This is generally related to the technical field of networking. More specifically, this disclosure is related to systems and methods for facilitating a network interface controller (NIC) with efficient command management.
As network-enabled devices and applications become progressively more ubiquitous, various types of traffic as well as the ever-increasing network load continue to demand more performance from the underlying network architecture. For example, applications such as high-performance computing (HPC), media streaming, and Internet of Things (IOT) can generate different types of traffic with distinctive characteristics. As a result, in addition to conventional network performance metrics such as bandwidth and delay, network architects continue to face challenges such as scalability, versatility, and efficiency.
A network interface controller (NIC) capable of efficient command management is provided. The NIC can be equipped with a host interface, an arbitration module, and a command management module. During operation, the host interface can couple the NIC to a host device. The arbitration module can select a command queue of the host device for obtaining a command. The command management module can determine whether an internal buffer associated with the command queue includes a command. If the internal buffer includes the command, the command management module can obtain the command from the internal buffer. On the other hand, if the internal buffer is empty, the command management module can obtain the command from the command queue via the host interface.
In the figures, like reference numerals refer to the same figure elements.
Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown.
The present disclosure describes systems and methods that facilitate dynamic command management in a network interface controller (NIC). The NIC allows a host to communicate with a data-driven network.
The embodiments described herein solve the problem of efficiently transferring commands to a NIC by (i) facilitating a command queue in the host device and an internal command buffer in the NIC for large-scale and low-latency command transfers, respectively, and (ii) dynamically selecting between the command queue and internal buffer for receiving a command.
During operation, a host device of a NIC can issue a command for a data operation (e.g., a “GET” or a “PUT” command of remote direct memory access (RDMA)) to the NIC. Consequently, the host device can transfer the command (e.g., a direct memory access (DMA) descriptor of the command) to the NIC. If the host device needs to transfer a large number of commands to the NIC, the host device may store the commands in a command queue of the host device. The host device may maintain the command queue in the memory of the host device. When the NIC is ready for a new command (e.g., has available resources for the next command), the NIC can request the command from the host device. The processor of the host device can then transfer the command to the NIC.
This read-based approach is based on the NIC accessing the memory of the host device. Therefore, the read-based approach can be referred to as the memory-based command path. The memory-based command path can allow large-scale transfer to the NIC and facilitate efficient bandwidth utilization of the internal bandwidth of the host device. However, the memory-based command path can have high latency for the command transfer because the interface system (or processor interface) can be accessed multiple times for accessing the command.
To transfer a command with low latency, the host device may transfer commands associated with small amounts of data to an internal command buffer of the NIC. In some embodiments, the processor of the host device may write in the internal buffer of the NIC. This write-based approach can provide data transfer with low latency. Therefore, the write-based approach can be referred to as the low-latency command path. However, the low-latency command path can limit the volume of transfer since the internal buffer of the NIC can have limited capacity.
To solve this problem, the NIC can combine both approaches to facilitate an efficient transfer rate with low latency. The host device may maintain a command queue for a respective flow of commands (e.g., based on traffic class) in the memory of the host device. If an application issues a command for the NIC, the command can be stored in a corresponding command queue. The host device can then notify the NIC regarding the new command by advancing a write pointer. Since any application may write in the command queue, this approach can be independent of the application. The NIC can then issue a read operation to the command queue and advance a pre-fetch pointer of the queue. When the data is returned, the NIC can process the command and advance a read pointer.
However, if the command queue likely to be empty (i.e., any commands previously written to the command queue are known to have been, or are likely to have been processed by the NIC)), the host device may insert a command into the internal buffer of the NIC. The NIC may maintain an internal buffer for a respective command queue of the host device. The buffer can have a fixed size that may host a limited number of commands. Since the command can be directly written into the internal buffer, the NIC can avoid a round trip data exchange via the internal communication channel (e.g., a peripheral component interconnect express (PCIe) channel). In this way, the NIC can reduce the latency of issuing commands to the NIC. By dynamically switching between the command paths, the host device can select a command path that can efficiently transfer commands.
One embodiment of the present invention provides a NIC that can be equipped with a host interface, an arbitration logic block, and a command management logic block. During operation, the host interface can couple the NIC to a host device. The arbitration logic block can select a command queue of the host device for obtaining a command. The command management logic block can receive the command via the host interface and determine whether an internal buffer associated with the command queue includes a command. If the internal buffer includes the command, the command management logic block can obtain the command from the internal buffer. On the other hand, if the internal buffer is empty, the command management logic block can obtain the command from the command queue via the host interface.
In a variation on this embodiment, the command management logic block can provide the host device one or more of: (i) processing information associated with the internal buffer, and (ii) state information comprising a read pointer of the command queue.
In a variation on this embodiment, the command management logic block can determine that the command queue has a new command based on the advancement of a write pointer of the command queue.
In a variation on this embodiment, the arbitration logic block can select the command queue from a plurality of command queues in a memory of the host device.
In a further variation, the NIC can also include a corresponding internal buffer for a respective command queue.
In a variation on this embodiment, the command management logic block may drop a new command received from the host interface and destined for the internal buffer upon determining one or more of: (i) insufficient capacity in the internal buffer to accommodate the new command, and (ii) the command queue is not empty.
In a variation on this embodiment, in response to receiving the new command, the command management logic block can advance a write pointer of the command queue, thereby determining the presence of a command in the command queue.
In a variation on this embodiment, the command management logic block can advance a pre-fetch pointer of the command queue upon requesting the command and advance a read pointer of the command queue upon receiving data associated with the command.
In a variation on this embodiment, the host interface can be a peripheral component interconnect express (PCIe) interface. The command management logic block can then obtain the command from the command queue based on a PCIe read.
In a variation on this embodiment, the command can include an RDMA command.
One embodiment of the present invention provides a computer system that can include a memory device, a host interface, and a command management system. The memory device can store a command queue. The host interface can couple a NIC, which can maintain an internal buffer associated with the command queue. During operation, the system can write a command to the command queue and determine, based on states of the command queue, whether the internal buffer can accept the command. If the internal buffer can accept the command, the system can write, via the host interface, the command into the internal buffer. On the other hand, if the internal buffer cannot accept the command, the system can inform the NIC, via the host interface, that the command has been written into the command queue.
In a variation on this embodiment, the state of the command queue indicates whether the command queue is empty.
In a variation on this embodiment, the system can obtain statistics associated with the performance of the internal buffer and speculatively determine, based on the obtained statistics, whether the command queue is expected to be empty.
In a variation on this embodiment, informing the NIC can include advancing a write pointer of the command queue.
In a variation on this embodiment, the memory device can store a plurality of command queues.
In a variation on this embodiment, the system can write a plurality of commands into the command queue based on a granularity of allowed writes into the command queue. Subsequently, the system can advance a write pointer of the command queue according to the granularity.
In a variation on this embodiment, if the internal buffer cannot accept the command, the system can select the command in the command queue as a backup command.
In a further variation, the NIC can obtain the command from the command queue via the host interface if the command has been dropped at the internal buffer.
In a variation on this embodiment, the host interface can be a PCIe interface. The system can then write the command into the internal buffer based on a PCIe write.
In a variation on this embodiment, the command can include an RDMA command.
In this disclosure, the description in conjunction with
Exemplary NIC Architecture
In some embodiments, HI 210 can be a peripheral component interconnect (PCI) or a peripheral component interconnect express (PCIe) interface. HI 210 can be coupled to a host via a host connection 201, which can include N (e.g., N can be 16 in some chips) PCle Gen 4 lanes capable of operating at signaling rates up to 25 Gbps per lane. HNI 210 can facilitate a high-speed network connection 203, which can communicate with a link in switch fabric 100 of
NIC 202 can support one or more of: point-to-point message passing based on Message Passing Interface (MPI), remote memory access (RMA) operations, offloading and progression of bulk data collective operations, and Ethernet packet processing. When the host issues an MPI message, NIC 202 can match the corresponding message type. Furthermore, NIC 202 can implement both eager protocol and rendezvous protocol for MPI, thereby offloading the corresponding operations from the host.
Furthermore, the RMA operations supported by NIC 202 can include PUT, GET, and Atomic Memory Operations (AMO). NIC 202 can provide reliable transport. For example, if NIC 202 is a source NIC, NIC 202 can provide a retry mechanism for idempotent operations. Furthermore, connection-based error detection and retry mechanism can be used for ordered operations that may manipulate a target state. The hardware of NIC 202 can maintain the state necessary for the retry mechanism. In this way, NIC 202 can remove the burden from the host (e.g., the software). The policy that dictates the retry mechanism can be specified by the host via the software, thereby ensuring flexibility in NIC 202.
Furthermore, NIC 202 can facilitate triggered operations, a general-purpose mechanism for offloading, and progression of dependent sequences of operations, such as bulk data collectives. NIC 202 can support an application programming interface (API) (e.g., libfabric API) that facilitates fabric communication services provided by switch fabric 100 of
NIC 202 can include a Command Queue (CQ) unit 230. CQ unit 230 can be responsible for fetching and issuing host side commands. CQ unit 230 can include command queues 232 and schedulers 234. Command queues 232 can include two independent sets of queues for initiator commands (PUT, GET, etc.) and target commands (Append, Search, etc.), respectively. Command queues 232 can be implemented as circular buffers maintained in the memory of NIC 202. Applications running on the host can write to command queues 232 directly. Schedulers 234 can include two separate schedulers for initiator commands and target commands, respectively. The initiator commands are sorted into flow queues 236 based on a hash function. One of flow queues 236 can be allocated to a unique flow. Furthermore, CQ unit 230 can further include a triggered operations module (or logic block) 238, which is responsible for queuing and dispatching triggered commands.
Outbound transfer engine (OXE) 240 can pull commands from flow queues 236 in order to process them for dispatch. OXE 240 can include an address translation request unit (ATRU) 244 that can send address translation requests to address translation unit (ATU) 212. ATU 212 can provide virtual to physical address translation on behalf of different engines, such as OXE 240, inbound transfer engine (IXE) 250, and event engine (EE) 216. ATU 212 can maintain a large translation cache 214. ATU 212 can either perform translation itself or may use host-based address translation services (ATS). OXE 240 can also include message chopping unit (MCU) 246, which can fragment a large message into packets of sizes corresponding to a maximum transmission unit (MTU). MCU 246 can include a plurality of MCU modules. When an MCU module becomes available, the MCU module can obtain the next command from an assigned flow queue. The received data can be written into data buffer 242. The MCU module can then send the packet header, the corresponding traffic class, and the packet size to traffic shaper 248. Shaper 248 can determine which requests presented by MCU 246 can proceed to the network.
Subsequently, the selected packet can be sent to packet and connection tracking (PCT) 270. PCT 270 can store the packet in a queue 274. PCT 270 can also maintain state information for outbound commands and update the state information as responses are returned. PCT 270 can also maintain packet state information (e.g., allowing responses to be matched to requests), message state information (e.g., tracking the progress of multi-packet messages), initiator completion state information, and retry state information (e.g., maintaining the information required to retry a command if a request or response is lost). If a response is not returned within a threshold time, the corresponding command can be retrieved from retry buffer 272. PCT 270 can facilitate connection management for initiator and target commands based on source tables 276 and target tables 278, respectively. For example, PCT 270 can update its source tables 276 to track the necessary state for reliable delivery of the packet and message completion notification. PCT 270 can forward outgoing packets to HNI 220, which stores the packets in outbound queue 222.
NIC 202 can also include an IXE 250, which provides packet processing if NIC 202 is a target or a destination. IXE 250 can obtain the incoming packets from HNI 220. Parser 256 can parse the incoming packets and pass the corresponding packet information to a List Processing Engine (LPE) 264 or a Message State Table (MST) 266 for matching. LPE 264 can match incoming messages to buffers. LPE 264 can determine the buffer and start address to be used by each message. LPE 264 can also manage a pool of list entries 262 used to represent buffers and unexpected messages. MST 266 can store matching results and the information required to generate target side completion events. An event can be an internal control message for communication among the elements of NIC 202. MST 266 can be used by unrestricted operations, including multi-packet PUT commands, and single-packet and multi-packet GET commands.
Subsequently, parser 256 can store the packets in packet buffer 254. IXE 250 can obtain the results of the matching for conflict checking. DMA write and AMO module 252 can then issue updates to the memory generated by write and AMO operations. If a packet includes a command that generates target side memory read operations (e.g., a GET request), the packet can be passed to the OXE 240. NIC 202 can also include an EE 216, which can receive requests to generate event notifications from other modules or units in NIC 202. An event notification can specify that either a full event or a counting event is generated. EE 216 can manage event queues, located within host processor memory, to which it writes full events. EE 216 can forward counting events to CQ unit 230.
Dynamic Command Management in NIC
During operation, device 300 can issue a command 320 for an operation (e.g., an RDMA operation). To transfer the command, host 300 may generate a descriptor of command (e.g., a DMA descriptor) and transfer command 320 to NIC 330. If command 320 is one of a large number of commands, device 300 can store command 320 in a command queue 312 in memory device 304. When NIC 330 has available resources for the next command, NIC 330 can request a command from device 300. If command 320 is the next command, processor 302 can transfer command 320 to NIC 330 via HI 332. Here, NIC 330 can read commands from memory device 304 of host 300. This memory-based command path can allow large-scale command transfer to NIC 300, thereby facilitating efficient bandwidth utilization of interface system 306.
However, the memory-based command path can have high latency for the command transfer because interface system 306 can be accessed multiple times for accessing command 320. Alternatively, if command 320 is associated with a small amount of data (e.g., within a threshold), device 300 may transfer command 320 to an internal command buffer 314 in NIC 330. In some embodiments, processor 302 may write in internal buffer 314. This low-latency command path can provide data transfer with low latency. However, the low-latency command path can limit the volume of transfer since internal buffer 314 can have limited capacity.
To solve this problem, NIC 330 can combine both command paths to facilitate an efficient transfer rate with low latency. Furthermore, device 300 may maintain a plurality of command queues, each for a respective flow of commands, in memory device 304. Command queue 312 can be one of the command queues. When an application running on device 300 issues command 320 for NIC 330, command 320 can be stored in command queue 312. Device 300 can then notify NIC 330 regarding command 320 by advancing a write pointer of command queue 312. NIC 330 can then issue a read operation to command queue 312 via HI 332 and advance a pre-fetch pointer of command queue 312. When the data is returned for command 320, NIC 330 can process command 320 and advance a read pointer of command queue 312.
However, if command queue 312 is empty, device 300 may insert command 320 into internal buffer 314. NIC 330 may maintain an internal buffer for a respective command queue of device 300. Internal buffer 314 can be managed by command queue unit 334. Internal buffer 314 can have a fixed size that may store a limited number of commands. Since command 320 can be directly written into internal buffer 314, NIC 330 can avoid a round trip data exchange with processor 302 via interface channel 306. In this way, internal buffer 314 can reduce the latency of issuing commands to NIC 330. By dynamically switching between command queue 312 and internal buffer 314, host 300 can select a command path that can efficiently transfer commands to NIC 330.
In some embodiments, a device driver 308 of NIC 330 running on the operating system of host 300 may select the command path. Driver 308 can dynamically determine whether to use the memory-based or low-latency command path for a respective command (i.e., on a command-by-command basis). Driver 308 may determine whether there is an outstanding command in command queue 312 and internal buffer 314 based on information from NIC 330. For example, NIC 330 can provide the current locations of one or more pointers of command queue 312 to driver 308. In addition, NIC 330 may also provide statistics on how effectively internal buffer 314 is used. Driver 308 can determine whether to select internal buffer 314 for transferring the next command.
Furthermore, driver 308 can speculatively determine that internal buffer 314 should have available capacity. Based on the determination, driver 308 may select internal buffer 314 for issuing a command if the current status of command queue 312 and internal buffer 314 meet the selection criteria. Otherwise, driver 308 may use command queue 312. Accordingly, NIC 330 can obtain a command from internal buffer 314 if possible. Otherwise, NIC 330 can obtain a command from command queue 312.
Based on the trigger, NIC 330 can determine that command queue 312 has a new command. If NIC 330 selects command queue 312 for processing (e.g., based on an arbitration process among the command queues), NIC 330 can read a command indicated by pre-fetch pointer 354 from command queue 312 and advance pre-fetch pointer 354. For example, if pre-fetch pointer 354 represents the location of command 362, NIC 330 can read command 362 from command queue 312. When the data associated with command 362 is returned to NIC 330, NIC 330 can process command 362 and advance a read pointer 356.
In some embodiments, advancing read pointer 356 can include updating an application-visible copy of read pointer 356 according to a queue-specific policy. NIC 330 can continue to read commands from command queue 312 until the processing resources (e.g., the execution units described in conjunction with
On the other hand, device 300 may determine that a command 364 should be issued to internal buffer 314 if device 300 determines or speculates that command queue 312 is empty. Device 300 can then format command 364 and store command 364 in command queue 312 at the location indicated by a write pointer 352. However, device 300 may not advance write pointer 352 and instead, may write command 364 into internal buffer 364 if device 300 determines or speculates that internal buffer 314 has sufficient capacity to accommodate command 364. Device 300 may perform the write operation using a PCIe based write operation. A write memory barrier, such as an SFENCE instruction, can be used between the respective writes to command queue 312 and internal buffer 314.
Upon detecting the write operation in internal buffer 314, NIC 330 can advance write pointer 358. When NIC 330 selects command queue 312 for processing a command, NIC 330 determines that internal buffer 314 stores a command. Accordingly, NIC 330 reads from internal buffer 314 instead of issuing an interface-based read, such as PCIe read, to command queue 312. Upon obtaining command 364 from internal buffer 314, NIC 330 can advance pre-fetch pointer 354.
It should be noted that the write operations to internal buffer 314 may arrive out of order. Furthermore, the granularity of the write operations can be smaller than that of some commands. NIC 330 can track partial write operations to internal buffer 314 and advance write pointer 352 when the write operations within a block of internal buffer 314 have completed. If internal buffer 314 still includes data of a previous write operation, or command queue 312 has not been empty (i.e., pre-fetch pointer 354 has not been equal to write pointer 352) when operation 364 is issued, NIC 330 may drop command 364. Command 364 in command queue 312 can then operate as the backup command. When NIC 330 has available resources for executing another command, NIC 330 may obtain the next command from command queue 312.
If issuing commands is not speculatively beneficial, the device can maintain memory-based command path (operation 408) and continue to obtain the status of the command queue (operation 402). On the other hand, if the command queue empty (operation 404) or issuing commands is speculatively beneficial (operation 406), the device can switch to the low-latency command path (operation 410). It should be noted that the memory-based command path can be the default option for the device. Unless switched to the low-latency command path, the device can continue to use the memory-based command path to transfer commands to the NIC.
If the low-latency command path is not selected (operation 434), the device can advance the write pointer in the NIC (operation 440). The device can check whether the device's copy of the write pointer has reached the read pointer (operation 442). If the write pointer has not reached the read pointer, the device can continue to generate a command and insert the command into a command queue associated with the command (operation 432). However, if the write pointer has reached the read pointer, the command queue can be full, and the device can refrain from issuing more commands (operation 444).
The NIC can then wait for the requested command to be returned (operation 460). On the other hand, if the internal buffer includes the command, the NIC can obtain the command from the internal buffer associated with the command queue and advance the pre-fetch pointer (operation 464). Upon obtaining the command (operation 460 or 464), the NIC can advance the read pointer (operation 462).
Exemplary Computer System
Computer system 550 can be equipped with a host interface coupling a NIC 520 that facilitates efficient command management. NIC 520 can provide one or more HNIs to computer system 550. NIC 520 can be coupled to a switch 502 via one of the HNIs. NIC 520 can include a command logic block 530, as described in conjunction with
Device driver 580 of NIC 520 running on operating system 570 may select a command path based on the provided information. Driver 580 can dynamically determine whether to use the memory-based or low-latency command path based on the current state of a command queue 560 in memory device 554. Furthermore, driver 580 can speculatively determine that command queue 560 is likely to be empty and internal buffer 536 should have available capacity. Accordingly, NIC 520 can obtain a command from internal buffer 536 if possible. Otherwise, NIC 520 can obtain a command from command queue 560.
Retrieval logic block 532 can determine whether an internal buffer 536 of NIC 220 includes a command. If internal buffer 536 includes a command, retrieval logic block 532 can obtain the command from internal buffer 536. On the other hand, if internal buffer 536 does not include a command, retrieval logic block 532 can obtain a command from command queue 560 in memory device 554. In either case, retrieval module 532 can advance a pre-fetch pointer. Execution logic block 534 can execute the command. Execution logic block 534 can then advance a read pointer.
In summary, the present disclosure describes a NIC that facilitates efficient command management. The NIC can be equipped with a host interface, an arbitration logic block, and a command management logic block. During operation, the host interface can couple the NIC to a host device. The arbitration logic block can select a command queue of the host device for obtaining a command. The command management logic block can determine whether an internal buffer associated with the command queue includes a command. If the internal buffer includes the command, the command management logic block can obtain the command from the internal buffer. On the other hand, if the internal buffer is empty, the command management logic block can obtain the command from the command queue via the host interface.
The methods and processes described above can be performed by hardware logic blocks, modules, or apparatus. The hardware logic blocks, modules, logic blocks, or apparatus can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), dedicated or shared processors that execute a piece of code at a particular time, and other programmable-logic devices now known or later developed. When the hardware logic blocks, modules, or apparatus are activated, they perform the methods and processes included within them.
The methods and processes described herein can also be embodied as code or data, which can be stored in a storage device or computer-readable storage medium. When a processor reads and executes the stored code or data, the processor can perform these methods and processes.
The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/024250 | 3/23/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/236275 | 11/26/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4807118 | Lin et al. | Feb 1989 | A |
5138615 | Lamport et al. | Aug 1992 | A |
5457687 | Newman | Oct 1995 | A |
5937436 | Watkins | Aug 1999 | A |
5960178 | Cochinwala et al. | Sep 1999 | A |
5970232 | Passint et al. | Oct 1999 | A |
5983332 | Watkins | Nov 1999 | A |
6112265 | Harriman et al. | Aug 2000 | A |
6230252 | Passint et al. | May 2001 | B1 |
6246682 | Roy et al. | Jun 2001 | B1 |
6424591 | Yu | Jul 2002 | B1 |
6493347 | Sindhu et al. | Dec 2002 | B2 |
6545981 | Garcia et al. | Apr 2003 | B1 |
6633580 | Toerudbakken et al. | Oct 2003 | B1 |
6674720 | Passint et al. | Jan 2004 | B1 |
6714553 | Poole et al. | Mar 2004 | B1 |
6728211 | Peris et al. | Apr 2004 | B1 |
6732212 | Sugahara et al. | May 2004 | B2 |
6735173 | Lenoski et al. | May 2004 | B1 |
6894974 | Aweva et al. | May 2005 | B1 |
7023856 | Washabaugh et al. | Apr 2006 | B1 |
7133940 | Blightman et al. | Nov 2006 | B2 |
7218637 | Best et al. | May 2007 | B1 |
7269180 | Bly et al. | Sep 2007 | B2 |
7305487 | Blumrich et al. | Dec 2007 | B2 |
7337285 | Tanoue | Feb 2008 | B2 |
7397797 | Alfieri et al. | Jul 2008 | B2 |
7430559 | Lomet | Sep 2008 | B2 |
7441006 | Biran et al. | Oct 2008 | B2 |
7464174 | Ngai | Dec 2008 | B1 |
7483442 | Torudbakken et al. | Jan 2009 | B1 |
7562366 | Pope et al. | Jul 2009 | B2 |
7593329 | Kwan et al. | Sep 2009 | B2 |
7596628 | Aloni et al. | Sep 2009 | B2 |
7620791 | Wentzlaff et al. | Nov 2009 | B1 |
7633869 | Morris et al. | Dec 2009 | B1 |
7639616 | Manula et al. | Dec 2009 | B1 |
7734894 | Wentzlaff et al. | Jun 2010 | B1 |
7774461 | Tanaka et al. | Aug 2010 | B2 |
7782869 | Chitlur Srinivasa | Aug 2010 | B1 |
7796579 | Bruss | Sep 2010 | B2 |
7856026 | Finan et al. | Dec 2010 | B1 |
7933282 | Gupta et al. | Apr 2011 | B1 |
7953002 | Opsasnick | May 2011 | B2 |
7975120 | Sabbatini, Jr. et al. | Jul 2011 | B2 |
8014278 | Subramanian et al. | Sep 2011 | B1 |
8023521 | Woo et al. | Sep 2011 | B2 |
8050180 | Judd | Nov 2011 | B2 |
8077606 | Litwack | Dec 2011 | B1 |
8103788 | Miranda | Jan 2012 | B1 |
8160085 | Voruganti et al. | Apr 2012 | B2 |
8175107 | Yalagandula et al. | May 2012 | B1 |
8249072 | Sugumar et al. | Aug 2012 | B2 |
8281013 | Mundkur et al. | Oct 2012 | B2 |
8352727 | Chen et al. | Jan 2013 | B2 |
8353003 | Noehring et al. | Jan 2013 | B2 |
8443151 | Tang et al. | May 2013 | B2 |
8473783 | Andrade et al. | Jun 2013 | B2 |
8543534 | Alves et al. | Sep 2013 | B2 |
8619793 | Lavian et al. | Dec 2013 | B2 |
8626957 | Blumrich et al. | Jan 2014 | B2 |
8650582 | Archer et al. | Feb 2014 | B2 |
8706832 | Blocksome | Apr 2014 | B2 |
8719543 | Kaminski et al. | May 2014 | B2 |
8811183 | Anand et al. | Aug 2014 | B1 |
8948175 | Bly et al. | Feb 2015 | B2 |
8971345 | McCanne et al. | Mar 2015 | B1 |
9001663 | Attar et al. | Apr 2015 | B2 |
9053012 | Northcott et al. | Jun 2015 | B1 |
9088496 | Vaidya et al. | Jul 2015 | B2 |
9094327 | Jacobs et al. | Jul 2015 | B2 |
9178782 | Matthews et al. | Nov 2015 | B2 |
9208071 | Talagala et al. | Dec 2015 | B2 |
9218278 | Talagala et al. | Dec 2015 | B2 |
9231876 | Mir et al. | Jan 2016 | B2 |
9231888 | Bogdanski et al. | Jan 2016 | B2 |
9239804 | Kegel et al. | Jan 2016 | B2 |
9269438 | Nachimuthu et al. | Feb 2016 | B2 |
9276864 | Pradeep | Mar 2016 | B1 |
9436651 | Underwood et al. | Sep 2016 | B2 |
9455915 | Sinha et al. | Sep 2016 | B2 |
9460178 | Bashyam et al. | Oct 2016 | B2 |
9479426 | Munger et al. | Oct 2016 | B2 |
9496991 | Plamondon et al. | Nov 2016 | B2 |
9544234 | Markine | Jan 2017 | B1 |
9548924 | Pettit et al. | Jan 2017 | B2 |
9594521 | Blagodurov et al. | Mar 2017 | B2 |
9635121 | Mathew et al. | Apr 2017 | B2 |
9742855 | Shuler et al. | Aug 2017 | B2 |
9762488 | Previdi et al. | Sep 2017 | B2 |
9762497 | Kishore et al. | Sep 2017 | B2 |
9830273 | Bk et al. | Nov 2017 | B2 |
9838500 | Ilan et al. | Dec 2017 | B1 |
9853900 | Mula et al. | Dec 2017 | B1 |
9887923 | Chorafakis et al. | Feb 2018 | B2 |
10003544 | Liu et al. | Jun 2018 | B2 |
10009270 | Stark et al. | Jun 2018 | B1 |
10031857 | Menachem et al. | Jul 2018 | B2 |
10050896 | Yang et al. | Aug 2018 | B2 |
10061613 | Brooker et al. | Aug 2018 | B1 |
10063481 | Jiang et al. | Aug 2018 | B1 |
10089220 | McKelvie et al. | Oct 2018 | B1 |
10169060 | Vincent et al. | Jan 2019 | B1 |
10178035 | Dillon | Jan 2019 | B2 |
10200279 | Aljaedi | Feb 2019 | B1 |
10218634 | Aldebert et al. | Feb 2019 | B2 |
10270700 | Burnette et al. | Apr 2019 | B2 |
10305772 | Zur et al. | May 2019 | B2 |
10331590 | Macnamara et al. | Jun 2019 | B2 |
10353833 | Hagspiel et al. | Jul 2019 | B2 |
10454835 | Contavalli et al. | Oct 2019 | B2 |
10498672 | Graham et al. | Dec 2019 | B2 |
10567307 | Fairhurst et al. | Feb 2020 | B2 |
10728173 | Agrawal et al. | Jul 2020 | B1 |
10802828 | Volpe et al. | Oct 2020 | B1 |
10817502 | Talagala et al. | Oct 2020 | B2 |
11128561 | Matthews et al. | Sep 2021 | B1 |
11271869 | Agrawal et al. | Mar 2022 | B1 |
11416749 | Bshara et al. | Aug 2022 | B2 |
11444886 | Stawitzky et al. | Sep 2022 | B1 |
20010010692 | Sindhu et al. | Aug 2001 | A1 |
20010021949 | Blightman | Sep 2001 | A1 |
20010047438 | Forin | Nov 2001 | A1 |
20020174279 | Wynne et al. | Nov 2002 | A1 |
20030016808 | Hu et al. | Jan 2003 | A1 |
20030041168 | Musoll | Feb 2003 | A1 |
20030110455 | Baumgartner et al. | Jun 2003 | A1 |
20030174711 | Shankar | Sep 2003 | A1 |
20030200363 | Futral | Oct 2003 | A1 |
20030223420 | Ferolito | Dec 2003 | A1 |
20040008716 | Stiliadis | Jan 2004 | A1 |
20040059828 | Hooper et al. | Mar 2004 | A1 |
20040062246 | Boucher | Apr 2004 | A1 |
20040095882 | Hamzah et al. | May 2004 | A1 |
20040133634 | Luke et al. | Jul 2004 | A1 |
20040223452 | Santos et al. | Nov 2004 | A1 |
20050021837 | Haselhorst et al. | Jan 2005 | A1 |
20050047334 | Paul et al. | Mar 2005 | A1 |
20050088969 | Carlsen et al. | Apr 2005 | A1 |
20050091396 | Nilakantan et al. | Apr 2005 | A1 |
20050108444 | Flauaus et al. | May 2005 | A1 |
20050108518 | Pandya | May 2005 | A1 |
20050152274 | Simpson | Jul 2005 | A1 |
20050177657 | Pope | Aug 2005 | A1 |
20050182854 | Pinkerton et al. | Aug 2005 | A1 |
20050193058 | Yasuda | Sep 2005 | A1 |
20050270974 | Mayhew | Dec 2005 | A1 |
20050270976 | Yang et al. | Dec 2005 | A1 |
20060023705 | Zoranovic et al. | Feb 2006 | A1 |
20060067347 | Naik et al. | Mar 2006 | A1 |
20060075480 | Noehring et al. | Apr 2006 | A1 |
20060174251 | Pope | Aug 2006 | A1 |
20060203728 | Kwan et al. | Sep 2006 | A1 |
20070061433 | Reynolds et al. | Mar 2007 | A1 |
20070070901 | Aloni et al. | Mar 2007 | A1 |
20070130356 | Boucher | Jun 2007 | A1 |
20070198804 | Moyer | Aug 2007 | A1 |
20070211746 | Oshikiri et al. | Sep 2007 | A1 |
20070242611 | Archer et al. | Oct 2007 | A1 |
20070268825 | Corwin et al. | Nov 2007 | A1 |
20080013453 | Chiang et al. | Jan 2008 | A1 |
20080013549 | Okagawa et al. | Jan 2008 | A1 |
20080071757 | Ichiriu et al. | Mar 2008 | A1 |
20080084864 | Archer et al. | Apr 2008 | A1 |
20080091915 | Moertl et al. | Apr 2008 | A1 |
20080147881 | Krishnamurthy et al. | Jun 2008 | A1 |
20080159138 | Shepherd et al. | Jul 2008 | A1 |
20080253289 | Naven et al. | Oct 2008 | A1 |
20090003212 | Kwan et al. | Jan 2009 | A1 |
20090010157 | Holmes et al. | Jan 2009 | A1 |
20090013175 | Elliott | Jan 2009 | A1 |
20090055496 | Garg et al. | Feb 2009 | A1 |
20090092046 | Naven et al. | Apr 2009 | A1 |
20090141621 | Fan et al. | Jun 2009 | A1 |
20090198958 | Arimilli et al. | Aug 2009 | A1 |
20090259713 | Blumrich et al. | Oct 2009 | A1 |
20090285222 | Hoover et al. | Nov 2009 | A1 |
20100061241 | Sindhu et al. | Mar 2010 | A1 |
20100169608 | Kuo et al. | Jul 2010 | A1 |
20100172260 | Kwan et al. | Jul 2010 | A1 |
20100183024 | Gupta | Jul 2010 | A1 |
20100220595 | Petersen | Sep 2010 | A1 |
20100274876 | Kagan et al. | Oct 2010 | A1 |
20100302942 | Shankar et al. | Dec 2010 | A1 |
20100316053 | Miyoshi et al. | Dec 2010 | A1 |
20110051724 | Scott et al. | Mar 2011 | A1 |
20110066824 | Bestler | Mar 2011 | A1 |
20110072179 | Lacroute et al. | Mar 2011 | A1 |
20110099326 | Jung et al. | Apr 2011 | A1 |
20110110383 | Yang | May 2011 | A1 |
20110128959 | Bando et al. | Jun 2011 | A1 |
20110158096 | Leung et al. | Jun 2011 | A1 |
20110158248 | Vorunganti et al. | Jun 2011 | A1 |
20110164496 | Loh et al. | Jul 2011 | A1 |
20110173370 | Jacobs et al. | Jul 2011 | A1 |
20110185370 | Tamir | Jul 2011 | A1 |
20110264822 | Ferguson et al. | Oct 2011 | A1 |
20110276699 | Pedersen | Nov 2011 | A1 |
20110280125 | Jayakumar | Nov 2011 | A1 |
20110320724 | Mejdrich | Dec 2011 | A1 |
20120093505 | Yeap et al. | Apr 2012 | A1 |
20120102506 | Hopmann et al. | Apr 2012 | A1 |
20120117423 | Andrade et al. | May 2012 | A1 |
20120137075 | Vorbach | May 2012 | A1 |
20120144064 | Parker et al. | Jun 2012 | A1 |
20120144065 | Parker et al. | Jun 2012 | A1 |
20120147752 | Ashwood-Smith et al. | Jun 2012 | A1 |
20120170462 | Sinha | Jul 2012 | A1 |
20120170575 | Mehra | Jul 2012 | A1 |
20120213118 | Lindsay et al. | Aug 2012 | A1 |
20120250512 | Jagadeeswaran et al. | Oct 2012 | A1 |
20120287821 | Godfrey et al. | Nov 2012 | A1 |
20120297083 | Ferguson et al. | Nov 2012 | A1 |
20120300669 | Zahavi | Nov 2012 | A1 |
20120314707 | Epps et al. | Dec 2012 | A1 |
20130010636 | Regula | Jan 2013 | A1 |
20130039169 | Schlansker et al. | Feb 2013 | A1 |
20130060944 | Archer et al. | Mar 2013 | A1 |
20130103777 | Kagan et al. | Apr 2013 | A1 |
20130121178 | Mainaud et al. | May 2013 | A1 |
20130136090 | Liu et al. | May 2013 | A1 |
20130182704 | Jacobs et al. | Jul 2013 | A1 |
20130194927 | Yamaguchi et al. | Aug 2013 | A1 |
20130203422 | Masputra et al. | Aug 2013 | A1 |
20130205002 | Wang et al. | Aug 2013 | A1 |
20130208593 | Nandagopal | Aug 2013 | A1 |
20130246552 | Underwood et al. | Sep 2013 | A1 |
20130290673 | Archer et al. | Oct 2013 | A1 |
20130301645 | Bogdanski et al. | Nov 2013 | A1 |
20130304988 | Totolos et al. | Nov 2013 | A1 |
20130311525 | Neerincx et al. | Nov 2013 | A1 |
20130326083 | Boucher | Dec 2013 | A1 |
20130329577 | Suzuki et al. | Dec 2013 | A1 |
20130336164 | Yang et al. | Dec 2013 | A1 |
20140019661 | Hormuth et al. | Jan 2014 | A1 |
20140032695 | Michels et al. | Jan 2014 | A1 |
20140036680 | Lih et al. | Feb 2014 | A1 |
20140064082 | Yeung et al. | Mar 2014 | A1 |
20140095753 | Crupnicoff et al. | Apr 2014 | A1 |
20140098675 | Frost et al. | Apr 2014 | A1 |
20140119367 | Han et al. | May 2014 | A1 |
20140122560 | Ramey et al. | May 2014 | A1 |
20140129664 | McDaniel et al. | May 2014 | A1 |
20140133292 | Yamatsu et al. | May 2014 | A1 |
20140136646 | Tamir et al. | May 2014 | A1 |
20140169173 | Naouri et al. | Jun 2014 | A1 |
20140185621 | Decusatis et al. | Jul 2014 | A1 |
20140189174 | Ajanovic et al. | Jul 2014 | A1 |
20140207881 | Nussle et al. | Jul 2014 | A1 |
20140211804 | Makikeni et al. | Jul 2014 | A1 |
20140226488 | Shamis et al. | Aug 2014 | A1 |
20140241164 | Cociglio et al. | Aug 2014 | A1 |
20140258438 | Ayoub | Sep 2014 | A1 |
20140301390 | Scott et al. | Oct 2014 | A1 |
20140307554 | Basso et al. | Oct 2014 | A1 |
20140325013 | Tamir et al. | Oct 2014 | A1 |
20140328172 | Kumar et al. | Nov 2014 | A1 |
20140347997 | Bergamasco et al. | Nov 2014 | A1 |
20140362698 | Arad | Dec 2014 | A1 |
20140369360 | Carlstrom | Dec 2014 | A1 |
20140379847 | Williams | Dec 2014 | A1 |
20150003247 | Mejia et al. | Jan 2015 | A1 |
20150006849 | Xu et al. | Jan 2015 | A1 |
20150009823 | Ganga et al. | Jan 2015 | A1 |
20150026361 | Matthews et al. | Jan 2015 | A1 |
20150029848 | Jain | Jan 2015 | A1 |
20150055476 | Decusatis et al. | Feb 2015 | A1 |
20150055661 | Boucher et al. | Feb 2015 | A1 |
20150067095 | Gopal et al. | Mar 2015 | A1 |
20150089495 | Persson et al. | Mar 2015 | A1 |
20150103667 | Elias et al. | Apr 2015 | A1 |
20150124826 | Edsall et al. | May 2015 | A1 |
20150146527 | Kishore et al. | May 2015 | A1 |
20150154004 | Aggarwal | Jun 2015 | A1 |
20150161064 | Pope | Jun 2015 | A1 |
20150180782 | Rimmer et al. | Jun 2015 | A1 |
20150186318 | Kim et al. | Jul 2015 | A1 |
20150193262 | Archer et al. | Jul 2015 | A1 |
20150195388 | Snyder et al. | Jul 2015 | A1 |
20150208145 | Parker et al. | Jul 2015 | A1 |
20150220449 | Stark et al. | Aug 2015 | A1 |
20150237180 | Swartzentruber et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150244804 | Warfield et al. | Aug 2015 | A1 |
20150261434 | Kagan et al. | Sep 2015 | A1 |
20150263955 | Talaski et al. | Sep 2015 | A1 |
20150263994 | Haramaty et al. | Sep 2015 | A1 |
20150288626 | Aybay | Oct 2015 | A1 |
20150365337 | Pannell | Dec 2015 | A1 |
20150370586 | Cooper et al. | Dec 2015 | A1 |
20160006664 | Sabato et al. | Jan 2016 | A1 |
20160012002 | Arimilli et al. | Jan 2016 | A1 |
20160028613 | Haramaty et al. | Jan 2016 | A1 |
20160065455 | Wang et al. | Mar 2016 | A1 |
20160094450 | Ghanwani et al. | Mar 2016 | A1 |
20160134518 | Callon et al. | May 2016 | A1 |
20160134535 | Callon | May 2016 | A1 |
20160134559 | Abel et al. | May 2016 | A1 |
20160134573 | Gagliardi et al. | May 2016 | A1 |
20160142318 | Beecroft | May 2016 | A1 |
20160154756 | Dodson et al. | Jun 2016 | A1 |
20160182383 | Pedersen | Jun 2016 | A1 |
20160205023 | Janardhanan | Jul 2016 | A1 |
20160226797 | Aravinthan et al. | Aug 2016 | A1 |
20160254991 | Eckert et al. | Sep 2016 | A1 |
20160259394 | Ragavan | Sep 2016 | A1 |
20160283422 | Crupnicoff et al. | Sep 2016 | A1 |
20160285545 | Schmidtke et al. | Sep 2016 | A1 |
20160285677 | Kashyap et al. | Sep 2016 | A1 |
20160294694 | Parker et al. | Oct 2016 | A1 |
20160294926 | Zur et al. | Oct 2016 | A1 |
20160301610 | Amit et al. | Oct 2016 | A1 |
20160344620 | Santos et al. | Nov 2016 | A1 |
20160381189 | Caulfield et al. | Dec 2016 | A1 |
20170024263 | Verplanken | Jan 2017 | A1 |
20170039063 | Gopal et al. | Feb 2017 | A1 |
20170041239 | Goldenberg et al. | Feb 2017 | A1 |
20170048144 | Liu | Feb 2017 | A1 |
20170054633 | Underwood et al. | Feb 2017 | A1 |
20170091108 | Arellano et al. | Mar 2017 | A1 |
20170097840 | Bridgers | Apr 2017 | A1 |
20170103108 | Datta et al. | Apr 2017 | A1 |
20170118090 | Pettit et al. | Apr 2017 | A1 |
20170118098 | Littlejohn et al. | Apr 2017 | A1 |
20170149920 | Sammatshetti | May 2017 | A1 |
20170153852 | Ma et al. | Jun 2017 | A1 |
20170177541 | Berman et al. | Jun 2017 | A1 |
20170220500 | Tong | Aug 2017 | A1 |
20170237654 | Turner et al. | Aug 2017 | A1 |
20170237671 | Rimmer et al. | Aug 2017 | A1 |
20170242753 | Sherlock et al. | Aug 2017 | A1 |
20170250914 | Caulfield et al. | Aug 2017 | A1 |
20170251394 | Johansson et al. | Aug 2017 | A1 |
20170270051 | Chen et al. | Sep 2017 | A1 |
20170272331 | Lissack | Sep 2017 | A1 |
20170272370 | Ganga et al. | Sep 2017 | A1 |
20170286316 | Doshi et al. | Oct 2017 | A1 |
20170289066 | Haramaty et al. | Oct 2017 | A1 |
20170295098 | Watkins et al. | Oct 2017 | A1 |
20170324664 | Xu et al. | Nov 2017 | A1 |
20170371778 | McKelvie et al. | Dec 2017 | A1 |
20180004705 | Menachem et al. | Jan 2018 | A1 |
20180019948 | Patwardhan et al. | Jan 2018 | A1 |
20180026878 | Zahavi et al. | Jan 2018 | A1 |
20180077064 | Wang | Mar 2018 | A1 |
20180083868 | Cheng | Mar 2018 | A1 |
20180097645 | Rajagopalan et al. | Apr 2018 | A1 |
20180097912 | Chumbalkar et al. | Apr 2018 | A1 |
20180113618 | Chan et al. | Apr 2018 | A1 |
20180115469 | Erickson et al. | Apr 2018 | A1 |
20180131602 | Civanlar et al. | May 2018 | A1 |
20180131678 | Agarwal et al. | May 2018 | A1 |
20180150374 | Ratcliff | May 2018 | A1 |
20180152317 | Chang et al. | May 2018 | A1 |
20180152357 | Natham et al. | May 2018 | A1 |
20180173557 | Nakil et al. | Jun 2018 | A1 |
20180183724 | Callard et al. | Jun 2018 | A1 |
20180191609 | Caulfield et al. | Jul 2018 | A1 |
20180198736 | Labonte et al. | Jul 2018 | A1 |
20180212876 | Bacthu et al. | Jul 2018 | A1 |
20180212902 | Steinmacher-Burow | Jul 2018 | A1 |
20180219804 | Graham et al. | Aug 2018 | A1 |
20180225238 | Karguth et al. | Aug 2018 | A1 |
20180234343 | Zdornov et al. | Aug 2018 | A1 |
20180254945 | Bogdanski et al. | Sep 2018 | A1 |
20180260324 | Marathe et al. | Sep 2018 | A1 |
20180278540 | Shalev et al. | Sep 2018 | A1 |
20180287928 | Levi et al. | Oct 2018 | A1 |
20180323898 | Dods | Nov 2018 | A1 |
20180335974 | Simionescu et al. | Nov 2018 | A1 |
20180341494 | Sood et al. | Nov 2018 | A1 |
20190007349 | Wang et al. | Jan 2019 | A1 |
20190018808 | Beard et al. | Jan 2019 | A1 |
20190036771 | Sharpless et al. | Jan 2019 | A1 |
20190042337 | Dinan et al. | Feb 2019 | A1 |
20190042518 | Marolia | Feb 2019 | A1 |
20190044809 | Willis et al. | Feb 2019 | A1 |
20190044827 | Ganapathi et al. | Feb 2019 | A1 |
20190044863 | Mula et al. | Feb 2019 | A1 |
20190044872 | Ganapathi et al. | Feb 2019 | A1 |
20190044875 | Murty et al. | Feb 2019 | A1 |
20190052327 | Motozuka et al. | Feb 2019 | A1 |
20190058663 | Song | Feb 2019 | A1 |
20190068501 | Schneider et al. | Feb 2019 | A1 |
20190081903 | Kobayashi et al. | Mar 2019 | A1 |
20190095134 | Li | Mar 2019 | A1 |
20190104057 | Goel et al. | Apr 2019 | A1 |
20190104206 | Goel et al. | Apr 2019 | A1 |
20190108106 | Aggarwal et al. | Apr 2019 | A1 |
20190108332 | Glew et al. | Apr 2019 | A1 |
20190109791 | Mehra et al. | Apr 2019 | A1 |
20190121781 | Kasichainula | Apr 2019 | A1 |
20190140979 | Levi et al. | May 2019 | A1 |
20190146477 | Cella et al. | May 2019 | A1 |
20190171612 | Shahar et al. | Jun 2019 | A1 |
20190196982 | Rozas et al. | Jun 2019 | A1 |
20190199646 | Singh et al. | Jun 2019 | A1 |
20190253354 | Caulfield et al. | Aug 2019 | A1 |
20190280978 | Schmatz et al. | Sep 2019 | A1 |
20190294575 | Dennison et al. | Sep 2019 | A1 |
20190306134 | Shanbhogue et al. | Oct 2019 | A1 |
20190332314 | Zhang et al. | Oct 2019 | A1 |
20190334624 | Bernard | Oct 2019 | A1 |
20190356611 | Das et al. | Nov 2019 | A1 |
20190361728 | Kumar et al. | Nov 2019 | A1 |
20190379610 | Srinivasan et al. | Dec 2019 | A1 |
20200036644 | Belogolovy et al. | Jan 2020 | A1 |
20200084150 | Burstein et al. | Mar 2020 | A1 |
20200145725 | Eberle et al. | May 2020 | A1 |
20200177505 | Li | Jun 2020 | A1 |
20200177521 | Blumrich et al. | Jun 2020 | A1 |
20200259755 | Wang et al. | Aug 2020 | A1 |
20200272579 | Humphrey et al. | Aug 2020 | A1 |
20200274832 | Humphrey et al. | Aug 2020 | A1 |
20200334195 | Chen et al. | Oct 2020 | A1 |
20200349098 | Caulfield et al. | Nov 2020 | A1 |
20210081410 | Chavan et al. | Mar 2021 | A1 |
20210152494 | Johnsen et al. | May 2021 | A1 |
20210263779 | Haghighat et al. | Aug 2021 | A1 |
20210334206 | Colgrove et al. | Oct 2021 | A1 |
20210377156 | Michael et al. | Dec 2021 | A1 |
20210409351 | Das et al. | Dec 2021 | A1 |
20220131768 | Ganapathi et al. | Apr 2022 | A1 |
20220166705 | Froese | May 2022 | A1 |
20220200900 | Roweth | Jun 2022 | A1 |
20220210058 | Bataineh et al. | Jun 2022 | A1 |
20220217078 | Ford et al. | Jul 2022 | A1 |
20220217101 | Yefet et al. | Jul 2022 | A1 |
20220278941 | Shalev et al. | Sep 2022 | A1 |
20220309025 | Chen et al. | Sep 2022 | A1 |
20230035420 | Sankaran et al. | Feb 2023 | A1 |
20230046221 | Pismenny et al. | Feb 2023 | A1 |
Number | Date | Country |
---|---|---|
101729609 | Jun 2010 | CN |
102932203 | Feb 2013 | CN |
110324249 | Oct 2019 | CN |
110601888 | Dec 2019 | CN |
0275135 | Jul 1988 | EP |
2187576 | May 2010 | EP |
2219329 | Aug 2010 | EP |
2947832 | Nov 2015 | EP |
3445006 | Feb 2019 | EP |
2003-244196 | Aug 2003 | JP |
3459653 | Oct 2003 | JP |
10-2012-0062864 | Jun 2012 | KR |
10-2012-0082739 | Jul 2012 | KR |
10-2014-0100529 | Aug 2014 | KR |
10-2015-0026939 | Mar 2015 | KR |
10-2015-0104056 | Sep 2015 | KR |
10-2017-0110106 | Oct 2017 | KR |
10-1850749 | Apr 2018 | KR |
2001069851 | Sep 2001 | WO |
0247329 | Jun 2002 | WO |
2003019861 | Mar 2003 | WO |
2004001615 | Dec 2003 | WO |
2005094487 | Oct 2005 | WO |
2007034184 | Mar 2007 | WO |
2009010461 | Jan 2009 | WO |
2009018232 | Feb 2009 | WO |
2014092780 | Jun 2014 | WO |
2014137382 | Sep 2014 | WO |
2014141005 | Sep 2014 | WO |
2018004977 | Jan 2018 | WO |
2018046703 | Mar 2018 | WO |
2019072072 | Apr 2019 | WO |
Entry |
---|
Ramakrishnan et al, RFC 3168, “The addition of Explicit Congestion Notification (ECN) to IP”, Sep. 2001 (Year: 2001). |
Extended European Search Report and Search Opinion received for EP Application No. 20809930.9, dated Mar. 2, 2023, 9 pages. |
Extended European Search Report and Search Opinion received for EP Application No. 20810784.7, dated Mar. 9, 2023, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US20/24340, dated Oct. 26, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US20/24342, dated Oct. 27, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/024192, dated Oct. 23, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/024221, dated Oct. 26, 2020, 9 pages. |
International Search Report cited in PCT/US2020/024170 dated Dec. 16, 2020; 3 pages. |
Maabi, S., et al.; “ERFAN: Efficient reconfigurable fault-tolerant deflection routing algorithm for 3-D Network-on-Chip”; Sep. 6-9, 2016. |
Maglione-Mathey, G., et al.; “Scalable Deadlock-Free Deterministic Minimal-Path Routing Engine for InfiniBand-Based Dragonfly Networks”; Aug. 21, 2017; 15 pages. |
Mamidala, A.R., et al.; “Efficient Barrier and Allreduce on Infiniband clusters using multicast and adaptive algorithms”; Sep. 20-23, 2004; 10 pages. |
Mammeri, Z; “Reinforcement Learning Based Routing in Networks: Review and Classification of Approaches”; Apr. 29, 2019; 35 pages. |
Mollah; M. A., et al.; “High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation: 8th International Workshop”; Nov. 13, 2017. |
Open Networking Foundation; “OpenFlow Switch Specification”; Mar. 26, 2015; 283 pages. |
Prakash, P., et al.; “The TCP Outcast Problem: Exposing Unfairness in Data Center Networks”; 2011; 15 pages. |
Ramakrishnan, K., et al.; “The Addition of Explicit Congestion Notification (ECN) to IP”; Sep. 2001; 63 pages. |
Roth, P. C., et al.; “MRNet: A Software-Based Multicast/Reduction Network for Scalable Tools1”; Nov. 15-21, 2003; 16 pages. |
Silveira, J., et al.; “Preprocessing of Scenarios for Fast and Efficient Routing Reconfiguration in Fault-Tolerant NoCs”; Mar. 4-6, 2015. |
Tsunekawa, K.; “Fair bandwidth allocation among LSPs for AF class accommodating TCP and UDP traffic in a Diffserv-capable MPLS network”; Nov. 17, 2005; 9 pages. |
Underwood, K.D., et al.; “A hardware acceleration unit for MPI queue processing”; Apr. 18, 2005; 10 pages. |
Wu, J.; “Fault-tolerant adaptive and minimal routing in mesh-connected multicomputers using extended safety levels”; Feb. 2000; 11 pages. |
Xiang, D., et al.; “Fault-Tolerant Adaptive Routing in Dragonfly Networks”; Apr. 12, 2017; 15 pages. |
Xiang, D., et al; “Deadlock-Free Broadcast Routing in Dragonfly Networks without Virtual Channels”, submission to IEEE transactions on Parallel and Distributed Systems, 2015, 15 pages. |
Awerbuch, B., et al.; “An On-Demand Secure Routing Protocol Resilient to Byzantine Failures”; Sep. 2002; 10 pages. |
Belayneh L.W., et al.; “Method and Apparatus for Routing Data in an Inter-Nodal Communications Lattice of a Massively Parallel Computer System by Semi-Randomly Varying Routing Policies for Different Packets”; 2019; 3 pages. |
Bhatele, A., et al.; “Analyzing Network Health and Congestion in Dragonfly-based Supercomputers”; May 23-27, 2016; 10 pages. |
Blumrich, M.A., et al.; “Exploiting Idle Resources in a High-Radix Switch for Supplemental Storage”; Nov. 2018; 13 pages. |
Chang, F., et al.; “PVW: Designing Vir PVW: Designing Virtual World Ser orld Server Infr er Infrastructur astructure”; 2010; 8 pages. |
Chang, F., et al; “PVW: Designing Virtual World Server Infrastructure”; 2010; 8 pages. |
Chen, F., et al.; “Requirements for RoCEv3 Congestion Management”; Mar. 21, 2019; 8 pages. |
Cisco Packet Tracer; “packet-tracer;—ping”; https://www.cisco.com/c/en/us/td/docs/security/asa/asa-command-reference/I-R/cmdref2/p1.html; 2017. |
Cisco; “Understanding Rapid Spanning Tree Protocol (802.1w)”; Aug. 1, 2017; 13 pages. |
Eardley, Ed, P; “Pre-Congestion Notification (PCN) Architecture”; Jun. 2009; 54 pages. |
Escudero-Sahuquillo, J., et al.; “Combining Congested-Flow Isolation and Injection Throttling in HPC Interconnection Networks”; Sep. 13-16, 2011; 3 pages. |
Hong, Y.; “Mitigating the Cost, Performance, and Power Overheads Induced by Load Variations in Multicore Cloud Servers”; Fall 2013; 132 pages. |
Huawei; “The Lossless Network For Data Centers”; Nov. 7, 2017; 15 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024248, dated Jul. 8, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/024332, dated Jul. 8, 2020, 13 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24243, dated Jul. 9, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24253, dated Jul. 6, 2020, 12 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24256, dated Jul. 7, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24257, dated Jul. 7, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24258, dated Jul. 7, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24259, dated Jul. 9, 2020, 13 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24260, dated Jul. 7, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24268, dated Jul. 9, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24269, dated Jul. 9, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24339, dated Jul. 8, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024125, dated Jul. 10, 2020, 5 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024129, dated Jul. 10, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024237, dated Jul. 14, 2020, 5 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024239, dated Jul. 14, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024241, dated Jul. 14, 2020, 13 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024242, dated Jul. 6, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024244, dated Jul. 13, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024245, dated Jul. 14, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024246, dated Jul. 14, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024254, dated Jul. 13, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024262, dated Jul. 13, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024266, dated Jul. 9, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024270, dated Jul. 10, 2020, 13 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024271, dated Jul. 9, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024272, dated Jul. 9, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024276, dated Jul. 13, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024304, dated Jul. 15, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024311, dated Jul. 17, 2020, 8 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024321, dated Jul. 9, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024324, dated Jul. 14, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024327, dated Jul. 10, 2020, 15 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/24158, dated Jul. 6, 2020, 18 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/24251, dated Jul. 6, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/24267, dated Jul. 6, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US20/24303, dated Oct. 21, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024250, dated Jul. 14, 2020, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20220245072 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
62852203 | May 2019 | US | |
62852273 | May 2019 | US | |
62852289 | May 2019 | US |