compressor and of the refrigeration system may be used by protection, control, and diagnostic systems to insure optimal operation of the compressor and refrigeration system components. For example, evaporator temperature and/or condenser temperature may be used to diagnose, protect, and control the compressor and other refrigeration system components.
A system is provided and may comprise a compressor connected to a condenser and an evaporator, a condenser sensor that outputs a condenser signal corresponding to at least one of a condenser pressure and a condenser temperature, an evaporator sensor that outputs an evaporator signal corresponding to at least one of an evaporator pressure and an evaporator temperature, an inverter drive that modulates a frequency of electric power delivered to the compressor to modulate a speed of the compressor, a monitor module that receives compressor power data and compressor speed data from the inverter drive, determines a measured condenser temperature based on the condenser signal, determines a measured evaporator temperature based on the evaporator signal, calculates a first derived condenser temperature based on the compressor power data and the compressor speed data, calculates a second derived condenser temperature based on the measured evaporator temperature, the compressor power data and the compressor speed data, and compares the measured condenser temperature with the first and second derived condenser temperatures to determine whether any of the measured condenser temperature and the first and second derived condenser temperatures are inaccurate.
In other features, the control module may determines whether each of the first and second derived condenser temperatures and the measured condenser temperature are within a predetermined temperature range.
In other features, when one of the first and second derived condenser temperatures and the measured condenser temperature are outside of the predetermined temperature range, the control module may disregard the one of the first and second derived condenser temperatures and the measured condenser temperature.
In other features, the control module may generate an alarm when one of the first and second derived condenser temperatures and the measured condenser temperature are outside of the predetermined temperature range.
In other features, the alarm may indicate that at least one of the condenser sensor, the evaporator sensor, the discharge temperature sensor, a voltage sensor within the inverter drive, and a current sensor within the inverter drive are malfunctioning.
In other features, the control module may average the first and second derived condenser temperatures and the measured condenser temperature.
A system is provided and may comprise a compressor connected to a condenser and an evaporator, a condenser sensor that outputs a condenser signal corresponding to at least one of a condenser pressure and a condenser temperature, an evaporator sensor that outputs an evaporator signal corresponding to at least one of an evaporator pressure and an evaporator temperature, a discharge temperature sensor that outputs a discharge temperature signal corresponding to a temperature of refrigerant exiting the compressor, an inverter drive that modulates a frequency of electric power delivered to the compressor to modulate a speed of the compressor, a monitor module that receives compressor power data and compressor speed data from the inverter drive, determines a measured condenser temperature based on the evaporator signal, determines a measured evaporator temperature based on the evaporator signal, calculates a first derived evaporator temperature based on the compressor power data, the discharge temperature signal, and the compressor speed data, calculates a second derived evaporator temperature based on the measured condenser temperature, the compressor power data, the compressor speed data, and the discharge temperature signal, and compares the measured evaporator temperature with the first and second derived evaporator temperatures to determine whether any of the measured evaporator temperature and the first and second derived evaporator temperatures are inaccurate.
In other features, the control module may determine whether each of the first and second derived evaporator temperatures and the measured evaporator temperature are within a predetermined temperature range.
In other features, when one of the first and second derived evaporator temperatures and the measured evaporator temperature are outside of the predetermined temperature range, the control module may disregard the one of the first and second derived evaporator temperatures and the measured evaporator temperature.
In other features, the control module may generate an alarm when one of the first and second derived evaporator temperatures and the measured condenser temperature are outside of the predetermined temperature range.
In other features, the alarm may indicate that at least one of the condenser sensor, the evaporator sensor, the discharge temperature sensor, a voltage sensor within the inverter drive, and a current sensor within the inverter drive are malfunctioning.
In other features, the control module may average the first and second derived evaporator temperatures and the measured condenser temperature.
The method may comprise receiving an evaporator signal corresponding to at least one of an evaporator pressure and an evaporator temperature corresponding to an evaporator connected to a condenser and a compressor, receiving a condenser signal corresponding to at least one of a condenser pressure and a condenser temperature corresponding to the condenser, receiving compressor power data and compressor speed data from an inverter drive that drives the compressor, determining a measured condenser temperature based on the condenser signal, determining a measured evaporator temperature based on the evaporator signal, calculating a first derived condenser temperature based on the compresor data and the compressor speed data, calculating a second derived condenser temperature based on the measured evaporator temperature, the compressor power data, and the compressor speed data; comparing the measured condenser temperature with the first and second derived condenser temperatures to determine whether any of the measured condenser temperature and the first and second derived condenser temperatures are inaccurate.
In other features, the method may include determining whether each of the first and second derived condenser temperatures and the measured condenser temperature are within a predetermined temperature range.
In other features, the method may include, when one of the first and second derived condenser temperatures and the measured condenser temperature are outside of the predetermined temperature range, disregarding the one of the first and second derived condenser temperatures and the measured condenser temperature.
In other features, the method may include generating an alarm when one of the first and second derived condenser temperatures and the measured condenser temperature are outside of the predetermined temperature range.
In other features, the alarm may indicate that at least one of the condenser sensor, the evaporator sensor, the discharge temperature sensor, a voltage sensor within the inverter drive, and a current sensor within the inverter drive are malfunctioning.
In other features, the method may include averaging the first and second derived condenser temperatures and the measured condenser temperature.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As used herein, the terms module, control module, and controller refer to one or more of the following: An application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, or other suitable components that provide the described functionality. As used herein, computer readable medium refers to any medium capable of storing data for a computer. Computer-readable medium includes, but is not limited to, memory, RAM, ROM, PROM, EPROM, EEPROM, flash memory, CD-ROM, floppy disk, magnetic tape, other magnetic medium, optical medium, or any other device or medium capable of storing data for a computer.
With reference to
Compressor 10 may be driven by an inverter drive 22, also referred to as a variable frequency drive (VFD), housed in an enclosure 20. Enclosure 20 may be near compressor 10. Inverter drive 22 receives electrical power from a power supply 18 and delivers electrical power to compressor 10. Inverter drive 22 includes a control module 25 with a processor and software operable to modulate and control the frequency of electrical power delivered to an electric motor of compressor 10. Control module 25 includes a computer readable medium for storing data including the software executed by the processor to modulate and control the frequency of electrical power delivered to the electric motor of compressor and the software necessary for control module 25 to execute and perform the protection and control algorithms of the present teachings. By modulating the frequency of electrical power delivered to the electric motor of compressor 10, control module 25 may thereby modulate and control the speed, and consequently the capacity, of compressor 10.
Inverter drive 22 includes solid state electronics to modulate the frequency of electrical power. Generally, inverter drive 22 converts the inputted electrical power from AC to DC, and then converts the electrical power from DC back to AC at a desired frequency. For example, inverter drive 22 may directly rectify electrical power with a full-wave rectifier bridge. Inverter driver 22 may then chop the electrical power using insulated gate bipolar transistors (IGBT's) or thyristors to achieve the desired frequency. Other suitable electronic components may be used to modulate the frequency of electrical power from power supply 18.
Electric motor speed of compressor 10 is controlled by the frequency of electrical power received from inverter driver 22. For example, when compressor 10 is driven at sixty hertz electric power, compressor 10 may operate at full capacity operation. When compressor 10 is driven at thirty hertz electric power, compressor 10 may operate at half capacity operation.
Control module 25 may generate data corresponding to compressor current and/or compressor power during the routines executed to modulate the electric power delivered to the electric motor of compressor 10. Control module 25 may utilize data corresponding to compressor current and/or compressor power to calculate and derive other compressor and refrigeration system parameters.
As described in the disclosure titled “VARIABLE SPEED COMPRESSOR PROTECTION SYSTEM AND METHOD”, U.S. Application Ser. No. 60/978,258, which is incorporated herein by reference, suction super heat (SSH) and discharge super heat (DSH) may be used to monitor or predict a flood back condition or overheat condition of compressor 10. As described therein, condenser temperature (Tcond) may be used to derive DSH. Likewise, evaporator temperature (Tevap) may be used to derive SSH.
A compressor floodback or overheat condition is undesirable and may cause damage to compressor 10 or other refrigeration system components. Suction super heat (SSH) and/or discharge super heat (DSH) may be correlated to a flood back or overheating condition of compressor 10 and may be monitored to detect and/or predict a flood back or overheating condition of compressor 10. DSH is the difference between the temperature of refrigerant vapor leaving the compressor, referred to as discharge line temperature (DLT) and the saturated condenser temperature (Tcond). Suction super heat (SSH) is the difference between the temperature of refrigerant vapor entering the compressor, referred to as suction line temperature (SLT) and saturated evaporator temperature (Tevap).
SSH and DSH may be correlated as shown in
A flood back condition may occur when SSH is approaching zero degrees or when DSH is approaching twenty to forty degrees Fahrenheit. For this reason, DSH may be used to detect the onset of a flood back condition and its severity. When SSH is at zero degrees, SSH may not indicate the severity of the flood back condition. As the floodback condition becomes more severe, SSH remains at around zero degrees. When SSH is at zero degrees, however, DSH may be between twenty and forty degrees Fahrenheit and may more accurately indicate the severity of a flood back condition. When DSH is in the range of thirty degrees Fahrenheit to eighty degrees Fahrenheit, compressor 10 may operate within a normal range. When DSH is below thirty degrees Fahrenheit, the onset of a flood back condition may be occur. When DSH is below ten degrees Fahrenheit, a severe flood back condition may occur.
With respect to overheating, when DSH is greater than eighty degrees Fahrenheit, the onset of an overheating condition may occur. When DSH is greater than one-hundred degrees Fahrenheit, a severe overheating condition may be present.
In
As further described in the disclosure titled “VARIABLE SPEED COMPRESSOR PROTECTION SYSTEM AND METHOD”, U.S. Application Ser. No. 60/978,258, which is incorporated herein by reference, Tcond may be a function of compressor power and compressor speed. Control module 25 may derive Tcond based on compressor power or current and compressor speed. As further described in the attached disclosure, Tevap may be a function of compressor power, compressor speed, and DLT. Control module 25 may derive Tevap based on compressor power or current, DLT, and compressor speed. As further described, control module 25 may use Tcond and/or Tevap to derive other parameters including compressor capacity, power, energy efficiency, ratio, load, Kwh/Day, etc.
Tcond may be derived from other system parameters. Specifically, Tcond may be derived from compressor current and voltage (i.e., compressor power), compressor speed, and compressor map data associated with compressor 10. A method for deriving Tcond based on current, voltage and compressor map data for a fixed speed compressor is described in the commonly assigned application for Compressor Diagnostic and Protection System, U.S. application Ser. No. 11/059,646, Publication No. U.S. 2005/0235660. Compressor map data for a fixed speed compressor correlating compressor current and voltage to Tcond may be compressor specific and based on test data for a specific compressor type, model and capacity.
In the case of a variable speed compressor, Tcond may also be a function of compressor speed, in addition to compressor power.
A graphical correlation between compressor power in watts and compressor speed is shown in
In this way, control module 25 may calculate Tcond based on compressor power data and compressor speed data. Control module 25 may calculate, monitor, or detect compressor power data during the calculations performed to convert electrical power from power supply 18 to electrical power at a desired frequency. In this way, compressor power and current data may be readily available to control module 25. In addition, control module 25 may calculate, monitor, or detect compressor speed based on the frequency of electrical power delivered to the electric motor of compressor 10. In this way, compressor speed data may also be readily available to control module 25. Based on compressor power and compressor speed, control module 25 may derive Tcond.
After measuring or calculating Tcond, control module 25 may calculate DSH as the difference between Tcond and DLT, with DLT data being receiving from external DLT sensor 28 or internal DLT sensor 30.
Tevap may be derived as a function of Tcond and DLT, as described in commonly assigned U.S. application Ser. No. 11/059,646, U.S. Publication No. 2005/0235660. For variable speed compressors, the correlation may also reflect compressor speed. In this way, Tevap may be derived as a function of Tcond, DLT and compressor speed.
As shown in
Tcond and Tevap may be calculated based on a single derivation.
In addition, iterative calculations may be made based on the following equations:
Tcond=f(compressor power, compressor speed, Tevap) Equation 1
Tevap=f(Tcond, DLT, compressor speed) Equation 2
Multiple iterations of these equations may be performed to achieve convergence. For example, three iterations may provide optimal convergence. As discussed above, more or less iteration, or no iterations, may be used.
Tevap and Tcond may also be determined by using compressor map data, for different speeds, based on DLT and compressor power, based on the following equations:
Tevap=f(compressor power, compressor speed, DLT) Equation 3
Tcond=f(compressor power, compressor speed, DLT) Equation 4
As described in the disclosure titled “SYSTEM AND METHOD FOR CALCULATING PARAMETERS FOR A REFRIGERATION SYSTEM WITH A VARIABLE SPEED COMPRESSOR”, U.S. Application Ser. No. 60/978,296, which is incorporated herein by reference, Tcond may be calculated based on Tevap and compressor current and compressor speed. Likewise, Tevap may be derived from Tcond and compressor current and compressor speed.
Control module 25 may receive Tevap and, as described above, may receive compressor speed and compressor current data as a result of operating inverter drive 22 and modulating the frequency of power delivered to compressor 10.
Control module 25 may calculate Tcond from Tevap, compressor speed, and compressor current based on compressor map data derived from field tests for a particular compressor type, model, and capacity. The compressor map data may correlate Tcond with Tevap, compressor current, and compressor speed.
As shown in
In this way, control module may derive Tcond from Tevap, as measured by evaporator temperature sensor 40, compressor speed and compressor current data from operating inverter drive 22.
As shown in
In this way, control module 25 may derive Tevap from Tcond, as measured by condenser temperature sensor 42, DLT as measured by DLT sensor 41, and compressor current and compressor speed data from operating inverter drive 22. Likewise, control module 25 may derive Tcond from Tevap, as measured by evaporator temperature sensor 40, and compressor current and compressor speed data from operating inverter drive 22.
Thus, there are multiple and various ways to calculate and derive Tcond and Tevap based on the various sensors and data available. In this way, control module may function as, or include, a monitor module that compares and evaluates Tcond or Tevap data that is calculated, measured or derived from multiple sources.
As shown in
Based on Tcond as sensed by condenser temperature sensor 42 and Tevap as sensed by evaporator temperature sensor 40, and based on compressor speed and compressor power as indicated by inverter drive 22, control module may calculate and measure Tcond and Tevap multiple different ways. Control module 25 may then function as a monitor module to compare and evaluate the various calculations against each other. Alternatively, control module 25 may be connected to a separate monitor module within inverter drive 22, within enclosure 20, or within a system controller for refrigeration system 5. In addition, a monitor module may be separate from control module 25 and the refrigeration system controller and may be located remotely from refrigeration system 5.
As shown in
As an example, control module 25 may determine whether all three Tcond values (i.e., Tcond-sensed, Tcond-derived-1, and Tcond-derived-2) are within a similar predetermined range. If, for example, two of the Tcond values are within a similar range and a third Tcond value is outside of the range, control module 25 may disregard the Tcond value outside of the predetermined range, and rely only on the two Tcond values within the predetermined range. In this way control module 25 may allow the various Tcond values to “vote” on a correct Tcond value.
In addition, control module 25 may average the various Tcond values to arrive at an averaged Tcond value.
When control module 25 determines that one of the Tcond values is outside of a predetermined range, control module 25 may generate an alarm to indicate that a particular sensor associated with the out of range Tcond value may be malfunctioning. Moreover, control module 25 may rank the various sensors used to give priority to sensors that are more likely accurate. For example, voltage and current transducers used in inverter drive 22 are most likely functioning properly if compressor 10 is functioning. If the voltage and current transducers within inverter drive 22 fail, compressor 10 may also fail. Therefore, if compressor 10 is functioning it is a good indication that the voltage and current transducers within inverter drive 22 are likewise functioning properly.
For this reason, if a particular Tcond value is outside of a predetermined range, control module 25 may track the malfunctioning sensor by examining sensors other than the voltage and current transducers within inverter drive 22. In this way, voltage and current transducers within inverter drive 22 are “high priority” sensors. Control module 25 may look to sensors other than the voltage and current transducers within inverter drive to determine any malfunctioning sensors.
In this way, control module 25 may locate a system sensor that may be generating incorrect data.
With reference to
In this way, control module 25 may determine accurate Tcond and Tevap measurements by redundantly calculating, deriving and measuring those parameters and by checking the various measurements and derivations against each other to arrive at a precise parameter. Control module 25 may also use redundancy checking between the various measured and derived parameters to determine whether any system sensors are malfunctioning and producing incorrect data.
This application claims the benefit of U.S. Provisional Application No. 60/978,324, filed on Oct. 8, 2007. The application also claims the benefit of U.S. Provisional Application No. 60/978,258, filed on Oct. 8, 2007. The application also claims the benefit of U.S. Provisional Application No. 60/978,296, filed on Oct. 8, 2007. The entire disclosures of each of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2883255 | Anderson | Apr 1959 | A |
2981076 | Gaugler | Apr 1961 | A |
3082609 | Ryan et al. | Mar 1963 | A |
3242321 | Chope | Mar 1966 | A |
3600657 | Pfaff et al. | Aug 1971 | A |
4130997 | Hara et al. | Dec 1978 | A |
4280910 | Baumann | Jul 1981 | A |
4370564 | Matsushita | Jan 1983 | A |
4460861 | Rosa | Jul 1984 | A |
4461153 | Lindner et al. | Jul 1984 | A |
4527399 | Lord | Jul 1985 | A |
4653280 | Hansen et al. | Mar 1987 | A |
4750338 | Hingst | Jun 1988 | A |
4940929 | Williams | Jul 1990 | A |
5056712 | Enck | Oct 1991 | A |
5182918 | Manz et al. | Feb 1993 | A |
5258901 | Fraidlin | Nov 1993 | A |
5269146 | Kerner | Dec 1993 | A |
5291115 | Ehsani | Mar 1994 | A |
5315214 | Lesea | May 1994 | A |
5347467 | Staroselsky et al. | Sep 1994 | A |
5359276 | Mammano | Oct 1994 | A |
5359281 | Barrow et al. | Oct 1994 | A |
5410221 | Mattas et al. | Apr 1995 | A |
5410235 | Ehsani | Apr 1995 | A |
5440218 | Oldenkamp | Aug 1995 | A |
5502970 | Rajendran | Apr 1996 | A |
5519300 | Leon et al. | May 1996 | A |
5603222 | Dube | Feb 1997 | A |
5603227 | Holden et al. | Feb 1997 | A |
5646499 | Doyama et al. | Jul 1997 | A |
5663627 | Ogawa | Sep 1997 | A |
5712551 | Lee | Jan 1998 | A |
5712802 | Kumar et al. | Jan 1998 | A |
5742103 | Ashok | Apr 1998 | A |
5786992 | Vinciarelli et al. | Jul 1998 | A |
5903138 | Hwang et al. | May 1999 | A |
5960207 | Brown | Sep 1999 | A |
5963442 | Yoshida et al. | Oct 1999 | A |
6005365 | Kaneko et al. | Dec 1999 | A |
6028406 | Birk | Feb 2000 | A |
6035653 | Itoh et al. | Mar 2000 | A |
6041609 | Hornsleth et al. | Mar 2000 | A |
6065298 | Fujimoto | May 2000 | A |
6073457 | Kampf et al. | Jun 2000 | A |
6091215 | Lovett et al. | Jul 2000 | A |
6091233 | Hwang et al. | Jul 2000 | A |
6102665 | Centers et al. | Aug 2000 | A |
6116040 | Stark | Sep 2000 | A |
6222746 | Kim | Apr 2001 | B1 |
6226998 | Reason et al. | May 2001 | B1 |
6236183 | Schroeder | May 2001 | B1 |
6236193 | Paul | May 2001 | B1 |
6259614 | Ribarich et al. | Jul 2001 | B1 |
6281656 | Masaki et al. | Aug 2001 | B1 |
6281658 | Han et al. | Aug 2001 | B1 |
6316918 | Underwood et al. | Nov 2001 | B1 |
6326750 | Marcinkiewicz | Dec 2001 | B1 |
6344725 | Kaitani et al. | Feb 2002 | B2 |
6370888 | Grabon | Apr 2002 | B1 |
6373200 | Nerone et al. | Apr 2002 | B1 |
6396229 | Sakamoto et al. | May 2002 | B1 |
6404154 | Marcinkiewicz et al. | Jun 2002 | B2 |
6406265 | Hahn et al. | Jun 2002 | B1 |
6414462 | Chong | Jul 2002 | B2 |
6446618 | Hill | Sep 2002 | B1 |
6462492 | Sakamoto et al. | Oct 2002 | B1 |
6471486 | Centers et al. | Oct 2002 | B1 |
6523361 | Higashiyama | Feb 2003 | B2 |
6532754 | Haley et al. | Mar 2003 | B2 |
6539734 | Weyna | Apr 2003 | B1 |
6583593 | Iijima et al. | Jun 2003 | B2 |
6636011 | Sadasivam et al. | Oct 2003 | B2 |
6670784 | Odachi et al. | Dec 2003 | B2 |
6688124 | Stark et al. | Feb 2004 | B1 |
6698217 | Tanimoto et al. | Mar 2004 | B2 |
6708507 | Sem et al. | Mar 2004 | B1 |
6714425 | Yamada et al. | Mar 2004 | B2 |
6735284 | Cheong et al. | May 2004 | B2 |
6749404 | Gennami et al. | Jun 2004 | B2 |
6753670 | Kadah | Jun 2004 | B2 |
6756753 | Marcinkiewicz | Jun 2004 | B1 |
6756757 | Marcinkiewicz et al. | Jun 2004 | B2 |
6758050 | Jayanth et al. | Jul 2004 | B2 |
6767851 | Rokman et al. | Jul 2004 | B1 |
6788024 | Kaneko et al. | Sep 2004 | B2 |
6815925 | Chen et al. | Nov 2004 | B2 |
6825637 | Kinpara et al. | Nov 2004 | B2 |
6828751 | Sadasivam et al. | Dec 2004 | B2 |
6831439 | Won et al. | Dec 2004 | B2 |
6876171 | Lee | Apr 2005 | B2 |
6915646 | Kadle et al. | Jul 2005 | B2 |
6955039 | Nomura et al. | Oct 2005 | B2 |
6966759 | Hahn et al. | Nov 2005 | B2 |
6967851 | Yang et al. | Nov 2005 | B2 |
6982533 | Seibel et al. | Jan 2006 | B2 |
6984948 | Nakata et al. | Jan 2006 | B2 |
7005829 | Schnetzka | Feb 2006 | B2 |
7049774 | Chin et al. | May 2006 | B2 |
7095208 | Kawaji et al. | Aug 2006 | B2 |
7138777 | Won et al. | Nov 2006 | B2 |
7154237 | Welchko et al. | Dec 2006 | B2 |
7176644 | Ueda et al. | Feb 2007 | B2 |
7184902 | El-Ibiary | Feb 2007 | B2 |
7208895 | Marcinkiewicz et al. | Apr 2007 | B2 |
7234305 | Nomura et al. | Jun 2007 | B2 |
7272018 | Yamada et al. | Sep 2007 | B2 |
7307401 | Gataric et al. | Dec 2007 | B2 |
7342379 | Marcinkiewicz et al. | Mar 2008 | B2 |
7375485 | Shahi et al. | May 2008 | B2 |
7458223 | Pham | Dec 2008 | B2 |
7554271 | Thiery et al. | Jun 2009 | B2 |
7580272 | Taguchi et al. | Aug 2009 | B2 |
7595613 | Thompson et al. | Sep 2009 | B2 |
7605570 | Liu et al. | Oct 2009 | B2 |
7613018 | Lim et al. | Nov 2009 | B2 |
7660139 | Garabandic | Feb 2010 | B2 |
7667986 | Artusi et al. | Feb 2010 | B2 |
7675759 | Artusi et al. | Mar 2010 | B2 |
7683568 | Pande et al. | Mar 2010 | B2 |
7688608 | Oettinger et al. | Mar 2010 | B2 |
7723964 | Taguchi | May 2010 | B2 |
7733678 | Notohamiprodjo et al. | Jun 2010 | B1 |
7738228 | Taylor | Jun 2010 | B2 |
7782033 | Turchi et al. | Aug 2010 | B2 |
7821237 | Melanson | Oct 2010 | B2 |
7895003 | Caillat | Feb 2011 | B2 |
20010022939 | Morita et al. | Sep 2001 | A1 |
20020047635 | Ribarich et al. | Apr 2002 | A1 |
20020062656 | Suitou et al. | May 2002 | A1 |
20020117989 | Kawabata et al. | Aug 2002 | A1 |
20020157408 | Egawa et al. | Oct 2002 | A1 |
20020162339 | Harrison et al. | Nov 2002 | A1 |
20030019221 | Rossi et al. | Jan 2003 | A1 |
20030077179 | Collins et al. | Apr 2003 | A1 |
20030085621 | Potega | May 2003 | A1 |
20030094004 | Pham et al. | May 2003 | A1 |
20030146290 | Wang et al. | Aug 2003 | A1 |
20030182956 | Kurita et al. | Oct 2003 | A1 |
20040011020 | Nomura et al. | Jan 2004 | A1 |
20040061472 | Won et al. | Apr 2004 | A1 |
20040070364 | Cheong et al. | Apr 2004 | A1 |
20040085785 | Taimela | May 2004 | A1 |
20040100221 | Fu | May 2004 | A1 |
20040119434 | Dadd | Jun 2004 | A1 |
20040183491 | Sidey | Sep 2004 | A1 |
20040221594 | Suzuki et al. | Nov 2004 | A1 |
20040261448 | Nishijima et al. | Dec 2004 | A1 |
20050047179 | Lesea | Mar 2005 | A1 |
20050204760 | Kurita et al. | Sep 2005 | A1 |
20050235660 | Pham | Oct 2005 | A1 |
20050235661 | Pham | Oct 2005 | A1 |
20050235662 | Pham | Oct 2005 | A1 |
20050235663 | Pham | Oct 2005 | A1 |
20050247073 | Hikawa et al. | Nov 2005 | A1 |
20050262849 | Nomura et al. | Dec 2005 | A1 |
20050270814 | Oh | Dec 2005 | A1 |
20060041335 | Rossi et al. | Feb 2006 | A9 |
20060042276 | Doll et al. | Mar 2006 | A1 |
20060048530 | Jun et al. | Mar 2006 | A1 |
20060056210 | Yamada et al. | Mar 2006 | A1 |
20060090490 | Grimm et al. | May 2006 | A1 |
20060117773 | Street et al. | Jun 2006 | A1 |
20060123809 | Ha et al. | Jun 2006 | A1 |
20060130501 | Singh et al. | Jun 2006 | A1 |
20060150651 | Goto et al. | Jul 2006 | A1 |
20060158912 | Wu et al. | Jul 2006 | A1 |
20060185373 | Butler et al. | Aug 2006 | A1 |
20060187693 | Tang | Aug 2006 | A1 |
20060198172 | Wood | Sep 2006 | A1 |
20060198744 | Lifson et al. | Sep 2006 | A1 |
20060247895 | Jayanth | Nov 2006 | A1 |
20060255772 | Chen | Nov 2006 | A1 |
20060261830 | Taylor | Nov 2006 | A1 |
20060290302 | Marcinkiewicz et al. | Dec 2006 | A1 |
20070012052 | Butler et al. | Jan 2007 | A1 |
20070029987 | Li | Feb 2007 | A1 |
20070040524 | Sarlioglu et al. | Feb 2007 | A1 |
20070040534 | Ghosh et al. | Feb 2007 | A1 |
20070089424 | Venkataramani et al. | Apr 2007 | A1 |
20070118307 | El-Ibiary | May 2007 | A1 |
20070118308 | El-Ibiary | May 2007 | A1 |
20070132437 | Scollo et al. | Jun 2007 | A1 |
20070144354 | Muller et al. | Jun 2007 | A1 |
20080089792 | Bae et al. | Apr 2008 | A1 |
20080112823 | Yoshida et al. | May 2008 | A1 |
20080143289 | Marcinkiewicz et al. | Jun 2008 | A1 |
20080160840 | Bax et al. | Jul 2008 | A1 |
20080209925 | Pham | Sep 2008 | A1 |
20080216494 | Pham et al. | Sep 2008 | A1 |
20080252269 | Feldtkeller et al. | Oct 2008 | A1 |
20080265847 | Woo et al. | Oct 2008 | A1 |
20080272745 | Melanson | Nov 2008 | A1 |
20080272747 | Melanson | Nov 2008 | A1 |
20080273356 | Melanson | Nov 2008 | A1 |
20080284399 | Oettinger et al. | Nov 2008 | A1 |
20080285318 | Tan et al. | Nov 2008 | A1 |
20090015214 | Chen | Jan 2009 | A1 |
20090015225 | Turchi et al. | Jan 2009 | A1 |
20090016087 | Shimizu | Jan 2009 | A1 |
20090033296 | Hammerstrom | Feb 2009 | A1 |
20090039852 | Fishelov et al. | Feb 2009 | A1 |
20090059625 | Viitanen et al. | Mar 2009 | A1 |
20090071175 | Pham | Mar 2009 | A1 |
20090091961 | Hsia et al. | Apr 2009 | A1 |
20090094997 | McSweeney | Apr 2009 | A1 |
20090140680 | Park | Jun 2009 | A1 |
20090237963 | Prasad et al. | Sep 2009 | A1 |
20090243561 | Tan et al. | Oct 2009 | A1 |
20090273330 | Sisson | Nov 2009 | A1 |
20090290395 | Osaka | Nov 2009 | A1 |
20090295347 | Popescu et al. | Dec 2009 | A1 |
20090303765 | Shimizu et al. | Dec 2009 | A1 |
20090316454 | Colbeck et al. | Dec 2009 | A1 |
20100007317 | Yang | Jan 2010 | A1 |
20100014326 | Gu et al. | Jan 2010 | A1 |
20100014329 | Zhang et al. | Jan 2010 | A1 |
20100052601 | Pummer | Mar 2010 | A1 |
20100052641 | Popescu et al. | Mar 2010 | A1 |
20100079125 | Melanson et al. | Apr 2010 | A1 |
20100080026 | Zhang | Apr 2010 | A1 |
20100109615 | Hwang et al. | May 2010 | A1 |
20100109626 | Chen | May 2010 | A1 |
20100118571 | Saint-Pierre | May 2010 | A1 |
20100118576 | Osaka | May 2010 | A1 |
20100128503 | Liu et al. | May 2010 | A1 |
20100156377 | Siegler | Jun 2010 | A1 |
20100165683 | Sugawara | Jul 2010 | A1 |
20100181930 | Hopwood et al. | Jul 2010 | A1 |
20100187914 | Rada et al. | Jul 2010 | A1 |
20100202169 | Gaboury et al. | Aug 2010 | A1 |
20100226149 | Masumoto | Sep 2010 | A1 |
20100246220 | Irving et al. | Sep 2010 | A1 |
20100246226 | Ku et al. | Sep 2010 | A1 |
20100253307 | Chen et al. | Oct 2010 | A1 |
20100259230 | Boothroyd | Oct 2010 | A1 |
20100270984 | Park et al. | Oct 2010 | A1 |
20110138826 | Lifson et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
1697954 | Nov 2005 | CN |
1987258 | Jun 2007 | CN |
55155134 | Dec 1980 | JP |
61272483 | Dec 1986 | JP |
01167556 | Jul 1989 | JP |
2004163 | Jan 1990 | JP |
03129255 | Jun 1991 | JP |
04344073 | Nov 1992 | JP |
07035393 | Feb 1995 | JP |
09196524 | Jul 1997 | JP |
1998097331 | Apr 1998 | JP |
10153353 | Jun 1998 | JP |
10160271 | Jun 1998 | JP |
H10-153353 | Jun 1998 | JP |
11159895 | Jun 1999 | JP |
11287497 | Oct 1999 | JP |
2001317470 | Nov 2001 | JP |
2002013858 | Jan 2002 | JP |
2002243246 | Aug 2002 | JP |
2003156244 | May 2003 | JP |
2004135491 | Apr 2004 | JP |
2005-003710 | Jan 2005 | JP |
2005132167 | May 2005 | JP |
2005282972 | Oct 2005 | JP |
2006177214 | Jul 2006 | JP |
2006188954 | Jul 2006 | JP |
2006233820 | Sep 2006 | JP |
2007198230 | Aug 2007 | JP |
2007198705 | Aug 2007 | JP |
10-1996-0024115 | Jul 1996 | KR |
2001-0044273 | Jun 2001 | KR |
2003-0011415 | Feb 2003 | KR |
2005-0059842 | Jun 2005 | KR |
20050085544 | Aug 2005 | KR |
20070071407 | Jul 2007 | KR |
2004059822 | Jul 2004 | WO |
WO-2004083744 | Sep 2004 | WO |
Entry |
---|
“Solving System of Equations by Substitution” by http://cstl.syr.edu/fipse/algebra/unit5/subst.htm; 4 pages. |
“Electrical power vs Mechanical Power” by http://www.brighthubengineering.com/machine-design/62310-electrical-power-vs-mechanical-power/; 2 pages. |
International Search Report for International Application No. PCT/US2008/011442 dated Feb. 3, 2009. |
International Search Report for International Applicatoin No. PCT/US2008/011596, dated Feb. 25, 2009. |
International Search Report for International Application No. PCT/US2008/011441, dated Jan. 30, 2009. |
International Search Report for International Application No. PCT/US2008/011570, dated May 26, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011570, dated May 26, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011593, dated Jun. 17, 2009. |
International Search Report for International Application No. PCT/US2008/011593, dated Jun. 17, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011597, dated Jun. 19, 2009. |
International Search Report for International Application No. PCT/US2008/011597, dated Jun. 19, 2009. |
International Search Report for International Application No. PCT/US2008/011590, dated Feb. 27, 2009. |
International Search Report for International Application No. PCT/US2008/011589, dated Feb. 27, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011442, dated Feb. 3, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011596, dated Feb. 25, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011441, dated Jan. 30, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011589, dated Feb. 27, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011590, dated Feb. 27, 2009. |
Non-Final Office Action regarding U.S. Appl. No. 12/246,825, dated Jan. 4, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jan. 21, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/247,001, dated Feb. 25, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/244,387, dated Mar. 3, 2011. |
Notification of the First Office Action from the State Intelletual Property Office of People's Republic of China regarding Chinese Application No. 200880110551.6, dated Feb. 11, 2011. Translation provided by Unitalen Attorneys At Law. |
Non-Final Office Action regarding U.S. Appl. No. 12/246,893, dated Apr. 1, 2011. |
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110665.0, dated Apr. 8, 2011. Translation provided by Unitalen Attorneys At Law. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011442, dated Apr. 7, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011596, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011441, dated Apr. 7, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011570, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011464, dated Apr. 7, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011593, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011597, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011590, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011589, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011576, dated Apr. 13, 2010. |
Notice of Grounds for Rejection from the Korean Intellectual Property Office regarding Korean Patent Application No. 10-2010-7009374, dated May 31, 2011. Translation provided by Y.S. Change & Associates. |
Final Office Action regarding U.S. Appl. No. 12/246,825, dated Jun. 14, 2011. |
Office Action regarding U.S. Appl. No. 12/246,959, dated Jun. 21, 2011. |
Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jul. 12, 2011. |
International Search Report regarding International Application No. PCT/US2008/011576 dated Mar. 23, 2009. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2008/011576 dated Mar. 20, 2009. |
International Search Report regarding International Application No. PCT/US2008/011464 dated Mar. 13, 2009. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2008/011464 dated Mar. 13, 2009. |
Office Action regarding U.S. Appl. No. 12/246,893, dated Aug. 1, 2011. |
Final Office Action regarding U.S. Appl. No. 12/244,387, dated Aug. 17, 2011. |
Final Office Action regarding U.S. Appl. No. 12/247,001, dated Sep. 1, 2011. |
Office Action regarding U.S. Appl. No. 12/246,927, dated Sep. 6, 2011. |
Final Office Action regarding U.S. Appl. No. 12/246,959, dated Oct. 12, 2011. |
Appeal Brief regarding U.S. Appl. No. 12/247,001, dated Feb. 1, 2012. |
Examiner's Answer to Appellant's Appeal Brief regarding U.S. Appl. No. 12/247,001, dated Mar. 26, 2012. |
Final Office Action regarding U.S. Appl. No. 12/244,416, dated Nov. 15, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jan. 19, 2012. |
Notice of Appeal from the Examiner to the Board of Patent Appeals and Interferences and Pre-Appeal Brief Request for Review regarding U.S. Appl. No. 12/247,001, dated Dec. 1, 2011. |
Notice of Final Rejection from the Korean Intellectual Property Office regarding Korean Application No. 10-2010-7009374, dated Nov. 18, 2011. Translation provided by Y.S. Chang & Associates. |
Notice of Panel Decision from Pre-Appeal Brief Review regarding U.S. Appl. No. 12/247,001, dated Dec. 27, 2011. |
Notification of First Office action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110484.8, dated Dec. 23, 2011. Translation provided by Unitalen Attorneys at Law. |
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110590.6, dated Feb. 29, 2012. Translation provided by Unitalen Attorneys at Law. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7007375, dated Dec. 7, 2011. Translation provided by Y.S. Chang & Associates. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7007581, dated Nov. 14, 2011. Translation provided by Y.S. Chang & Associates. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7007583 from the Korean Intellectual Property Office, dated Dec. 28, 2011. Translation provided by Y.S. Chang & Associates. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7009659, dated Feb. 8, 2012. Translation provided by Y.S. Chang & Associates. |
Notification of the First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880111091.9 dated Nov. 23, 2011. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 12/246,825, dated Oct. 12, 2011. |
Office Action regarding U.S. Appl. No. 12/244,387, dated Mar. 1, 2012. |
Office Action regarding U.S. Appl. No. 12/244,416, dated Aug. 8, 2011. |
Office Action regarding U.S. Appl. No. 12/246,893, dated Dec. 7, 2011. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 12/246,927, dated Sep. 5, 2012. |
Final Office Action regarding U.S. Appl. No. 12/244,387, dated Aug. 13, 2012. |
Final Office Action regarding U.S. Appl. No. 12/246,959, dated Dec. 4, 2012. |
Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jul. 5, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/246,927, dated Jun. 6, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/246,959, dated Jun. 13, 2012. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/246,927, dated Dec. 21, 2012. |
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110616.7, dated Jul. 4, 2012. Translation provided by Unitalen Attorneys at Law. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7006707, dated Oct. 23, 2012. Translation provided by Y.S. Chang & Associates. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7006707, dated May 22, 2012. translation provided by U.S. Chang & Associates. |
Notification of the First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Application No. 2008801110726, dated Jun. 5, 2012. Translation provided by Unitalen Attorneys at Law. |
Notification of the Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110665.0, dated Apr. 5, 2012. Translation provided by Unitalen Attorneys at Law. |
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110785.0, dated Dec. 28, 2012. Translation provided by Unitalen Attorneys at Law. |
Number | Date | Country | |
---|---|---|---|
20090094998 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60978324 | Oct 2007 | US | |
60978258 | Oct 2007 | US | |
60978296 | Oct 2007 | US |