The invention relates to health monitoring (e.g., disease monitoring, wellness monitoring, weight monitoring, or other health monitoring).
Despite considerable medical therapy advances, heart failure continues to be a major and growing public health problem. For example, a majority of patients are readmitted within a short span of time after being released from a hospital where they were treated for heart failure. In recent years, many heart failure management programs have provided some form of patient surveillance to facilitate early exacerbation detection and timely intervention, including automated electronic transfer of physiological data and other techniques to enhance home monitoring of heart failure patients. However, typical home monitoring systems (for heart failure patients or patients suffering from other conditions) are based on prediction models that are not personalized for a patient and/or fail to compensate for fewer patient observables (e.g., as compared to observables taken at a hospital). As a result, in some cases, such home monitoring systems may often generate inaccurate predictions or false positive alerts. These and other drawbacks exist.
Aspects of the invention relate to methods, apparatuses, and/or systems for facilitating health monitoring based on a prediction model. In one or more implementations, health monitoring of an individual may be based on an individual-specific prediction model. In one or more other implementations, a prediction model utilized for the health monitoring of an individual need not be specific to the individual (as described in further detail below).
In certain implementations, a computer system may be programmed to: obtain a prediction model for health monitoring; obtain health information associated with an individual, wherein the health information indicates a co-occurrence of health conditions of the individual; generate an individual-specific prediction model associated with the individual based on the prediction model and the co-occurrence indication; obtain subsequent health information associated with the individual, wherein the subsequent health information indicates one or more of (i) subsequent measurements of the individual observed after the co-occurrence of the health conditions or (ii) subsequent health conditions of the individual observed after the co-occurrence of the health conditions; and predict a health status of the individual based on the individual-specific prediction model and the subsequent health information.
In some implementations, the computer system may be programmed to obtain the health information, the subsequent health information, or other information from one or more health monitoring devices (e.g., remote health monitoring device, local health monitoring device, etc.). Each of the health monitoring devices may comprise one or more sensors programmed to collect health-related sensor data. As an example, the health monitoring devices may comprise insertable cardiac monitors, cardiac event recorders, Holter monitors, heart rate trackers, urine monitoring devices, temperature monitoring devices, scales, saturation measurement devices, blood monitoring devices (e.g., clinical chemistry/hematology/biomarker), skin conductance measurement devices, impedance measurement devices, or other health monitoring devices. The sensors may comprise cameras, microphones, oximetry sensors, heart rate sensors, tactile sensors, glucose sensors, accelerometers, gyroscopes, magnetometers, barometric pressure sensors, humidity sensors, temperature sensors, skin conductance sensors, global position system (GPS) sensors, proximity sensors, or other sensors.
Various other aspects, features, and advantages of the invention will be apparent through the detailed description of the invention and the drawings attached hereto. It is also to be understood that both the foregoing general description and the following detailed description are exemplary and not restrictive of the scope of the invention. As used in the specification and in the claims, the singular forms of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. In addition, as used in the specification and the claims, the term “or” means “and/or” unless the context clearly dictates otherwise.
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the implementations of the invention. It will be appreciated, however, by those having skill in the art that the implementations of the invention may be practiced without these specific details or with an equivalent arrangement. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the implementations of the invention.
System 100 may further comprise user device 104 (or multiple user devices 104a-104n). User device 104 may comprise any type of mobile terminal, fixed terminal, or other device. By way of example, user device 104 may comprise a desktop computer, a notebook computer, a tablet computer, a smartphone, a wearable device, or other user device. In some implementations, user device 104 may comprise one or more health monitoring devices and/or sensors thereof (e.g., health monitoring devices 106a-106n, sensors 108a-108n, etc.) for obtaining health information of an individual. Users may, for instance, utilize one or more user devices 104 to interact with server 102 or other components of system 100. It should be noted that, while one or more operations are described herein as being performed by components of server 102, those operations may, in some implementations, be performed by components of user device 104 or other components of system 100.
In some implementations, one or more health monitoring devices 106 may be separate and independent from user devices 104 having general functionalities such as those available on common desktop computers, notebook computers, tablet computers, smartphones, etc. Health monitoring devices 106 may comprise insertable cardiac monitors, cardiac event recorders, Holter monitors, heart rate trackers, urine monitoring devices, temperature monitoring devices, scales, saturation measurement devices, blood monitoring devices (e.g., clinical chemistry/hematology/biomarker), skin conductance measurement devices, impedance measurement devices, or other health monitoring devices.
Health Monitoring Based on a Prediction Model
In some implementations, a prediction model may be personalized for an individual and used to facilitate health monitoring of the individual (e.g., a patient or other individual). As an example, health information associated with the individual may be used to generate a personalized prediction model, and the personalized prediction model may be used along with subsequent health information (e.g., obtained after the health information used to generate the personalized prediction model) to predict a health status of the individual.
In one use case, for example, one or more measurements of the individual, one or more health conditions of the individual, one or more indications of co-occurrences of the health conditions, or other health information may be used to generate the personalized prediction model. The personalized prediction model may be used along with the subsequent health information to generate (i) a prediction of the likelihood that the individual will sustain or re-sustain a morbid event (e.g., heart failure, kidney failure, liver failure, respiratory failure, transient ischemic attack, stroke, or other morbid event), (ii) a prediction of a change in status of a chronic disease of the individual (e.g., an exacerbation related to the chronic disease, an improvement related the chronic disease, the extent of the change in status, the probability of the change in status, or other change-in-status prediction), or (iii) other prediction (e.g., effect of a drug on the individual, health status related to any disease, etc.). In another use case, the prediction model may comprise a non-individual-specific Bayesian model. The individual-specific prediction model (used to generate a health status prediction) may comprise an individual-specific Bayesian model associated with the individual that is generated based on the non-individual-specific Bayesian model and health information associated with the individual. In other use cases, other types of prediction models may be utilized, including Frequentist models, parametric models, non-parametric models, data-mining-based models, statistical models, or other types of models.
In some implementations, model management subsystem 112 may obtain a prediction model. As an example, the prediction model may be obtained from a database (e.g., prediction model database 132) based on a user selection of the prediction model, a type of health status to be predicted for an individual (e.g., heart-failure-related predictions, kidney-failure-related predictions, liver-failure-related predictions, transient-ischemic-attack-related predictions, stroke-related predictions, etc.), or other criteria. As described below, model management subsystem 112 may modify the prediction model or otherwise use the prediction model to generate an individual-specific prediction model associated with an individual.
In some implementations, health information management subsystem 114 may obtain health information associated with an individual. Model management subsystem 112 may obtain a prediction model and generate an individual-specific prediction model associated with the individual based on the obtained prediction model and the health information. As an example, the obtained health information may indicate (i) one or more measurements of the individual, (ii) one or more health conditions of the individual (e.g., determined based on the measurements), (iii) one or more co-occurrences of the health conditions, or (iv) other information. Model management subsystem 112 may generate the individual-specific prediction model based on the prediction model, the measurements of the individual, the health conditions of the individual, the co-occurrences of the health conditions, or other information. Upon generation or obtainment, the individual-specific prediction model and the health information may be respectively stored (e.g., in prediction model database 132, health information database 134, or other storage if not already stored therein).
As another example, the health information may be obtained from one or more health monitoring devices (e.g., insertable cardiac monitors, cardiac event recorders, Holter monitors, heart rate trackers, urine monitoring devices, temperature monitoring devices, scales, saturation measurement devices, blood monitoring devices, skin conductance measurement devices, impedance measurement devices, or other health monitoring devices). These health monitoring devices may comprise one or more sensors, such as cameras, microphones, oximetry sensors, heart rate sensors, tactile sensors, glucose sensors, accelerometers, gyroscopes, magnetometers, barometric pressure sensors, humidity sensors, temperature sensors (e.g., body temperature sensors, skin temperature sensors, ambient temperature sensors, etc.), skin conductance sensors, global position system (GPS) sensors, proximity sensors, or other sensors. The sensors may, for instance, be configured to obtain measurements of the individual (e.g., heart-related measurements, kidney-related measurements, body temperature, pH level, urine output, glucose levels, or other measurements) or other information related to the individual (e.g., temperature of the individual's environment, humidity of the individual's environment, the individual's current location, other individuals detected near the individual via facial recognition, radio frequency identification (RFID) tag, or other techniques, or other information). In one scenario, a health monitoring device may obtain one or more measurements of the individual (e.g., based on information from one or more sensors), and provide information regarding the measurements to a computer system (e.g., comprising server 102) over a network (e.g., network 150) for processing. In another scenario, upon obtaining the measurements, the health monitor device may determine one or more health conditions of the individual based on the measurements, and provide information regarding the health conditions to the computer system over a network. In yet another scenario, the health monitoring device may automatically provide information (e.g., obtained health information, other information related to the individual, etc.) to the computer system (e.g., comprising server 102). If, for instance, the health monitoring device is offline (e.g., not connected to the Internet, not connected to the computer system, etc.), the health monitoring device may store the information and provide the information to the computer system when the health monitoring device comes online (e.g., when the online status is detected by an application of the user device).
As yet another example, the health information may be obtained via one or more manual inputs at one or more user devices (e.g., a health monitoring device that is also a user device, a tablet computer, a smartphone, or other user device). In one use case, when a patient is admitted to a hospital for an episode of heart failure or other morbid event, a physician or other hospital staff (e.g., a nurse, technician, etc.) may submit one or more patient observables for the patient during one or more periods of the patient's stay at the hospital (e.g., until the patient is released from the hospital). These patient observables may, for instance, be submitted as measurements of the patient to supplement measurements obtained via sensors of health monitoring devices or in lieu of the measurements that would otherwise be obtained via such sensors. In a further use case, after the patient is released from the hospital, the patient or other individual assisting the patient (e.g., the patient's caretaker, the patient's family member, etc.) may submit patient observables for the patient as measurements of the patient to supplement measurements obtained via sensors of health monitoring devices or in lieu of the measurements that would otherwise be obtained via such sensors. The patient observables submitted in the foregoing use cases (e.g., by the physician or other hospital staff, the patient or other individual assisting the patient, etc.) may, for example, be submitted using one or more applications at one or more user devices. In some cases, the user devices may automatically provide the submitted patient observables to a computer system (comprising server 102). As an example, if a user device is offline (e.g., not connected to the Internet, not connected to the computer system, etc.), one or more applications of the user device may store the information and provide the information to the computer system when the user device comes online (e.g., when the online status is detected by an application of the user device). In this way, for instance, a user need not wait for the user device to come online before submitting patient observables to the user device (or applications thereof), allowing the patient observables to be collected and submitted at any time (e.g., regardless of whether the user device is currently online).
In some implementations, health information management subsystem 114 may obtain subsequent health information associated with an individual. As an example, the subsequent health information may comprise additional health information corresponding to a subsequent time (after a time corresponding to health information that was used to generate an individual-specific prediction model for the individual). The subsequent health information may indicate (i) one or more subsequent measurements of the individual (e.g., measurements observed after measurements used to generate the individual-specific prediction model was observed, measurements observed after an indication of a co-occurrence of health conditions determined based on the prior-observed measurements, etc.), (ii) one or more subsequent health conditions of the individual (e.g., determined based on the subsequent measurements), (iii) subsequent co-occurrences of the health conditions, or (iv) other information. As another example, the subsequent health information may be obtained from one or more health monitoring devices, via one or more manual inputs at one or more user device, or via other approaches. The subsequent health information may be utilized to further modify an individual-specific prediction model associated with the individual (e.g., new health information may be used to dynamically modify the prediction model), utilized as input to the individual-specific prediction model to predict a health status of the individual, etc.
In some implementations, prediction subsystem 116 may predict a health status of an individual based on an individual-specific prediction model associated with the individual. As an example, the individual-specific prediction model may comprise a modified version of a non-individual-specific prediction model that was modified based on prior health information associated with the individual. The individual's subsequent health information may be obtained, and prediction model 116 may provide the subsequent health information as input to the individual-specific prediction model to generate a prediction of the individual's health status. The health status prediction may comprise a prediction of the likelihood that the individual will sustain or re-sustain a morbid event (e.g., heart failure, kidney failure, liver failure, respiratory failure, transient ischemic attack, stroke, or other morbid event), (ii) a prediction of a change in status of a chronic disease of the individual (e.g., an exacerbation related to the chronic disease, an improvement related the chronic disease, the extent of the change in status, the probability of the change in status, or other change-in-status prediction), or (iii) other prediction (e.g., effect of a drug on the individual, health status related to any disease, etc.).
In one use case, with respect to
In other use cases, with respect to
In some implementations, notification subsystem 118 may provide a notification regarding a predicted health status of an individual to one or more other components of system 100. As an example, one or more health monitoring devices having one or more sensors may obtain health information associated with the individual (e.g., measurements of the individual, health conditions of the individual, or other health information) and provide the health information to health information management subsystem 114. After the health information is processed to generate the predicted health status of the individual, notification subsystem 118 may provide a notification regarding the predicted health status to at least one of the health monitoring devices (e.g., to cause the health monitoring device to present the predicted health status via one or more output devices of the health monitoring device) via one or more wired or wireless connections. As another example, notification subsystem 118 may provide a notification regarding the predicted health status to one or more user devices, such as a desktop computer, a notebook computer, a tablet, a smartphone, a wearable device, or other user device, via one or more wired or wireless connections.
Although some implementations are described herein with respect to an individual-specific prediction model, a prediction model utilized for health monitoring of an individual need not necessarily be specific to the individual in one or more other implementations. In some implementations, a prediction model (e.g., individual-specific or non-individual-specific) for health monitoring may be obtained. As an example, the prediction model may comprise a plurality of nodes associated with organs or tissues, such as a first node associated with a first organ or tissue, a second node associated with a second organ or tissue, a third node associated with a third organ or tissue, and so on. The prediction model may be utilized to predict a status of the individual (e.g., a status of one or more of the organs or tissues of the individual, a status of the individual as a whole, etc.).
In some implementations, a status of the individual may be predicted using a multi-layer approach. As an example, a status of the first organ or tissue of the individual (e.g., a condition of the first organ or tissue) may be predicted based on health information associated with the individual, one or more parameters of the nodes of the prediction model, etc. A status of at least one of the other organs or tissues of the individuals may then be predicted based on the predicted status of the first organ or tissue. As such, for example, one or more predicted statuses of at least one of the organs or tissues of the individual may be utilized to predict one or more statuses of at least another one of the organs or tissues of the individual. With respect to
In one use case, a status of the first organ or tissue of the individual may be predicted based on measurements of the function of the first organ or tissue of the individual (or other health information associated with the individual) and a parameter of the first node associated with the first organ or tissue. In another use case, the prediction of the status of the first organ or tissue may additionally or alternatively be based on measurements of the function of at least one other organ or tissue of the individual and/or a parameter of at least one other node associated with at least one other organ or tissue. Upon predicting the status of the first organ or tissue, the predicted status of the first organ or tissue may be utilized to predict the status of at least one other organ or tissue of the individual.
In another use case, the first node (of the prediction model) associated with the first organ or tissue may be modified based on health information associated with the individual. As an example, one or more parameters of the first node may be added, modified, or removed such that those parameters of the first node (or parameter values thereof) represents a current condition of the first organ or tissue associated with the first node. In a further use case, at least one other node may be modified based on the modified first node. Additionally, or alternatively, the modification of the other node may be based on health information associated with the individual. With respect to
Generation of Individual-Specific Prediction Model
As discussed, in some implementations, an individual-specific prediction model may be generated for an individual based on a non-individual-specific prediction model and health information associated with the individual. In some implementations, model management subsystem 112 may generate a prediction model comprising a graph based on known casual disease relationships and validated quantitative parameters. As an example, the known causal disease relationships and validated quantitative parameters (e.g., literature/research/clinical expertise-derived normal and disease-associated distributions of input laboratory values) may be used to form the nodes of the graph and the respective causative edges thereof. The prediction model may then be personalized for an individual (e.g., a patient or other individual) by introducing personalized parameters derived from the individual's health information, including, for example, input variables taken of the individual when the individual is first admitted to a hospital, input variables taken of the individual during one or more time periods of the individual's stay at the hospital, input variables taken of the individual immediately prior to the individual's release from the hospital (e.g., input variables from the last set of tests for the individual during the particular stay at the hospital). It should be noted that, although some examples described herein derive “learning” data of an individual in a hospital setting, the learning data may be obtained at one or more other settings (e.g., clinical, home, or other setting) in other examples.
In some implementations, the prediction model may be modified to generate the individual-specific prediction model by modifying the prediction model to include one or more parameters based on the individual's health information indicating one or more co-occurrences of health conditions (e.g., model modification by adding the parameters, by modifying the parameters if already existing in the prediction model, etc.). Upon modification, the individual-specific prediction model may comprise modified versions of parameters of the prediction model (prior to the modification) or parameters not included in the prediction model (prior to the modification). As an example, a heart failure patient who has diabetes may have a worse baseline kidney function than a heart failure patient without such co-morbidity. As such, the prediction model for the heart failure patient with diabetes may be adjusted to account for any reduced kidney functions attributable to the patient's diabetes. In this way, for instance, when subsequent monitoring of the patient indicates reduced kidney functions, a system utilizing the personalized prediction model may not necessarily predict a heart failure exacerbation even if the patient's health situation would have otherwise generated such a prediction using a prediction model that did not account for the co-morbidity, thereby reducing inaccurate predictions, false positive alerts, or other issues.
As another example, co-occurring health conditions of the individual may comprise two or more normal population variants co-occurring in the individual. In one use case, patients of different races or ethnicities may generally have health condition spectrums that vary among the different races or ethnicities. For example, the normal spectrum of creatinine levels, sodium levels, pulse pressure, systolic blood pressure, or other observables in one group (e.g., racial, ethnic, regional, etc.) (or subgroups thereof) may be different from the normal spectrum of those foregoing observables in another group. By taking into consideration these normal population variants—whether they are indicative of disease or not, the prediction model for the individual may reduce inaccurate predictions, false positive alerts, or other issues.
In some implementations, model management subsystem 112 may update an individual-specific prediction model associated with an individual. As an example, the individual-specific prediction model may be dynamically updated as additional health information associated with the user is obtained. The most current health information (e.g., the latest observables taken of the individual) may, for instance, be used to modify the individual-specific prediction model so that the prediction model continues to reflect and account for specificities of the individual (e.g., current co-morbidities of the individual or other aspects specific to the individual).
In some implementations, model management subsystem 112 may obtain score information associated with an individual. The score information may indicate one or more scores associated with one or more sets of measurements of the individual or health conditions of the individual. As an example, a physician may assign (i) a score for a set of measurements or health conditions taken or determined for the patient when the patient is first admitted to a hospital, (ii) one or more scores for one or more sets of measurements or health conditions taken or determined for the patient during one or more respective time periods of the patient's stay at the hospital, (iii) a score for a set of measurements or health conditions taken or determined for the patient immediately prior to the patient's release from the hospital, or (iv) other scores for other sets of measurements or health conditions. Health information management subsystem 114 may obtain these assigned scores and associate the assigned scores with the patient in a database (e.g., health information database 134), and other subsystems 112 may obtain the assigned scores from the database (e.g., for generating an individual-specific prediction model, for use in providing a prediction of the patient's health status, etc.).
Upon obtaining a score associated with a set of measurements or health conditions, model management subsystem 112 may associate the obtained score with a subset of measurements or health conditions that is related to the set of measurements or health conditions. As an example, the set of measurements or health conditions may comprise a number of types of measurements or health conditions, and the related subset may comprise fewer types of measurements or health conditions than the number of types of measurements or health conditions of the set (of measurements or health conditions). With respect to
In one use case, observables of a patient may be taken when the patient is admitted to a hospital (or other setting). A physician (e.g., cardiologist, nephrologist, or other physician) may review these observables, including measurements or health conditions with respect to weight, heart rate, respiratory rate, amount of pitting edema (e.g., at the ankles or other areas), fatigue (e.g., which/how many normal daily activities the patient has trouble performing because of fatigue), nausea, dyspnea (e.g., which/how much activity causes shortness of breath), orthopnea (e.g., dyspnea when lying down), nycturia (e.g., how often does the patient wake up to urinate at night), or other observables. Upon review, the physician may assign a score (e.g., 1-10 rating or other scoring technique) to this set of observables that reflects the patient's health status at the time the set of observables was taken (e.g., a status with respect to a chronic disease, a status with respect to a morbid event, a status with respect to a particular health condition, or other status). During one or more other times, the physician may similarly review and assign a score for each set of observables of the patient (e.g., observables taken during one or more respective time periods of the patient's stay at the hospital, observables taken immediately prior to the patient's release from the hospital, etc.). Despite the scores (for the “grade” of the disease at hand) being assigned by the physician based on the physician's review of a full set of observables, the scores may be assigned to respective subsets of the observables (e.g., in the inference mode). For example, although other observables were considered in determining a score, the determined score may be assigned to a subset comprising only those observables suitable for collection in a home monitoring situation. The assignment of the scores to the respective subsets may then be used to personalize a prediction model for the patient or otherwise used to facilitate health monitoring.
In a further use case, when the observables of the patient (e.g., measurements of the patient, health conditions of the patient, etc., suitable for collection in a home monitoring situation) are subsequent taken, the subsequent observables may be compared to the respective subsets of observables to which scores have been assigned. If, for instance, the values of the subsequent observables are similar to the values of the observables in a particular subset, the score associated with the subset may be used as a score for the patient's health status score or weighted heavily in predicting the health status. On the other hand, if the values of the subsequent observables are not similar to the values of the observables in the subset, the associated score may be weighted lightly (or have no weight) in predicting the health status. In this way, for example, a score (e.g., a health status score) that was determined for an individual based on a larger set of observables (e.g., observables collected at a hospital) may still be utilized to predict a health status of the individual based on a smaller set of observables (e.g., observables collected in a home monitoring situation). As such, the prediction based on the assigned scores may reflect at least to some extent a physician's expertise and judgement when presented with a larger set of observables even though only a smaller set of observables is available. Such personalization for prediction of an individual's health status may reduce data noise and/or increase sensitivity and specificity of scoring.
In some implementations, observables of an individual that are not typically quantified may be quantified (e.g., as measurements of the individual) and utilized to facilitate health monitoring and/or health-related predictions. As an example, the quantified observables may be utilized as measurements of the individual to generate an individual-specific prediction model associated with the individual, as measurement inputs to the individual-specific prediction model to generate a prediction of the individual health status, etc. As another example, the quantified observables may enable more accurate comparisons between sets of observations of the individual at different time points.
In some scenarios, observables can be measured at a home using specific devices and provided to a prediction model (e.g., automatically provided upon establishing a connection with a system hosting the prediction model) to obtain a result from the prediction model with regard to disease or other health status of an individual. Coupling the prediction model to these devices may enable quantification of certain observables that are traditionally not quantified (e.g., heart and lung sounds) so that they may be entered into the prediction model as quantitative values, allowing quantitative comparisons between measurements at different time points. The coupling of the prediction model to such devices may additionally or alternatively enable results traditionally derived in a lab to be obtained in a home monitoring situation (e.g., coupling a Magnotech device to the prediction model to enable measurement of c-reactive protein, brain natriuretic peptide, sodium levels, urea nitrogen levels, creatinine, aspartate aminotransferase, gamma-glutamyl transferase, or other observables).
In some scenarios, one or more devices that may be used to obtain health information may comprise: (i) a device to measure weight (e.g., a scale), (ii) a device to measure c-reactive protein, brain natriuretic peptide, sodium levels, urea nitrogen levels, creatinine, aspartate aminotransferase, or gamma-glutamyl transferase (e.g., a Magnotech device), (iii) a blood pressure device, (iv) a heart rhythm measurement device, (v) an electronic stethoscope to quantitatively measure heart sounds (e.g., mitralic and tricuspedalic insufficiency, gallop, etc.), lung sounds, or other sounds, (vi) a device to quantitatively measure lung sounds, pleurafluid, or enlarged heart (e.g., a bioimpedance spectroscopy-based device), (vii) a device to quantitatively measure congested enlarged liver or prominent neck veins, (viii) a device to quantitatively measure pleurafluid, enlarged heart, cardiac output, or mitralic and tricuspedalic valve insufficiency (e.g., an ultrasound device), (ix) a device to quantitatively score pitting edema (e.g., a bioimpedance-based device), (x) a device to measure breathing rate, (xi) a device to measure oxygen saturation (e.g., an oximetry device), or (xii) other device.
In some scenarios, some observables may be provided via a questionnaire or other approach in a quantified or other form. As an example, a patient or other individual acting on behalf of the patient may quantify the patient's symptoms by providing the severity of the symptoms as direct input for a prediction model via a user device (e.g., a desktop computer, a notebook computer, a tablet, a smartphone, a wearable device, or other user device). Such symptoms may, for instance, comprise weight gain, fatigue, orthopnea, nausea, pitting edema (e.g., pretibial, bilateral, sacral when rising in the morning, etc.), or other symptoms.
In some implementations, a prediction model may comprise a graph having a plurality of nodes associated with organs or tissues (or functions thereof), and one or more parameters of the nodes may be added, modified, or removed to generate an individual-specific prediction model. In some implementations, the nodes of the prediction model may comprise one or more nodes associated with a first organ or tissue, one or more nodes associated with a second organ or tissue, one or more nodes associated with a third organ or tissue, and so on. As an example, when a first health condition (related to the first organ or tissue) of an individual is observed to have co-occurred with one or more other health conditions (e.g., a second health condition related to the second organ or tissue, a third health condition related to a third organ or tissue, etc.) of the individual, a first node related to the first organ or tissue may be selected to be modified to account for the co-occurring first health condition in predicting a health status of the individual with respect to at least one of the other co-occurring health conditions (related to the other organs or tissues). The first node (related to the first organ or tissue) may be modified based on the first health condition, a measurement of the individual (e.g., from which the first health condition is determined), or other observable (e.g., related to the first health condition) by adding, modifying, or removing a parameter of the first node.
In some use cases, with respect to
In some use cases, with respect to
Based on personalization of the prediction model, co-morbidities may be taken into account when using the prediction model to generate determinations with respect to the heart failure patient. For example, if the patient also has kidney disease (e.g., due to the patient also having diabetes), the personalized prediction model may learn that a certain level of reduced kidney function in this patient is not due to heart failure (e.g., if the reduced kidney function is still present at the time of release from the hospital when the physician has entered his/her judgement of the patient's heart status as satisfactory for hospital release (e.g., a score indicating that the patient no longer needs to be in the hospital for heart problems). When the patient goes home, the treating medical specialist may tell the patient that he has to continue taking his drugs and would like to have him to provide his observables every 2 or 3 days, such as his weight, heart rate, respiratory rate, pitting edema at the ankles, and fill in a questionnaire with symptoms (e.g., normal daily activities the patient has trouble performing because of fatigue, severity of the patient's nausea, shortness of breath when the patient is walking one flight of stairs, severity of the patient's orthopnea, how often the patient must get up to urinate at night, etc.). These observables are provided as input to the personalized prediction model (508), and the output of the prediction model (e.g., probability of heart failure or other health status) may be provided to the patient, the patient's general practitioner, the patient's medical specialist, or other individual (510).
As an example, after some time, the prediction model may flag an alert as a result of a prediction of an increasing probability of heart failure (e.g., over 50%) (512). Based on the alert, a visualization that may be presented (e.g., to the patient's physician or other individual) may show that the left part of the heart is probably failing and that observables primarily responsible for the left heart failure are pitting edema, weight gain, increasing nycturia, and orthopnea. Based on the alert, the prediction model may additionally or alternative suggest to the patient's physician to obtain certain additional observable information (e.g., oxygen saturation, a sodium determination, etc.) to increase the reliability of the probability prediction.
When the additional observable information is provided to the prediction model (e.g., automatically via health monitoring devices at home, a lab, a hospital, etc., or manually entered by the physician or other individual based on his/her observables of the patient) (514), a probability of exacerbation of heart failure may be confirmed. Additionally, or alternatively, the prediction model may alert to the patient's reduced kidney function which is co-occurring with the exacerbation of heart failure (e.g., and may be relevant for decisions on changing drug regimen). Based on this alert, the patient's physician (e.g., general practitioner, medical specialist, etc.) may recommend increasing ACE blocker (angiotensin-converting-enzyme blocker). The prediction model may continue to monitor the patient's health status, and any improvements or exacerbation may be automatically entered into the patient's electronic medical record.
As an example, with respect to
In one use case, the state of nodes 602 and 604 shown in
The state of nodes 602 and 604 shown in
In a further use case, additional health monitoring devices and/or sensors may be provided to extend the available data set in the home or other limited setting. For example, some lab values as the serum Na concentration or creatinine could be measured from a blood droplet or a measure for pleura fluid could be obtained from a thorax impedance measurement. In one scenario, if a worsening value for left/right ventricular decompensation is predicted based on a limited set of available observables, additional health monitoring devices and/or sensors may be used to obtain a more precise value (or otherwise confirm the prediction based on the limited set of available observables).
The state of nodes 602 and 604 shown in
The state of nodes 602 and 604 shown in
Examples Flowcharts
In some implementations, the methods may be implemented in one or more processing devices (e.g., a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information). The processing devices may include one or more devices executing some or all of the operations of the methods in response to instructions stored electronically on an electronic storage medium. The processing devices may include one or more devices configured through hardware, firmware, and/or software to be specifically designed for execution of one or more of the operations of the methods.
In an operation 702, a prediction model for health monitoring may be obtained. Operation 702 may be performed by a model management subsystem that is the same as or similar to model management subsystem 112, in accordance with one or more implementations.
In an operation 704, health information associated with an individual may be obtained. As an example, the health information may indicate a co-occurrence of health conditions of the individual (e.g., determined based on measurements of the individual). Operation 704 may be performed by a health information management subsystem that is the same as or similar to health information management subsystem 114, in accordance with one or more implementations.
In an operation 706, an individual-specific prediction model associated with the individual may be generated based on the prediction model and the co-occurrence indication. Operation 706 may be performed by a model management subsystem that is the same as or similar to model management subsystem 112, in accordance with one or more implementations.
In an operation 708, subsequent health information associated with the individual may be obtained. As an example, the subsequent health information may indicate (i) subsequent measurements of the individual observed after the co-occurrence of the health conditions, (ii) subsequent health conditions of the individual (e.g., determined based on the subsequent measurements), or (iii) other information. Operation 708 may be performed by a health information management subsystem that is the same as or similar to health information management subsystem 114, in accordance with one or more implementations.
In an operation 710, a health status of the individual may be predicted based on the individual-specific prediction model and the subsequent health information. Operation 710 may be performed by a prediction subsystem that is the same as or similar to prediction management subsystem 116, in accordance with one or more implementations.
In an operation 802, health information associated with an individual may be obtained from a health monitoring device. The health information may indicate (i) measurements of the individual, (ii) health conditions of the individual (e.g., determined based on the measurements), or (iii) other information. Operation 802 may be performed by a health information management subsystem that is the same as or similar to health information management subsystem 114, in accordance with one or more implementations.
In an operation 804, the health information may be processed based on an individual-specific prediction model to predict a health status of the individual. As an example, the individual-specific prediction model may be generated based on prior measurements of the individual, prior health conditions of the individual (e.g., determined based on the prior measurements), or other information. A prediction model for predicting health status may, for instance, be modified based on the prior measurements and/or the prior health conditions to generate the individual-specific prediction model. The individual-specific prediction model may comprise modified versions of parameters of the unmodified prediction model, parameters not included in the unmodified prediction model, or other parameters. Operation 804 may be performed by a health information management subsystem that is the same as or similar to health information management subsystem 114, in accordance with one or more implementations.
In an operation 806, a notification regarding the predicted health status may be provided to the health monitoring device. As an example, the notification may be provided such that the predicted health status may be presented via a output device of the health monitoring device (e.g., a display screen, an audio output device, or other output device). Operation 806 may be performed by a notification subsystem that is the same as or similar to notification subsystem 118, in accordance with one or more implementations.
In an operation 902, a measurement of an individual may be obtained at a health monitoring device (e.g., based on information from a sensor of the health monitoring device). Operation 902 may be performed by a health monitoring device that is the same as or similar to health monitoring device 106, in accordance with one or more implementations.
In an operation 904, information regarding the measurement of the individual may be provided to a remote computer system. As an example, the health monitoring device may be a local health monitoring device for collecting and/or processing measurements of the individual, and the collected measurements may be provided to the remote computer system for processing (e.g., to predict a health status of the individual based on an individual-specific prediction model and the collected measurements). Operation 904 may be performed by a health monitoring device that is the same as or similar to health monitoring device 106, in accordance with one or more implementations.
In an operation 906, a health condition of the individual may be determined at the health monitoring device based on the measurement (obtained based on information from the sensor of the health monitoring device). Operation 906 may be performed by a health monitoring device that is the same as or similar to health monitoring device 106, in accordance with one or more implementations.
In an operation 908, information regarding the health condition of the individual may be provided to a remote computer system. As an example, the health monitoring device may be a local health monitoring device for collecting and/or processing measurements of the individual, and, upon determination of health conditions of the individual based on the collected measurements, the health conditions may be provided to the remote computer system for processing (e.g., to predict a health status of the individual based on an individual-specific prediction model and the health conditions). Operation 908 may be performed by a health monitoring device that is the same as or similar to health monitoring device 106, in accordance with one or more implementations.
In an operation 1002, a first health condition related to a first organ or tissue of the individual, a second health condition related to a second organ or tissue of the individual, or other health condition of the individual may be determined. As an example, the first and second health conditions may be determined based on health information obtained from one or more health monitoring devices. The health information (obtained from the health monitoring devices) may indicate measurements of the individual collected via sensors of the health monitoring devices, health conditions (e.g., determined based on the collected measurements), or other information. Additionally, or alternatively, the health information may indicate a co-occurrence of health conditions of the individual such as an indication of a co-occurrence of the first and second health conditions. Operation 1002 may be performed by a health information management subsystem that is the same as or similar to health information management subsystem 114, in accordance with one or more implementations.
In an operation 1004, a node associated with one of the organs or tissues (e.g., the first organ or tissue) may be selected from nodes of a prediction model. As an example, the node may be modified to generate an individual-specific prediction model for predicting a health status of the individual that is related to another one of the organs or tissues (e.g., the second organ or tissue). Operation 1004 may be performed by a model management subsystem that is the same as or similar to model management subsystem 112, in accordance with one or more implementations.
In an operation 1006, the selected node may be modified based on (i) the first health condition or (ii) a measurement of the individual from which the first health condition is determined. Operation 1006 may be performed by a model management subsystem that is the same as or similar to model management subsystem 112, in accordance with one or more implementations.
In an operation 1008, a health status of the individual (that is related to the second organ or tissue) may be predicted based on an individual-specific prediction model comprising the modified node. As an example, the individual-specific prediction model and subsequent health information (e.g., obtained from one or more health monitoring devices) may be utilized to predict the health status of the individual. Operation 1008 may be performed by a prediction subsystem that is the same as or similar to prediction subsystem 116, in accordance with one or more implementations.
In an operation 1102, a score associated with a set of observables (e.g., measurements, health conditions, etc.) of an individual may be obtained. Operation 1102 may be performed by a model management subsystem that is the same as or similar to model management subsystem 112, in accordance with one or more implementations.
In an operation 1104, the score may be associated with a subset of observables (related to the set of observables) in an individual-specific prediction model associated with the individual. As an example, the subset of observables may comprise a fewer number of types of observables than the number of types of observables of the set of observables. Upon association, for instance, the score may be used to generate a prediction based on observables of the individual that correspond to the types of observables of the subset (e.g., as opposed to requiring observables for all of the types of observables of the set of observables with which the score is initially associated). Operation 1104 may be performed by a model management subsystem that is the same as or similar to model management subsystem 112, in accordance with one or more implementations.
In an operation 1106, a health status of the individual may be predicted based on the associated score without one or more observables of the set of observables that correspond to types of observables not included in the subset of observables. As an example, after the association of the score with the subset of observables, the individual's health information may be obtained (e.g., from one or more health monitoring devices) and compared against the subset of observables to determine a health status score. If, for instance, the obtained health information comprises the latest observables of the individual, and these latest observables are similar or fall within range of the subset of observables, the score may be used as the health status score or weighted heavily in calculating the health status score. On the other hand, if the latest observables are not similar or do not fall within range of the subset of observables, the score may be weighted lightly (or have no weight) in calculating the health status score. As indicated, in some implementations, one or more observables (or observable types thereof) on which determination of the associated score was based may not be needed to predict the health status of the individual using the associated score. Operation 1106 may be performed by a prediction subsystem that is the same as or similar to prediction subsystem 116, in accordance with one or more implementations.
In an operation 1202, a prediction model comprising a plurality of nodes associated with organs or tissues may be obtained. The nodes may comprise a first node associated with a first organ or tissue, a second node associated with a second organ or tissue, or other nodes associated with other organs or tissues. Operation 1202 may be performed by a model management subsystem that is the same as or similar to model management subsystem 112, in accordance with one or more implementations.
In an operation 1204, health information associated with an individual may be obtained. The health information may comprise measurements of the individual, health conditions of the individual, or other health information. Operation 1204 may be performed by a health information management subsystem that is the same as or similar to health information management subsystem 114, in accordance with one or more implementations.
In an operation 1206, a status of the first organ or tissue of the individual may be predicted based on the health information and a parameter of the first node associated with the first organ or tissue. Operation 1206 may be performed by a prediction subsystem that is the same as or similar to prediction subsystem 116, in accordance with one or more implementations.
In an operation 1208, a status of the second organ or tissue may be predicted based on the predicted status of the first organ or tissue and a parameter of the second node associated with the second organ or tissue. Operation 1208 may be performed by a prediction subsystem that is the same as or similar to prediction subsystem 116, in accordance with one or more implementations.
In an operation 1302, a prediction model comprising a plurality of nodes associated with organs or tissues may be obtained. The nodes may comprise a first node associated with a first organ or tissue, a second node associated with a second organ or tissue, or other nodes associated with other organs or tissues. Operation 1302 may be performed by a model management subsystem that is the same as or similar to model management subsystem 112, in accordance with one or more implementations.
In an operation 1304, health information associated with an individual may be obtained. The health information may comprise measurements of the individual, health conditions of the individual, or other health information. Operation 1304 may be performed by a health information management subsystem that is the same as or similar to health information management subsystem 114, in accordance with one or more implementations.
In an operation 1306, the first node associated with the first organ or tissue may be modified based on the health information. Operation 1306 may be performed by a model management subsystem that is the same as or similar to model management subsystem 112, in accordance with one or more implementations.
In an operation 1308, the second node associated with the second organ or tissue may be modified based on the modified first node. Operation 1308 may be performed by a model management subsystem that is the same as or similar to model management subsystem 112, in accordance with one or more implementations.
In an operation 1310, a health status of the individual with respect to the second organ or tissue may be provided based on the modified prediction model. Operation 1310 may be performed by a prediction subsystem that is the same as or similar to prediction subsystem 116, in accordance with one or more implementations.
In some implementations, the various computers and subsystems illustrated in
The electronic storages may comprise non-transitory storage media that electronically stores information. The electronic storage media of the electronic storages may include one or both of system storage that is provided integrally (e.g., substantially non-removable) with the servers or removable storage that is removably connectable to the servers via, for example, a port (e.g., a USB port, a firewire port, etc.) or a drive (e.g., a disk drive, etc.). The electronic storages may include one or more of optically readable storage media (e.g., optical disks, etc.), magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc.), electrical charge-based storage media (e.g., EEPROM, RAM, etc.), solid-state storage media (e.g., flash drive, etc.), and/or other electronically readable storage media. The electronic storages may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources). The electronic storage may store software algorithms, information determined by the processors, information received from the servers, information received from client computing platforms, or other information that enables the servers to function as described herein.
The processors may be programmed to provide information processing capabilities in the servers. As such, the processors may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. In some implementations, the processors may include a plurality of processing units. These processing units may be physically located within the same device, or the processors may represent processing functionality of a plurality of devices operating in coordination. The processors may be programmed to execute computer program instructions to perform functions described herein of subsystems 112-118 or other subsystems. The processors may be programmed to execute computer program instructions by software; hardware; firmware; some combination of software, hardware, or firmware; and/or other mechanisms for configuring processing capabilities on the processors.
It should be appreciated that the description of the functionality provided by the different subsystems 112-118 described herein is for illustrative purposes, and is not intended to be limiting, as any of subsystems 112-118 may provide more or less functionality than is described. For example, one or more of subsystems 112-118 may be eliminated, and some or all of its functionality may be provided by other ones of subsystems 112-118. As another example, additional subsystems may be programmed to perform some or all of the functionality attributed herein to one of subsystems 112-118.
Although the present invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred implementations, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed implementations, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any implementation can be combined with one or more features of any other implementation.
This application claims the benefit of or priority of U.S. patent application Ser. No. 62/257,290, filed Nov. 19, 2015, all of which are incorporated herein in whole by reference.
Number | Date | Country | |
---|---|---|---|
62257290 | Nov 2015 | US |