1. Field of the Invention
The present invention relates broadly to systems and methods for filling containers. More specifically, the present invention concerns a system and method for substantially automatically aseptically or non-aseptically filling a container with a fluid, wherein the transfer of fluid occurs via a movable nozzle mechanism substantially automatically inserted into a side opening in a connector attached to the container, and wherein the aseptic transfer of fluid includes a substantially automatic sterilization procedure.
2. Background of the Invention
It is often desirable to quickly and efficiently fill containers with fluids. To that end, systems are available for transferring liquids from large capacity sterile or otherwise controlled environments to smaller containers for sale and consumption. These systems generally involve establishing and maintaining the same controlled environment within a transfer conduit extending between the source and the container.
Unfortunately, these systems suffer from a number of disadvantages with regard to maintaining the controlled environment within the transfer conduit while accomplishing the transfer as quickly and efficiently as possible. For example, some such systems utilize disposable, single-use tubing as the transfer conduit, which requires that the tubing be replaced before each transfer. Other such systems utilize filling chambers lined with disposable liners which must be properly positioned, sealed, and validated prior to filling and then removed following filling. Still other such systems rely on undesirably complex and expensive valve mechanisms at one or both ends of the conduit, or transfer the fluid in such an uncontrolled manner as to result in significant waste and require a separate cleaning step prior to completion.
Due to these and other problems and limitations of the prior art, a need exists for an improved system and method for quickly and efficiently filling containers with fluids.
The present invention overcomes the above-discussed and other problems and limitations of the prior art by providing an improved system and method for quickly and efficiently filling containers with a fluids.
In one embodiment, the system of the present invention comprises a connector attached to the container and including a fitting having a side opening, and a filling machine including a nozzle mechanism which is movable to enter the side opening and transfer the fluid through the connector and into the container. The fitting may include an upper fitting portion and a lower fitting portion which cooperate to expose the side opening for filling the container, and which cooperate to block the side opening once the container is filled. The fitting may further include a top surface which is puncturable or otherwise openable to access the fluid within the filled container.
In one embodiment, the connector includes a locking mechanism positioned over the fitting. The locking mechanism may include one or more external side channels for cooperating with a cap.
In one embodiment, the filling machine further includes a removal mechanism for removing the locking mechanism from the fitting to expose the side opening for filling the container, and for replacing the locking mechanism once the container is filled.
In one embodiment, the filling machine further includes a filling chamber including an outer body including a bottom opening for receiving at least a portion of the connector, and a side opening for receiving the nozzle mechanism, and an inner body slidably received within the outer body and movable between a first position in which the inner body blocks the side opening in the outer body, and a second position in which the inner body does not block the side opening in the outer body. In this embodiment, the nozzle mechanism includes a shaft movable between a first position in which the shaft extends through the side opening in the outer body of the filling chamber and into the side opening in the connector, and a second position in which the shaft is retracted and the side opening in the outer body of the filling chamber is blocked by the inner body.
In one embodiment the filling machine includes a sterilization mechanism for sterilizing the connector and the filling chamber, the sterilization mechanism including a sprayer component for spraying a sterilizing liquid into the filling chamber, an evacuation component for evacuating an airborne portion of the sterilizing liquid prior to filling the container, and a contact component for applying the sterilizing liquid directly to at least a portion of the connector. The contact component may also apply the sterilizing liquid directly to at least a portion of the nozzle mechanism. The sprayer component may receive the sterilizing liquid from a reservoir, and the contact component may wick the sterilizing liquid from the reservoir.
From the present disclosure, it will be appreciated by one with ordinary skill in the art that the present invention provides a number of advantages over the prior art, including, for example, that close cooperation between the nozzle mechanism and connector advantageously allows for a more controlled transfer of fluid to the container, which eliminates waste and the need for a separate cleaning step prior to completion. Furthermore, the connector and filling chamber are sterilized at the beginning of every fill cycle, there is a complete sterilization rinse cycle after a pre-set number of fills, and measurable and measured sterilization of all moving components is allowed for.
These and other features of the present invention are described more fully in the section titled DETAILED DESCRIPTION OF THE INVENTION, set forth below.
The present invention is herein described with reference to the following drawing figures, which are not necessarily to scale:
With reference to the drawing figures, a system and method is described, shown, and other disclosed herein in accordance with one or more preferred embodiments of the present invention. Broadly, the system and method allow for substantially automatically aseptically or non-aseptically filling a container with a fluid. In various exemplary applications, the container may be a bag, syringe, or cartridge, and may have a capacity of approximately between 25 milliliters and 10 liters, and the fluid may be a liquid, semi-liquid, gel, paste, powder, or other flowable form of material.
Whether a particular application requires aseptic or non-aseptic filling may depend on such factors as the nature of the fluid and the purpose for which the fluid will be used. For example, the present invention may be used to aseptically fill bags with biological or chemical reagents, medical products, or food products, or to non-aseptically fill bags with inks, cleaning products, or cosmetic products. For aseptic filling, the system 10 may be located within an enclosed and controlled space, such as, for example, a class 100 laminar flow hood. For non-aseptic filling, it may still be necessary or desirable to establish and maintain a particular filling environment so as to avoid introducing contaminants into the fluid, and the present invention allows for doing so.
Referring to
Referring to
The locking mechanism 28 prevents exposure of the fluid prior to use. The locking mechanism 28 presents a top projection 37, one or more external side channels 38, and one or more internal detent structures (not shown) which correspond to and cooperate with the first and second external detent structures 35a,35b of the fitting 26. Prior to filling, the detent structure of the locking mechanism 28 is engaged with the first, or uppermost, detent structure 35a of the fitting 26. During filling, the locking mechanism 28 is removed in order to facilitate access to the side opening 32 in the fitting 26. Following filling, the locking mechanism 28 is pushed fully down onto the fitting 26 such that the upper fitting portion 26a is pushed fully into the lower fitting portion 26b, as described above, and such that the detent structure of the locking mechanism 28 engages the second detent structure 35b of the fitting 26, thereby securing the connector 12 until ready for use. In one embodiment, the locking mechanism 28 includes two internal detent structures (not shown) which, when the locking mechanism 28 is pushed fully down upon the fitting 26, each engage a respective one of the first and second detent structures 35a,35b of the fitting 26, thereby providing twice the engagement.
Prior to use, the top projection 37 is removed, such as by breaking or cutting, thereby exposing the top surface 30 of the upper fitting portion 26a, and a cap (not shown) is fitted over the locking mechanism 28. The cap presents internal guide projections, an outlet, and an internal spike. The guide projections of the cap are received and move within the channels 38 of the locking mechanism 28 such that at a first uppermost channel location the spike within the cap is furthest from the top surface 30 of the upper fitting portion 26a, and at a second lowermost location the spike penetrates the top surface 30 to create an opening through which the liquid can exit.
Referring again to
The filling chamber 16 establishes and maintains a substantially enclosed or enclosable filling environment. The filling chamber 16 includes a stationary outer body 39 and a movable inner body 40, wherein the inner body 40 is slidably received within, or otherwise cooperates with, the outer body 39. The outer body 39 presents a lower opening 42 for closely receiving at least a portion of the connector 12 into the filling environment, and a side opening 44 for receiving the nozzle mechanism 20 into the filling environment. The inner body 40 cooperates closely with the outer body 39 and presents an opening corresponding to the lower opening 42 but does not present an opening corresponding to the side opening 44, such that when the inner body 40 is in a forward, or closed, position the side opening 44 is covered and the nozzle mechanism 20 is not exposed to the filling environment, and when the inner body 40 is in a rearward, or open, position the side opening 44 is uncovered and the nozzle mechanism 20 is exposed to the filling environment.
The removal mechanism 18 removes the locking mechanism 28 from the connector 12 to expose the side opening 32 in the fitting 26 for filling, and replaces the locking mechanism 28 once filling is complete. The removal mechanism 18 may be mechanical in nature, and use direct physical contact and/or manipulation, e.g., turning or pushing/pulling, to remove and replace the locking mechanism 28. In the embodiment shown in the figures, for example, the removal mechanism 18 is movable between first forward and rearward positions and includes a plurality of flexible or spring-loaded gripping structures 50, or fingers, that fit over and grip the locking mechanism 28. Additionally or alternatively, the removal mechanism 18 may use vacuum pressure to remove and replace the locking mechanism 28 and/or to retain the locking mechanism 28 while it is removed. Initially, the removal mechanism 18 moves to its forward position and grips the locking mechanism 28, then moves to the rearward position to remove the locking mechanism 28 and allow the nozzle mechanism 20 to interface with the side opening 32 in the fitting 26 during filling, and then moves back to the forward position to replace the locking mechanism 28 once filling is complete, as described above.
The nozzle mechanism 20 delivers the fluid from a fluid reservoir to the connector 12 during the filling process. The nozzle mechanism 20 includes a shaft 52 that is movable between a first, or filling, position in which a forward portion of the shaft 52 extends through the side opening 44 in the outer body 39 of the filling chamber 16 into the filling environment and into the side opening 32 in the fitting 26, and a second, or non-filling, position in which the forward portion of the shaft 52 is blocked from the filling environment by the inner body 40 of the filling chamber 16 in its forward position. As shown, the shaft 52 may intersect the filling chamber 16 angularly, such as, for example, at an angle of approximately between 30 degrees and 60 degrees, or, in one particular embodiment, 45 degrees, relative to the fitting 26.
The sterilization mechanism 22 sterilizes at least a portion of the connector 12 and the filling chamber 16, at the beginning of every fill cycle; conducts a complete sterilization rinse cycle after a pre-set number of fills; and allows for measurable and measured sterilization of all moving components. The sterilization mechanism 22 may use any suitable sterilizing technique, including, for example, the application of hydrogen peroxide to the surfaces to be sterilized. The sterilization mechanism 22 includes a sprayer component 54, an evacuation component 55, and a contact component 56. The sprayer component 54 sprays, or mists, the sterilizing liquid onto one or more of the surfaces to be sterilized, including the surfaces defining the filling environment. Depending on where the sprayer component 54 is located, it may be angled, such as upwardly or downwardly, in order to ensure proper dispersion of the mist throughout the filling environment. The evacuation component 55 evacuates any remaining airborne mist immediately prior to filling. The contact component 56 applies sterilizer directly to certain surfaces to be sterilized, especially portions of the moving parts that may be exposed to a non-sterile environment during the filling process, such as, for example, the side and upper surfaces of the connector 12, the shaft 52 of the nozzle mechanism 20, and a rearward portion of the inner body 40 of the filling chamber 16. The sprayer and contact components 54,56 may draw sterilizing liquid from a reservoir, wherein the sprayer component 54 does so through pumping action and the contact components 56 do so through wicking action. For non-aseptic filling, the sterilization mechanism 22 may be eliminated or replaced with some other appropriate mechanism for conditioning or controlling the filling environment. For example, in one embodiment for non-aseptic filling, the sterilization mechanism is replaced with a cleaning mechanism in which a cleaning fluid is introduced via the sprayer and/or applied via the contact components.
In exemplary use and operation, the system 10 may function substantially as follows, with reference to
Referring to
In one embodiment, multiple instances of the filling machine 10 are coupled with the same fluid reservoir to allow fluid to be transferred therefrom to multiple containers simultaneously.
Referring to
This embodiment does not include an integrated sterilization mechanism. Instead, when aseptic filling is desired, the filling machine 114 is placed within an appropriately controlled environment, such as a laminar flow hood. In at least one implementation, the entire system 110 can be autoclaved or otherwise sterilized before being placed in the hood. As such, the filling chamber 116 of this second embodiment takes the form of a removable shroud 117 operable to prevent inadvertent direct and contaminating contact with the shaft 152 of the nozzle mechanism 120.
The removal mechanism 118 of this embodiment performs substantially the same function as the removal mechanism 18 discussed above, but in a different manner. In the embodiment shown in the figures, for example, the removal mechanism 118 includes angled fingers 150 for fitting between the locking mechanism 28 and the container, and has two movement profiles. In one embodiment, the angled fingers 150 are angled at approximately 90 degrees relative to the remainder of the removal mechanism 118. The first movement profile involves pivot-type movement in which the angled fingers 150 move from a position substantially adjacent the locking mechanism 28, as shown in
Also shown is a pivot and extension/retraction mechanism 119 for substantially automatically accomplishing movement of the removal mechanism 118 along the first and second movement profiles, both forward and reverse. In the embodiment shown in the figures, for example, the pivot and extension/retraction mechanism 119 includes a pivot point and mechanism 170 for accomplishing the first movement profile, and an arm 172 coupled at one end with the removal mechanism 118 and coupled at an opposite end to a source of substantially linear motion which may be, for example, electrical, mechanical, hydraulic, or pneumatic in nature.
The nozzle mechanism 120 of this embodiment performs substantially the same function as the nozzle mechanism 20 discussed above. More specifically, the shaft 152 is movable between a first, or filling, position in which a forward portion of the shaft 152 extends into the side opening 32 in the fitting 26, and a second, or non-filling, position in which the shaft 152 is retracted. As shown, the shaft 52 may intersect the filling chamber 16 angularly, such as, for example, at an angle of approximately between 30 degrees and 60 degrees, or, in one particular embodiment, 45 degrees, relative to the fitting 26. As discussed above, the mounting structure 60 maintains the filling machine 114 in an orientation such that the shaft 152 is maintained substantially vertical in order to control dripping of the fluid therefrom, and the support structure 62 maintains the container in a correspondingly angled orientation.
Also shown is an extension/retraction mechanism 121 for substantially automatically extending and retracting the shaft 152. In the embodiment shown in the figures, for example, the extension/retraction mechanism 121 includes an arm coupled at one end with the shaft 152 and coupled at an opposite end to a source of substantially linear motion which may be, for example, electrical, mechanical, hydraulic, or pneumatic in nature.
In exemplary use and operation, the system 110 may function substantially as follows. Initially, the nozzle mechanism 120 is retracted and the angled fingers 150 of the removal mechanism 118 are substantially adjacent the locking mechanism 28, as shown in
Next, the shaft 152 of the nozzle mechanism 120 extends to its first, or filling, position in which the forward portion of the shaft 152 extends into the side opening 32 in the fitting 26, as shown in
Next, the removal mechanism 118 moves in reverse along its second movement profile to replace the locking mechanism 28 onto the fitting 26, as shown in
It is contemplated that, for both the first and second embodiments, the filling operation may be substantially automatically accomplished by a computing device controlling appropriate intermediate structures. For example, the various movements of the various structures, the timing and degree of the sterilization process of the first embodiment, and the timing and amount of the liquid injected into the container via the nozzle mechanism 20,120 may all be accomplished by arms, linkages, motion sources, and valves substantially automatically controlled by the computing device in accordance with pre-established instructions. The pivot and extension/retraction mechanism 119 for the removal mechanism 118, and the extension/retraction mechanism 121 for the nozzle mechanism 120, are examples of such intermediate structures.
Referring to
Like the second embodiment, the third embodiment does not include an integrated sterilization mechanism. Instead, when aseptic filling is desired, the filling machine 214 is placed within an appropriately controlled environment, such as a laminar flow hood. In at least one implementation, the entire system 210, or at least a large portion thereof, can be autoclaved or otherwise sterilized before being placed in the hood. As such, the filling chamber 216 of this third embodiment also takes the form of the removable shroud 217 operable to prevent inadvertent direct and contaminating contact with the shaft 252 of the nozzle mechanism 220.
Like the first and second embodiments, the system 210 is compatible with a variety of different metering systems for controlling the amount of fluid transferred to the container, including plumat, paristalic, diaphragm, and PDC massflow metering systems.
Referring particularly to
As shown in
The removal mechanism 218 is operable to remove the upper fitting portion 226a and the locking mechanism 228 to expose the port 232, and moves along a first substantially linear path. The nozzle mechanism 220 is operable to direct the fluid into the container through the open port 232, and moves along a second substantially linear path which is oriented angularly with respect to the first substantially linear path.
The support structure 262 supports the container, wherein the support structure 262 is movable between a first position in which the container, specifically the upper fitting portion 226a and the locking mechanism 228 are aligned with first substantially linear path of the removal mechanism 218, and a second position in which the container, specifically the port 232, is aligned with the second substantially linear path of the nozzle mechanism 220.
An actuator mechanism 280 causes the support structure 262 to move between the first and second positions. In one implementation, the actuator mechanism 280 includes a handle 281 and an assemblage of cams, gears, or other mechanical, hydraulic, pneumatic, or electrical components sufficient to achieve the movement and other functionality described herein. In one implementation, a first movement of the handle 281 causes the removal mechanism 218 to remove the upper fitting portion 226a and the locking mechanism 228 from the connector 212; the support structure 262 to move to the second position; and the nozzle mechanism 220 to move along the second substantially linear path into close proximity with the port 232 of the lower fitting portion 226b. The fluid can then be transferred to the container via the nozzle mechanism 220 and open port 232. A second movement of the handle 281 causes the nozzle mechanism 220 to move along the second substantially linear path away from the port 232; the support structure 262 to move back to the first position; and the removal mechanism 218 to replace the upper fitting portion 226a and the locking mechanism 228. As mentioned, in one implementation the upper fitting portion 226a and the locking mechanism 228 are replaced on the lower fitting portion 226b in the closed-and-locked position.
In the second embodiment, the container is stationary, the removal mechanism 118 moves linearly along a path which coincides with a longitudinal axis of the connector 112, and the nozzle mechanism 120 moves linearly along a path which is angled relative to the longitudinal axis of the connector 112. Because the port 32 is located on the side of the lower fitting portion 126b, the removal and nozzle mechanisms 118,120 can interact with the stationary connector 112 without interfering with each other. By contrast, in the third embodiment the port 232 is on the top of the lower fitting portion 226b, so the container is moved between alignment with the removal mechanism 218 and alignment with the nozzle mechanism 220 to avoid interference between the two mechanisms.
In exemplary use and operation, the system 210 may function substantially as follows. Referring particularly to
From the foregoing discussion, it will be appreciated by one with ordinary skill in the art that the present invention provides a number of advantages over the prior art, including, for example, that close cooperation between the nozzle mechanism and connector allows for a more controlled transfer of fluid to the container, which eliminates waste and the need for a separate cleaning step prior to completion. Furthermore, in the first embodiment, the connector and filling chamber are sterilized at the beginning of every fill cycle, there is a complete sterilization rinse cycle after a pre-set number of fills, and measurable and measured sterilization of all moving components is allowed for. Additionally, the second and third embodiments allow for efficient aseptic filling with relatively non-complex systems. For these and other reasons, the present invention allows for more quickly and efficiently filling containers.
Although the invention has been disclosed with reference to various particular embodiments, it is understood that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims.
Having thus described the preferred embodiment of the invention, what is claimed as new and desired to be protected by Letters Patent includes the following:
The present continuation-in-part patent application is related to and claims priority benefit of a U.S. non-provisional patent application of the same title, Ser. No. 11/694,365, filed Mar. 30, 2007 now U.S. Pat No. 7,530,374, which is related to and claims priority benefit of an earlier-filed U.S. provisional patent application of the same title, Ser. No. 60/803,403, filed May 30, 2006. The identified earlier-filed patent applications are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3926229 | Scholle | Dec 1975 | A |
4212414 | Beyens | Jul 1980 | A |
4350187 | Trusselle et al. | Sep 1982 | A |
4452030 | Inada | Jun 1984 | A |
4460025 | Scholle et al. | Jul 1984 | A |
4494363 | Rica et al. | Jan 1985 | A |
4524563 | Sassi | Jun 1985 | A |
4942716 | Anderson | Jul 1990 | A |
5335479 | Lemke et al. | Aug 1994 | A |
5343907 | Wagner | Sep 1994 | A |
5524683 | Mueller | Jun 1996 | A |
6070622 | Rutter | Jun 2000 | A |
6230472 | Stahlecker | May 2001 | B1 |
6256964 | Drevfors | Jul 2001 | B1 |
6330780 | Shipway | Dec 2001 | B1 |
6352089 | Breton | Mar 2002 | B1 |
6941986 | Hoeppner | Sep 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20080302443 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60803403 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11694365 | Mar 2007 | US |
Child | 12136412 | US |