Embodiments of the invention relate to the field of communications, and in particular, to a system and method for battery power conservation by conversion of multicast transmissions over shared wireless media into unicast transmissions and alteration of the Delivery Traffic Indicator Map (DTIM) Interval value.
Multicast and broadcast transmissions currently are treated the same in many wireless networks. To date, similar treatment of these transmission types has not posed any substantial problems since wireless is a broadcast medium by definition and anyone on the same frequency with the appropriate receiver can receive the signal, irrespective of the destination. However, similar treatment of these transmission types is spectrally inefficient and, in some cases, these non-unicast transmissions may have a detrimental effect on power usage by a wireless device.
As an example, an access point or base station (both generally referred to as “AP”) has to make sure that a multicast transmission is sent at a modulation and coding rate that is acceptable to all wireless devices that are currently in communication with it. Therefore, for multicast transmissions, low (more robust and less efficient) transmission rates are commonly selected to accommodate each and every wireless device, even when a majority of the wireless devices can support significantly higher (less robust and more efficient) transmission rates.
Another disadvantage in supporting multicast transmissions for some wireless device is that, according to current IEEE 802.11 standards, there is no power-saving function to convert non-unicast (broadcast or multicast) transmissions to unicast transmissions while automatically adjusting the Delivery Traffic Indicator Map (DTIM). As a result, wireless devices may be required to “wake up” more often than needed to check for multicast or broadcast transmissions, which unnecessarily drains the battery of certain hand-held devices such as Voice-over-IP (VoIP) phones.
The invention may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the invention.
Embodiments of the invention relate to a system and method for battery power conservation by converting multicast transmissions over shared wireless media into unicast transmissions. Such conversion may be confined to a particular type of device in order to reduce power consumption (e.g., battery-powered devices, networked telephones, etc.). In order to achieve battery power conservation, the Delivery Traffic Indicator Map (DTIM) Interval value, namely a representation of the time period between successive checks by a wireless device for buffered non-unicast data on the AP, is increased. In certain situations, the DTIM Interval value is increased so that this time period is longer than the time period for the Listening Interval. The “Listening Interval” is a representation of the time period between successive checks by wireless device for unicast messages.
Certain details are set forth below in order to provide a thorough understanding of various embodiments of the invention, albeit the invention may be practiced through many embodiments other than those illustrated. Well-known logic and operations are not set forth in detail in order to avoid unnecessarily obscuring this description.
In the following description, certain terminology is used to describe features of the invention. For example, “software” is generally considered to be executable code such as an application, an applet, a routine or even one or more executable instructions stored in a storage medium. Firmware is considered merely one type of software. The “storage medium” may include, but is not limited or restricted to a programmable electronic circuit, a semiconductor memory device inclusive of volatile memory (e.g., random access memory, etc.) and non-volatile memory (e.g., programmable and non-programmable read-only memory, flash memory, etc.), a hard drive, a portable memory device (e.g., floppy diskette, a compact disk “CD”, digital versatile disc “DVD”, a digital tape, a Universal Serial Bus “USB” flash drive), or any medium that is deemed statutory by a court of law.
A “receiving device” is an electronic device that is configured to receive wireless messages. For instance, the receiving device may be adapted to request membership to a multicast group within a network. An example of a receiving device include a “station” (STA), which is any wireless device such as a wireless device that contains an IEEE 802.11 conformant medium access control (MAC) and physical layer (PHY) interface to a wireless interconnect medium. Another example of a receiving device is an access point or base station (AP) when deployed within a wireless mesh network.
A “transmitting device” is a device that is configured to transmit a wireless message. For instance, as an example, the transmitting device may be adapted to participate in the granting or denial of membership to a multicast group in response to a request by a receiving device. An example of a transmitting device includes, but is not limited or restricted to an AP, which is generally considered to be any entity that has station functionality and provides access to distributed services via the wireless medium for associated STAs. Another example of a transmitting device is a wireless network switch that controls multicast grouping in a centralized location.
A “message” is information arranged in a predetermined format that is transmitted over a point-to-point or shared media, namely a wired or wireless pathway for information. One type of message is a “multicast message” that includes information either involved in the formulation of a transmission path for multicast data to one or more receiving devices belonging to a particular group or involved in multicast transmissions. The multicast message may be a separate message or may be part of other message such as a beacon, probe request/response, association request/response, or the like.
I. First Embodiment of the Power Conservation Mechanism
Referring to
Of course, it is contemplated that a mesh or another wireless network may be substituted for wired network 115 of
As shown, transmitting device 1201 is adapted to provide wireless communications with one or more receiving devices 150. According to one embodiment of the invention, an AP is deployed as transmitting device 1201 while receiving device 150 is a wireless station (STA) powered by a rechargeable power source (e.g., portable computer, personal digital assistant “PDA”, Voice-over-IP “VoIP” telephone, etc.). While the illustrative embodiments describe the communications between an AP and STA, it is contemplated that the claimed invention generally involves communications between two or more devices with wireless communication capabilities.
Referring to
Processor 200 is a component that is responsible for generating outgoing multicast and unicast messages and for recovering information from incoming messages. For instance, processor 200 may be adapted to execute a non-unicast (e.g., multicast) conversion module 230 in order to convert an outgoing multicast message into one or more unicast messages. Module 230 may be software stored in memory 210 or may be stored as firmware or hard wired into AP 1201. Examples of various types of components forming processor 200 include, but are not limited or restricted to a microprocessor, application specific integrated circuit, programmable gate array, a digital signal processor, a micro-controller and the like.
For a system as shown in
A. Multicast-to-Unicast Conversion
In order to convert multicast traffic to unicast traffic, AP 1201 (or external storage accessible by AP 1201) maintains an association table 3001-300M (M≧1) for each of the “M” multicast group(s). As shown in
Alternatively, as shown in
According to one embodiment of the invention, the multicast-to-unicast conversion may be accomplished by simply generating a copy of the multicast message for each multicast group member, namely “3” copies for a first multicast group as illustrated in association table 3001 of
B. Altering the DTIM Internal Value
As described above, “DTIM” is a countdown mechanism that informs clients, such as STA 150 of
For example, during normal operating mode, the AP 1201 has the DTIM Interval value set to a first predetermined value. During battery-boost mode, however, the AP 1201 has the DTIM Interval value set to a second predetermined value that is larger than the first predetermined value. As an example, setting the DTIM Interval value to “5” represents that STA 150 is requesting a DTIM interval extending five broadcast beacon cycles (e.g., some multiple longer than the default time period between broadcast DTIM messages in normal operating mode). Where the Listening Interval is set to “10” denoting 10 beacon cycles before AP 1201 checks for unicast messages, by setting the DTIM Interval value to “100,” STA 150 is provided with a more aggressive power-save feature where the STA 150 will generally wake-up for receipt of unicast messages every 10 beacon cycles, but will only awaken from sleep mode for multicast messages after 100 beacon cycles.
Referring now to
II. Second Embodiment of the Power Conservation Mechanism
Referring now to
As shown, IP Multicast subscription database 510 is formed by monitoring IGMP JOIN messages by STAs, and storing both a Multicast Group identifier 520 and a MAC address 530 of each STA issuing an IGMP JOIN message. Thereafter, if operating in the Battery-Boost mode and before transmitting a multicast message, AP 1201 determines if each MAC address for the particular multicast group (identified by the Multicast Group identifier) is found in association table 500 (e.g., MAC address 380). If so, AP 1201 converts the multicast message to one or more unicast messages as described above and transmits the unicast message(s) only to the MAC addresses corresponding to devices still associated with AP 1201, namely in the association table. Otherwise, AP 1201 transmits the multicast message as normal.
III. Third Embodiment of the Power Conservation Mechanism
Referring now to
For instance, according to one embodiment of the invention, AP 1201 may advertise battery-boost capability in a Beacon or Probe Response frame. Such capability may be captured within a vendor specific extension element 700 (element ID 221) of the Beacon or Probe Response messages as shown in
According to one embodiment of the invention, the non-unicast-to-unicast conversion may be accomplished by generating a copy of the non-unicast message for each entry associated with a device type that is assigned to utilize battery-boost power savings. As an illustration, VoIP phones may be selected as one type of device that utilizes batter-boost functionality. Hence, non-unicast messages directed to a VoIP phone is converted to a unicast message for routing to the VoIP phone as a unicast message.
Referring now to
While the invention has been described in terms of several embodiments, the invention should not limited to only those embodiments described, but can be practiced with modification and alteration within the spirit and scope of the appended claims. The description is thus to be regarded as illustrative instead of limiting.
This application is a continuation of U.S. patent application Ser. No. 11/728,255, now U.S. Pat. No. 7,885,217, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7539515 | Carlsson et al. | May 2009 | B2 |
7885217 | Iyer et al. | Feb 2011 | B2 |
20040043797 | Shostak | Mar 2004 | A1 |
20040141490 | Hong | Jul 2004 | A1 |
20050009512 | Rue | Jan 2005 | A1 |
20050009578 | Liu | Jan 2005 | A1 |
20050075084 | Salokannel et al. | Apr 2005 | A1 |
20050254444 | Meier et al. | Nov 2005 | A1 |
20060018335 | Koch et al. | Jan 2006 | A1 |
20060165031 | Wang et al. | Jul 2006 | A1 |
20060187864 | Wang et al. | Aug 2006 | A1 |
20070025734 | Oogushi et al. | Feb 2007 | A1 |
20070147328 | Carlsson et al. | Jun 2007 | A1 |
20070201413 | Laine et al. | Aug 2007 | A1 |
20070254619 | Salomone et al. | Nov 2007 | A1 |
20070286209 | Wang et al. | Dec 2007 | A1 |
20070297438 | Meylan et al. | Dec 2007 | A1 |
20080002692 | Meylan et al. | Jan 2008 | A1 |
20080062923 | Ponnuswamy | Mar 2008 | A1 |
20080080446 | Chung | Apr 2008 | A1 |
20080112348 | Park et al. | May 2008 | A1 |
20080151814 | Jokela | Jun 2008 | A1 |
20080219196 | Ptasinski | Sep 2008 | A1 |
20110096712 | Kish et al. | Apr 2011 | A1 |
20120176949 | Meylan et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
2005064815 | Jul 2005 | WO |
Entry |
---|
Sharma, Prem S., “White Paper: Is Your Network Ready for Mobile Voice? A Closer Look at Recent Technologies that Enable Pervasive Voice Over Wi-Fi”, Jan. 2007, pp. 1-17, V2.0, Aruba Networks. |
Number | Date | Country | |
---|---|---|---|
20110122804 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11728255 | Mar 2007 | US |
Child | 13016530 | US |