This invention relates generally to dairy farming and more particularly to a system and method for filtering data captured by a three-dimensional camera.
Over time, the size and complexity of dairy milking operations has increased. Accordingly, the need for efficient and scalable systems and methods that support dairy milking operations has also increased. Systems and methods supporting dairy milking operations, however, have proven inadequate in various respects.
According to embodiments of the present disclosure, disadvantages and problems associated with previous systems supporting dairy milking operations may be reduced or eliminated.
In an exemplary embodiment, a system includes a three-dimensional camera and a processor. The processor is operable to access a first portion of visual data captured by the three-dimensional camera wherein the visual data comprises an image of a dairy livestock and access a second portion of the visual data, wherein the first portion and the second portion are aligned in a first dimension. The processor is further operable to determine a first coordinate, wherein the first coordinate comprises a location of the first portion in a second dimension, the second dimension orthogonal to the first dimension and determine a second coordinate, wherein the second coordinate comprises a location of the second portion in the second dimension. The processor is further operable to determine a first distance exceeds a distance threshold, wherein the first distance is the distance between the first coordinate and the second coordinate in the second dimension.
Particular embodiments of the present disclosure may provide one or more technical advantages. For example, in some embodiments, the system of the present disclosure includes multiple cameras to facilitate locating the teats of a dairy livestock. Using multiple cameras may improve the visibility of the teats and may facilitate attaching milking equipment from a position to the rear of the dairy livestock, rather than to the side of the dairy livestock as in certain conventional systems. Approaching from the rear of the dairy livestock makes it less likely that the livestock will be distracted by the milking equipment. Furthermore, approaching from the rear of the dairy livestock makes it less likely that the dairy livestock will kick the milking equipment, the vision system, or any other component of the system of the present disclosure.
As another example, in some embodiments, the system of the present disclosure, in searching for the teats of a dairy livestock, may account for (1) a determined reference point relative to the dairy livestock, and/or (2) historical data describing a previous location of the teats relative to the reference point. Accounting for the determined reference point and/or the historical data in searching for the teats of a dairy livestock may allow for more accurate teat location, which may allow a robotic attacher to more efficiently attach milking equipment to the dairy livestock. In certain embodiments, the system of the present disclosure may filter visual data to more efficiently and accurately determine reference points and locations of the teats of a dairy livestock. In some embodiments, the system of the present disclosure may release milking equipment, such as a milking cup, in such a manner as to prevent the accidental detachment of the milking equipment and to ensure that the milking equipment is securely attached to the dairy livestock.
Certain embodiments of the present disclosure may include some, all, or none of the above advantages. One or more other technical advantages may be readily apparent to those skilled in the art from the figures, descriptions, and claims included herein.
To provide a more complete understanding of the present invention and the features and advantages thereof, reference is made to the following description taken in conjunction with the accompanying drawings, in which:
In particular, enclosure 100 may be divided into a number of regions 110 (e.g., regions 110a and 110b), and each region 110 may include resting stalls, feeding troughs, walking paths, and/or other structure suitable for housing dairy livestock. Although the present disclosure contemplates enclosure 100 as housing any suitable dairy livestock (e.g., dairy cows, goats, sheep, water buffalo, etc.), the remainder of this description is detailed with respect to dairy cows.
Each milking box 120 may include a stall portion 122 configured to house a dairy cow being milked. The stall portion 122 of each milking box 120 may be defined by a number of walls 124, each of which may each be constructed from any suitable materials arranged in any suitable configuration operable to maintain a dairy cow within stall portion 122 during milking. In certain embodiments, stall portion 122 of milking box 120 may include walls 124a, 124b, 124c, and 124d. For purposes of illustration, wall 124a may be designated as the front of milking box 120 such that the head of a dairy cow being milked would be facing wall 124a. Wall 124c may be positioned opposite wall 124a and may be designated as the rear of milking box 120. Walls 124b and 124d may each form a side extending between the front and rear of milking box 120. Walls 124a, 124b, 124c, and 124d may be spaced apart a suitable distance to ensure the comfort of the dairy cow within stall portion 122.
Walls 124b and/or 124d may comprise one or more gates 126. In certain embodiments, wall 124b and/or wall 124d may comprise an entry gate 126a and an exit gate 126b. A dairy cow may enter milking box 120 through an opened entry gate 126a and exit milking box 120 through an opened exit gate 126b. Closing gates 126 may maintain the dairy cow within milking box 120 during milking, while opening one or more gates 126 may allow the dairy cow to exit milking box 120. In certain embodiments, gates 126 may each be coupled to a corresponding actuator such that the gates 126 may be automatically opened and/or closed. For example, the actuators corresponding to gates 126 may each be configured to communicate (e.g., via wireless or wireline communication) with a controller 200, depicted in detail in
Controller 200 may include one or more computer systems at one or more locations. Examples of computer systems may include a personal computer, workstation, network computer, kiosk, wireless data port, personal data assistant (PDA), one or more processors within these or other devices, or any other suitable device for receiving, processing, storing, and communicating data. In short, controller 200 may include any suitable combination of software, firmware, and hardware. Controller 200 may include any appropriate interface 210 for receiving inputs and providing outputs, logic 220, one or more processing modules 230, and memory module 240. Logic 220 includes any information, logic, applications, rules, and/or instructions stored and/or executed by controller 200. Processing modules 230 may each include one or more microprocessors, controllers, or any other suitable computing devices or resources and may work, either alone or with other components, to provide a portion or all of the functionality described herein. Controller 200 may additionally include (or be communicatively coupled to via wireless or wireline communication) one or more memory modules 240. Memory modules 240 may be non-transitory and may each include any memory or database module. Memory modules 240 may take the form of volatile or non-volatile memory, including, without limitation, magnetic media, optical media, random access memory (RAM), read-only memory (ROM), removable media, or any other suitable local or remote memory component.
Returning to
Each milking box 120 may additionally include an equipment portion 128 located to the rear of stall portion 122 (i.e., adjacent to rear wall 124c of stall portion 122). Equipment portion 128 may comprise any structure suitable for housing and/or storing a robotic attacher (e.g., robotic attacher 150, described below with regard to
In certain embodiments, the equipment portion 128 being located to the rear of stall portion 122 may allow milking boxes 120 to be aligned in a single row such that walls 124b and 124d of each milking box 120 may comprise an entry gate 126a and an exit gate 126b (as illustrated in
In certain other embodiments, the equipment portion 128 being located to the rear of stall portion 122 may allow pairs of milking boxes 120 to be located side by side such that the milking boxes share a wall 124 (e.g., wall 124b may be shared between milking box 120c and milking box 120d, as depicted in
In certain embodiments, feed bowl 130 may dispense feed in order to attract a dairy cow so that the dairy cow will enter milking box 120 voluntarily. Accordingly, at least one of the entry gates 126a may remain open when there is no dairy cow present to allow a dairy cow to enter. Once the dairy cow has entered milking box 120, presence sensor 132 may detect the presence of the dairy cow. For example, presence sensor 132 may detect when the dairy cow has passed through the entrance gate 126a and/or when the dairy cow is generally centered in the stall portion 122. Upon detecting the presence of the dairy cow, presence sensor 132 may send a signal to controller 200. In response to the signal, controller 200 may cause one or more actuators to close gates 126. Gate sensor 134 may determine when gates 126 have closed. Gate sensor 134 may communicate a signal to controller 200 upon determining that gates 126 have closed. Controller 200 may initiate a milking procedure in response to the signal.
In certain embodiments, identification sensor 136 may determine the identity of the dairy cow. As an example, identification sensor 136 may comprise an antenna operable to read a radio frequency identification (RFID) from an ear tag, a collar, or other identifier associated with the dairy cow. Once the dairy cow has been identified, the identification sensor 136 may optionally be turned off to prevent wasting power and/or to minimize the dairy cow's exposure to radio waves.
Identification sensor 136 may communicate the identity of the dairy cow to controller 200 to facilitate retrieving information describing the dairy cow (e.g., from memory 240 or any other suitable location). Information describing the dairy cow may comprise historical data 184 describing the particular dairy cow during a previous time period, such as a previous milking cycle. The previous milking cycle may refer to a milking cycle in which milking equipment was manually attached (e.g., by a user) or a milking cycle in which milking equipment was automatically attached (e.g., by a robotic attacher 150, described below). In certain embodiments, milking equipment may be attached manually the first time the dairy cow is milked in order to establish initial information describing the dairy cow, such as where the teats are located. The location of the dairy cow's teats may be described relative to a feature of the dairy cow, such as relative to the rear of the dairy cow, the hind legs, and/or a portion of the dairy cow's udder, such as a mid-line of the udder or relative to one or more of the other teats. A robotic attacher (e.g., robotic attacher 150, described below) may use the information describing the location of the teats during subsequent milkings to facilitate automatically attaching the milking equipment.
Examples of historical data 184 include measurements, statistics, health information, and any other information describing the dairy cow during a previous time period. Examples of measurements include the length of the dairy cow (e.g., from head to tail) and the location of the dairy cow's teats during a previous milking cycle. An example of historical measurements is further discussed in conjunction with
Controller 200 may use the information retrieved according to the identity of the dairy cow to determine how the particular dairy cow should be handled. If the information indicates the dairy cow should not be milked, controller 200 may cause an actuator to open one or more of the exit gates 126b. For example, if controller 200 determines that the dairy cow should be sorted into a particular region 110 of enclosure 100, such as a veterinary pen, it may cause the exit gate 126b that accesses the selected region 110 to open. Alternatively, controller 200 may cause multiple exit gates 126b to open if the dairy cow is to be given the option of which region 110 to occupy upon exiting milking box 120. In certain embodiments, a prod may be used to encourage the dairy cow to exit. Examples of prods include a noise, a mechanical device, or a mild electric shock.
Upon a determination that the dairy cow should be milked, controller 200 may continue the milking procedure. In certain embodiments, controller 200 may cause a dispenser to drop feed into feed bowl 130. Additionally, controller 200 may cause feed bowl 130 to move toward the dairy cow in order to encourage the dairy cow to move to a pre-determined part of stall portion 122. As an example, feed bowl 130 may be initially positioned in the front of stall portion 122 when the dairy cow enters. Feed bowl 130 may then move back toward the dairy cow to encourage the dairy cow to move to the rear of stall portion 122 (e.g., against backplane 138, described below) in order to facilitate attaching the milking equipment to the dairy cow. To ensure feed bowl 130 does not crowd the dairy cow, the amount of movement of feed bowl 130 may be customized to the size of the dairy cow. For example, a user may determine an appropriate location for feed bowl 130 the first time the dairy cow enters milking box 120. The location may be stored (e.g., in memory module 240 of controller 200) such that it may be retrieved during subsequent milkings according to the identity of the dairy cow. Alternatively, the feed bowl 130 may be configured to continue moving toward the rear of the stall portion 122 until the dairy cow contacts backplane 138 (described below), which may indicate that the dairy cow is positioned in a location that is suitable for attaching the milking equipment.
In certain embodiments, rear wall 124c of stall portion 122 includes a backplane 138. Backplane 138 may comprise any suitable configuration of materials suitable for locating the rear of the dairy cow in order to facilitate the efficient attachment of the milking equipment. For example, backplane 138 may comprise a tracker operable to track a displacement of the dairy livestock in a certain direction. Backplane 138 may also comprise an encoder communicatively coupled to the tracker and operable to determine the distance traveled by the tracker. In certain embodiments, the dairy cow may be backed toward backplane 138 by moving feed bowl 130 as described above. In certain other embodiments, backplane 138 may be moved forward toward the dairy cow. In certain other embodiments, a combination of backing the dairy cow toward backplane 138 and moving backplane 138 forward toward the dairy cow may be used. It may be determined that the rear of the dairy cow has been located when a portion of backplane 138, such as a pipe or bracket, touches the rear of the dairy cow at any suitable location, such as approximately mid-flank (i.e., between the udder and the tail). Backplane 138 may additionally include a manure gutter for directing manure toward a side of stall portion 122 (e.g., away from the dairy cow's udder and the milking equipment).
In certain embodiments, stall portion 122 may additionally include a waste grate 140 for disposing of waste. Waste grate 140 may have a rough surface to discourage the dairy cow from standing on it. In addition, waste grate 140 may be dimensioned such that when the dairy cow's hind legs are positioned on opposite sides of waste grate 140, the hind legs are separated to facilitate attachment of the milking equipment to the dairy cow's teats.
In certain embodiments, equipment portion 128 of milking box 120 may include a robotic attacher 150, one or more preparation cups 166, teat cups 168, pumps 170, receiver jars 172, milk separation containers 174, and/or any other suitable milking equipment. In certain embodiments, robotic attacher 150 may be suspended into equipment portion 128 from a rail 160. Rail 160 may be generally located above the level of the udder of a dairy cow located in stall portion 122 such that the teats of the dairy cow may be accessible to robotic attacher 150 when suspended from rail 160. For example, rail 160 may extend across the top of equipment portion 128 of milking box 120 and may be oriented substantially parallel to rear wall 124c.
Robotic attacher 150 may be communicatively coupled to controller 200 (e.g., via a network facilitating wireless or wireline communication). Controller 200 may cause robotic attacher to attach certain milking equipment to the dairy cow's teats. For example, in certain embodiments, robotic attacher 150 may access a storage area 164 to retrieve preparation cups 166 and/or teat cups 168. Preparation cups 166 may be adapted to clean the teats, stimulate the flow of milk, and discard fore milk from the teat (e.g., the first few millimeters of milk that may be dirty). Teat cups 168 may be adapted to extract milk from the dairy cow. Preparation cups 166 and/or teat cups 168 attached to extendable hoses may by hung within storage area 164 between milkings to protect the cups from manure and flies. When it is time to milk the dairy cow, robotic attacher 150 may pull preparation cups 166 from storage area 164 and attach them to the dairy cow one at a time, two at a time, or four at a time. After the teats have been prepared, preparation cups 166 may be removed and teat cups 168 may be attached one at a time, two at a time, or four at a time. Once the cups are attached, robotic attacher 150 may withdraw to prevent the dairy cow from causing accidental damage to the equipment, and the system may proceed with milking the dairy cow.
During milking, pump 170 may pump good milk from teat cup 168 to receiver jar 172 to be stored at a cool temperature. Pump 170 may pump bad milk to milk separation container 174 to be discarded. Milk may be determined to be bad based on testing the milk and/or based on the particular dairy cow from which the milk has been extracted. For example, information retrieved from a database according to the dairy cow's identifier may indicate that the milk should be discarded because the dairy cow is ill or has recently calved. Pump 170, jar 172, and separation container 174 may be placed at any suitable location as appropriate.
In certain embodiments, robotic attacher 150 comprises a main arm 152, a supplemental arm 154, a gripping portion 156, and a vision system 158. In certain embodiments, the movement of main arm 152, supplemental arm 154, and gripping portion 156 may be varied in response to signals received from controller 200 (as described in further detail in
In order to obtain access to the dairy cow's teats, main arm 152, supplemental arm 154, and gripping portion 156 may work together to facilitate movement in three dimensions, for example, according to an x-axis, a y-axis, and a z-axis. As illustrated, the x-axis extends in the direction of the dairy cow's length (e.g., from head-to-tail), the y-axis extends in the direction of the dairy cow's height, and the z-axis extends in the direction of the dairy cow's width. However, any suitable orientation of x, y, and z axes may be used as appropriate.
Main arm 152 may comprise a vertical arm movably coupled to rail 160. For example, a hydraulic cylinder may movably couple main arm 152 to rail 160. Main arm 152 may traverse rail 160 to facilitate movement of robotic attacher 150 along the z-axis. Accordingly, rail 160 may comprise a track and rollers adapted to support the weight of robotic attacher 150 and to facilitate movement of main arm 152 back-and-forth along rail 160. To prevent wires and hoses from interfering with the movement of main arm 152 along rail 160, guides 162 may be used to loosely hold the wires and hoses in place. For example, guides 162 may comprise U-shaped brackets that allow the wires and hoses to extend a sufficient amount to accommodate movements of main arm 152, but prevent the wires and hoses from dangling in the path of main arm 152.
Main arm 152 attaches to supplemental arm 154. Supplemental arm 154 facilitates movements in any direction. That is, supplemental arm 154 moves in-and-out along the x-axis, up-and-down along the y-axis, and/or from side-to-side along the z-axis. Accordingly, supplemental arm may extend between the rear legs of the dairy cow located within stall portion 122 in order to attach milking equipment to the dairy cow. Supplemental arm 154 may comprise gripping portion 156. Gripping portion 156 may grip a preparation cup 166 or a teat cup 168 for attachment to the dairy cow's teat. Gripping portion 156 may comprise a wrist adapted to perform fine movements, such as pivot and tilt movements, to navigate around the dairy cow's legs and to access the dairy cow's teats. To determine the location of the dairy cow's legs and teats, robotic attacher 150 may use vision system 158. An example embodiment of vision system 158 is described with respect to
Example attachment operation of robotic attacher 150 will now be discussed. Gripping portion 156 may grip teat cup 168 and teat cup 168 may be moved towards a teat of a dairy livestock. For example, teat cup 168 may be moved to a particular set of coordinates provided by controller 200. In certain embodiments, teat cup 168 may be positioned under a teat of the dairy livestock. Once teat cup 168 is in proper position under a teat of the dairy livestock, teat cup 168 may be moved towards a particular teat. For example, supplemental arm 154 may be instructed by controller 200 to maneuver in an upward direction towards a particular teat. In certain embodiments, controller 200 may determine whether teat cup 168 is within a particular threshold as teat cup 168 approaches the teat. If teat cup 168 is not within a particular threshold, supplemental arm 154 may continue to position teat cup 168 closer to the teat. Otherwise, pressure may be applied to teat cup 168. In certain embodiments, this may be vacuum pressure applied to teat cup 168 by a pulsation device. By applying vacuum pressure to teat cup 168, teat cup 168 may draw in a particular teat for milking into teat cup 168. Controller 200 may eventually determine whether a particular teat has been drawn into teat cup 168. If so, controller 200 may provide an instruction for gripping portion 156 to release teat cup 168. Controller 200 may then instruct supplemental arm 154 to move gripping portion 156 upwards and away at a particular angle from the teat of the dairy livestock. By instructing gripping portion 156 to move up and away from the particular teat of the dairy livestock at a particular angle, the possibility of gripping portion 156 to detach teat cup 168 accidentally is decreased. Controller 200 may then determine whether another teat cup 168 may be attached. If another teat cup 168 may be attached, then the attachment operation may be repeated.
In general, the teats of the dairy cow may be relatively less visible when looking at the dairy cow from the rear and relatively more visible when looking at the dairy cow from the side. Vision system 158 may facilitate locating the teats from a position to the rear of the dairy cow. Vision system 158 may include multiple cameras, such as a first camera 158a and a second camera 158b. In certain embodiments, cameras 158a, 158b may be coupled to robotic attacher 150 and may be positioned at any suitable location along main arm 152 or supplemental arm 154. As an example, second camera 158b may be coupled to gripping portion 156 of supplemental arm 154 at a location proximate to the part of gripping portion 156 adapted to hold a teat cup, and first camera 158a may be coupled to supplemental arm 154 at a location between second camera 158b and main arm 152.
Generally, vision system 158 may perform at least two operations: locating reference point 178 of the udder of the dairy cow and determining the positions of the teats of the dairy cow. First camera 158a may be used to determine the reference point of the udder of the dairy cow. Reference point 178 may be a point near the udder of the dairy cow where robotic attacher 150 may move to, or near, in order to perform a particular function. In certain embodiments, first camera 158a may comprise a three-dimensional camera adapted to generate a first image 176 depicting the rear of the dairy cow, including the hind legs and the udder. Using a three-dimensional camera may facilitate generating a relatively complete image of the rear of the dairy cow within approximately a couple of seconds (e.g., one second), which may be faster than the amount of time it would take for a two-dimensional camera to generate a similar image.
To facilitate the determination of reference point 178, controller 200 may detect the location of the hips, hind legs, and the udder by analyzing first image 176. To do this, controller 200 may find the edges of the dairy livestock. Controller 200 may find the edges of the diary livestock by comparing the depth information of pixels in an image. Once the edges of the dairy livestock are found, using this information, controller 200 may determine reference point 178 near the udder. At any point, controller 200 may determine that erroneous visual data (e.g., a fly in front of first camera 158a) has been captured in first image 176. In such instances, controller 200 may filter out such erroneous data.
After determining reference point 178, vision system 158 may be used to determine the locations of the teats of the diary cow. For example, controller 200 may instruct robotic attacher 150 to maneuver near reference point 178 to start determining the location of teats of the dairy cow. Controller 200 may determine the location of the teats of the dairy cow by utilizing second camera 158b. In certain embodiments, second camera 158b may comprise lens 264 and transmitter 260 (e.g., a laser-emitting device) adapted to generate a second image 180 depicting at least a portion of the udder to facilitate locating the teats. Second camera 158b may facilitate locating the end of each teat with a relatively high degree of accuracy, such as within a few millimeters. The location of the teat may be used to instruct robotic attacher 150 where to attach the milking equipment. In determining the location of a teat, controller 200 may encounter erroneous visual data captured by second camera 158b. In such instances, controller 200 may filter out the erroneous data.
In certain embodiments, robotic attacher 150 may further comprise a nozzle 182. Nozzle 182 may be coupled to gripping portion 156. Nozzle 182 may spray disinfectant on the teats of the dairy cow at the end of a milking cycle, that is, after the dairy cow has been milked and the teat cups have been removed. The disinfectant may be sprayed to prevent mastitis or other inflammation or infection. In certain embodiments, gripping portion may be operable to rotate 180° around the x-axis. During milking, second camera 158b may be generally oriented on top of gripping portion 156, and nozzle 182 may be generally oriented underneath gripping portion 156 (i.e., opposite second camera 158b). Orienting nozzle 182 underneath gripping portion 156 during milking may prevent milk or other contaminants from accessing nozzle 182. Once the milking has been completed, gripping portion 156 may rotate such that nozzle 182 may be generally oriented on top of gripping portion 156, and second camera 158b may be generally oriented underneath gripping portion 156. Orienting nozzle 182 on top of gripping portion 156 after milking may facilitate spraying the teats with disinfectant from nozzle 182.
The operation of vision system 158 will now be discussed in more detail. In operation, generally, controller 200 may access a first image 176 generated by first camera 158a (e.g., from memory module 240) and use first image 176 to determine, using any suitable logic 220, a reference point 178 proximate to the udder, which may then be stored (e.g., in memory module 240). Reference point 178 may be defined relative to certain features of the dairy cow, such as the hind legs and/or the udder. In certain embodiments, reference point 178 point may be center location 712 of
To determine reference point 178, first camera 158a may begin by generating the first image 176 in response to a signal from controller 200 indicating that the dairy cow is positioned proximate to the milking equipment. As an example, the signal may indicate that the rear of the dairy cow has been detected by the backplane 138 of the milking box 120. In certain embodiments, controller 200 may communicate the signal to first camera 158a after determining the dairy livestock has settled down. For example, controller 200 may communicate the signal after feed is dropped into feed bowl 130. As another example, controller 200 may communicate the signal to first camera 158a after identification sensor 136 communicates the identity of the dairy cow to controller 200 and controller 200 determines that the dairy cow may be milked. As a further example, there may be a time buffer after a particular event before controller 200 communicates the signal to first camera 158a. The time buffer may be after the dairy cow enters milking box 120, after the feed is dropped into feed bowl 130, after the rear of the dairy cow has been detected by backplane 138, after the identification sensor 136 communicates the identity of the dairy cow, or any other suitable event.
First camera 158a may begin generating the first image 176 from a starting point and may update the first image 176 in real-time as robotic attacher 150 approaches the dairy cow. The starting point may be determined according to a default position of robotic attacher 150 (e.g., a position determined relative to milking stall 122). Thus, the starting point may be determined without the use of historical data 184 associated with the particular dairy cow being milked. First camera 158a may then generate first image 176, capturing visual data generally depicting the rear of the dairy cow. First camera 158a may communicate the first image 176 to controller 200, and controller 200 may use the image to locate main features of the dairy cow, such as the right hind leg, the left hind leg, the udder, and/or the tail.
More specifically, controller 200 may use first image 176 to determine reference point 178 based on the location of the main features of the dairy cow. Reference point 178 may be defined relative to certain features of the dairy cow, such as the hind legs and/or the udder. As an example, reference point 178 may be defined between the hind legs and/or below the udder. In certain embodiments, the reference point 178 may be located proximate to a mid-point of the udder. The mid-point of the udder may refer to a point generally located between the front teats and the rear teats in the x-direction and/or between the left teats and the right teats in the z-direction. In certain embodiments, the mid-point of the udder may be estimated prior to determining the precise location of the teats, for example, according to the general size and location of the udder. Reference point 178 may be spaced apart from the dairy cow in the y-direction to minimize the likelihood that second camera 158b touches the dairy cow. For example, reference point 178 may be located a few inches below the mid-point of the udder. In certain embodiments, reference point 178 may be center location 712, discussed further below.
The operation of determining reference point 178 will now be discussed in more detail. Generally, controller 200 may begin to find reference point 178 by analyzing first image 176 to find particular edges of the rear of the dairy cow such as edges 702 of
In particular, controller 200 may begin to determine reference point 178 by locating hip location 704a of
By comparing the depth locations of various pixels to each other, controller 200 may attempt to locate particular edges of the dairy livestock. For example, controller 200 may compare the depth information of a group of pixels to determine if a portion of the pixels are closer than other portions of pixels. A cluster of pixels closer to first camera 158a may signify that an edge of a dairy livestock has been found. The cluster of pixels with depth information further away from camera 158a may signify that the image data is of an object other than an edge of the dairy livestock. Controller 200 may associate this location of the cluster of pixels that are closer to first camera 158a with an edge of the dairy livestock. For example, controller 200 may have determined that the cluster of pixels represents a first edge corresponding to the hip of the dairy livestock. In certain embodiments, this location may correspond with hip location 704a of
After finding the hip of the dairy livestock, controller 200 may attempt to locate the hind leg of the dairy livestock. Generally, controller 200 may begin to locate the hind leg of the dairy livestock by analyzing visual data in a downward direction from hip location 704a in an attempt to determine outer hind location 706a of
For example, controller 200 may traverse pixels of first image 176 in a downward direction in order to locate the outer edge of a hind leg of the dairy livestock. In certain embodiments, controller 200 may traverse pixels of first image 176 in a downward direction from hip location 704a to determine outer hind location 706a of
Controller 200 may then search for an inner edge of the hind leg of the dairy livestock. For example, controller 200 may attempt to determine inner hind leg location 708a of
For example, controller 200 may traverse pixels along the z-dimension (as illustrated in
After locating the inner edge of the hind leg, controller 200 may search for the location of the udder of the dairy livestock. Controller 200 may begin to scan the depth information of pixels along an upper area of first image 176, or any other portion of first image 176 likely to include the udder of the dairy livestock. For example, controller 200 may scan pixels along a vertical dimension above the location of the inner edge (e.g., inner edge location 708a of
Controller 200 may determine whether some pixels are closer than other pixels signifying an edge of the dairy livestock has been found. For example, controller 200 may compare the depth information of a group of pixels to determine if a portion of the pixels are closer than other portions of pixels. A cluster of pixels closer to first camera 158a than other clusters may signify an edge has been found. If the edge is substantially vertical (e.g., edge 702b of
After finding the edges corresponding to a side of the dairy livestock, controller 200 may determine if data points from both sides of the dairy livestock have been collected. In certain embodiments, this determination may be based on whether controller 200 has enough data points to calculate a center location of the udder of the dairy livestock. For example, controller 200 may use at least two locations of the udder to calculate the center of the udder (e.g., center location 712 of
Once controller 200 has found a number of locations of edges of the dairy livestock, controller 200 may calculate a center location of the udder. For example, controller 200 may calculate center location 712 of
At any point in determining reference point 178, controller 200 may filter particular visual data deemed undesirable. Generally, depth information analyzed from first image 176 should stay fairly constant. This signifies that the same object is being analyzed. However, controller 200 may determine that undesirable visual data has been captured by first camera 158a in first image 176. Examples of undesired data captured by first camera 158a may be a fly, a livestock's tail, dirt, fog, moisture, a reflection off of a metal post in enclosure 100, or any other object that may interfere with controller 200 analyzing first image 176. Controller 200 may make this determination by determining whether some pixels exceed a distance threshold. For example, controller 200 may determine that one or more pixels are too close to first camera 158a. Pixels that are too close to first camera 158a may suggest undesired data has been captured by first camera 158a. As another example, controller 200 may determine that the measured depths of adjacent pixels are fluctuating, exceeding a certain threshold. As a further example, controller 200 may determine that measured depths of adjacent pixels are changing excessively, exceeding a certain threshold. Any of these examples may signify undesirable visual data.
If controller 200 has determined that some pixels exceed a distance threshold and/or have depth information signifying certain pixels represent undesirable visual data captured by first camera 158a, then controller 200 may filter that particular visual data. Thus, controller 200 may determine that a certain set of pixels are too close to or too far from camera 158a and may eliminate those pixels from consideration when analyzing first image 176. Or controller 200 may have determined that certain adjacent pixels contained depth information that fluctuated beyond a threshold. As another example, controller 200 may have determined that certain adjacent pixels contained depth information that changed excessively from pixel to pixel. All of these examples may be examples of data potentially filtered by controller 200 when analyzing first image 176.
Once controller 200 has determined reference point 178 (e.g., center location 712 of
Controller 200 may send a signal to robotic attacher 150 causing robotic attacher 150 to position second camera 158b relative to the reference point 178. Accordingly, second camera 158b may have a consistent point of reference from one milking cycle to the next, which may allow the teats to be located efficiently. Controller 200 may access a second image 180 generated by second camera 158b (e.g., from memory module 240) in order to determine, using any suitable logic 220, a location of a teat.
In certain embodiments, second camera 158b may determine where to look for one or more of the teats according to historical data 184. Historical data 184 may be received from controller 200 and may describe a previously-determined location of the teats relative to the reference point 178. The previously-determined location may be based on the location of the teats during one or more previous milking cycles. As an example, the previously-determined location may comprise the location of the teats during the most recent milking cycle. As another example, the previously-determined location may comprise an average of the locations of the teats during a number of previous milking cycles. As another example, the previously-determined location may comprise the location of the teats during a previous milking cycle in which the udder was likely to be as full of milk as the current milking cycle. For example, if eight hours have elapsed since the dairy cow was last milked, the previously-determined location may be determined from a previous milking cycle in which the dairy cow had not been milked for approximately eight hours. Referring to historical data 184 may minimize the area that second camera 158b may scan in order to locate the teat and may reduce the amount of time required to locate the teat.
Second camera 158b may communicate the second image 180 to controller 200, and controller 200 may access the second image 180 to locate the teats of the dairy cow. As described below in
The operation of determining the location of the teats of the dairy livestock will now be discussed in more detail. Controller 200 may receive stored, historical coordinates signifying the location of a teat. For example, controller 200 may access historical data 184 signifying the location of teats of the dairy livestock in relation to some location on the dairy livestock, such as the center of the udder, the rear, and/or reference point 178. In certain embodiments, the center of the udder may be reference point 178.
Using this information, controller 200 may calculate reference coordinates for particular teats of the dairy livestock. Controller 200 may use reference coordinates to position robotic attacher 150 in the vicinity of a particular teat in order to subsequently determine a more accurate location of the particular teat using second camera 158b.
Controller 200 may begin by calculating a first reference coordinate. The first reference coordinate may be calculated using the stored coordinates of the teats (e.g., historical data 184) as well as the received coordinates of the center of the udder. For example, the stored coordinate may signify the distance from the center of an udder that a particular teat may be located. The first reference coordinate may be a coordinate signifying the distance from the center of the udder in a lateral direction towards the side of a dairy livestock in the z-dimension (as illustrated in
Controller 200 may calculate a second reference coordinate. For example, the second reference coordinate may be calculated using the stored coordinates of the teats, the center of the udder, and a displacement measurement obtained using backplane 138. In certain embodiments, the second coordinate may be the distance from the rear of the cow to a particular teat based on the position of backplane 138 and the previously stored distance of the teat from the rear of the cow. Using this information, controller 200 may be able to calculate a second coordinate for a particular teat in the x-dimension (as depicted in
Using the reference coordinates, second camera 158b may be positioned near the teats of the dairy livestock. Robotic attacher 150 may move into position to scan the udder for teats. Robotic attacher 150 may move to the calculated reference coordinates. In certain embodiments, the reference coordinates may be slightly offset to avoid collision with one or more of the teats of the dairy livestock. According to some embodiments, robotic attacher 150 may move into position to allow second camera 158b to determine current coordinates of a particular teat of the dairy livestock. For example, the coordinates of the particular teat may correspond to coordinates in the x-, y-, and z-dimensions.
Controller 200 may begin to scan for the tip of a particular teat by utilizing second camera 158b. In certain embodiments, second camera 158b may generate second image 180 using lens 264 and transmitter 260 described in
Controller 200 may calculate a first coordinate of the tip of a particular teat by analyzing second image 180. In certain embodiments, the first coordinate may be a coordinate in the z-dimension (as depicted in
Controller 200 may then calculate a second coordinate of the particular teat. For example, the second coordinate may signify the distance from the tip of the teat hanging below an udder of a dairy livestock to the ground in the y-dimension (as depicted in
Controller 200 may also calculate a third coordinate of the particular teat. For example, the third coordinate may signify the distance between second camera 158b and the tip of the particular teat in an x-dimension (as depicted in
Controller 200 may also calculate the distance between the center of teat cup 168 and the tip of the teat based on the calculation of the third coordinate and the known distance between second camera 158b and teat cup 168. Finally, controller 200 may determine if there are any other teats for which the coordinates must be calculated. If there are other teats that remain for which coordinates need to be calculated, the process may repeat. The vision-based determination process described above facilitates the movement of robotic attacher 150 allowing for the proper attachment of teat cups 168 to teats of a dairy livestock, disinfection of teats by nozzle 182, or any other suitable action by robotic attacher 150. Furthermore, controller 200 is operable to detect a movement of the dairy livestock. In response to detecting the movement, controller 200 may re-calculate any coordinate previously calculated using first camera 158a and/or second camera 158b.
At any point in determining the location of teats, controller 200 may filter undesirable visual data. Controller 200 may detect undesirable visual data by determining whether any light intensity measurements exceed a particular threshold. For example, controller 200 may scan second image 180 searching for light intensity measurements that vary greatly in intensity from neighboring pixels. Controller 200 may also determine that the distance between particular pixels with similar light intensity measurements may be spaced too far apart. In these examples, light intensity measurements exceeding certain thresholds may signify objects other than the teats of a dairy livestock such as hair, dirt, fog, or a fly. In certain embodiments, controller 200 may instruct second camera 158b to generate two images. One image may be generated using the laser turned on and the other image may be generated while the laser is turned off. Using the light intensity measurements from both of these generated images, controller 200 may determine an ambient light measurement which will be taken into account when calculating the light intensity measurements of second image 180. If any light intensity measurements exceed a certain threshold, then controller 200 may filter such data. Such data may be determined to have captured an object that may lead to an erroneous calculation for the coordinates of a particular teat of the dairy livestock. For example, when calculating the coordinates of a particular teat, controller 200 may ignore filtered data in its calculations.
Particular embodiments of the present disclosure may provide one or more technical advantages. For example, in some embodiments, the system of the present disclosure includes multiple cameras to facilitate locating the teats of a dairy livestock. Using multiple cameras may improve the visibility of the teats and may facilitate attaching milking equipment from a position to the rear of the dairy livestock, rather than to the side of the dairy livestock as in certain conventional systems. Approaching from the rear of the dairy livestock makes it less likely that the livestock will be distracted by the milking equipment. Furthermore, approaching from the rear of the dairy livestock makes it less likely that the dairy livestock will kick the milking equipment, the vision system, or any other component of the system of the present disclosure. As another example, in some embodiments, the system of the present disclosure, in searching for the teats of a dairy livestock, may account for (1) a determined reference point relative to the dairy livestock, and/or (2) historical data describing a previous location of the teats relative to the reference point. Accounting for the determined reference point and/or the historical data in searching for the teats of a dairy livestock may allow for more accurate teat location, which may allow a robotic attacher to more efficiently attach milking equipment to the dairy livestock. In certain embodiments, the system of the present disclosure may filter visual data to more efficiently and accurately determine reference points and locations of the teats of a dairy livestock. In some embodiments, the system of the present disclosure may release milking equipment, such as a milking cup, in such a manner as to prevent the accidental detachment of the milking equipment and to ensure that the milking equipment is securely attached to the dairy livestock.
Although a particular implementation of the example system is illustrated and primarily described, the present disclosure contemplates any suitable implementation of the example system, according to particular needs. Moreover, although the present invention has been described with several embodiments, diverse changes, substitutions, variations, alterations, and modifications may be suggested to one skilled in the art, and it is intended that the invention encompass all such changes, substitutions, variations, alterations, and modifications as fall within the spirit and scope of the appended claims.
In certain embodiments, dairy livestock identifier 602 is an identifier that references a particular dairy livestock. Dairy livestock identifier 602 may be a number, a text string, or any other identifier capable of identifying a particular dairy livestock. In the current example, records 606 all include a number as dairy livestock identifier 602. For example, record 606a may represent a dairy livestock with dairy livestock identifier 602 of “123001.” Record 606b may represent a dairy livestock with dairy livestock identifier 602 of “478921.” Record 606c may represent a dairy livestock with dairy livestock identifier 602 of “554223.”
Coordinate data 600 may also contain teat coordinates 604. Teat coordinates 604 may be historical coordinates for particular teats of a dairy livestock. For example, teat coordinates 604a-d each represent example coordinates for a particular one teat of a dairy livestock. In certain embodiments, each coordinate of teat coordinates 604 may represent the distance from the center of the udder of the dairy livestock in a particular dimension. Teat coordinates 604 may be in any suitable format and in any suitable measurement unit usable by controller 200 to calculate coordinates in real-time or for any other particular purpose. In the illustrated example, each record 606 contains a set of three coordinates for each teat in teat coordinates 604. Teat coordinates 604 may be coordinates in any suitable dimension. For example, the coordinates may represent the location of a particular teat in the x-, y-, and z-dimensions. In certain embodiments, teat coordinates 604 may correspond to coordinates in the left-right dimension, head-to-tail dimension, and the up-down dimension. In the illustrated example, record 606a may contain teat coordinates 604a of (10, 12, 5), teat coordinates 604b of (−11, 10, 4), teat coordinates 604c of (−8, −13, 6), and teat coordinates 604d of (−12, 11, 5). Record 606b may contain teat coordinates 604a of (9, 10, 6), teat coordinates 604b of (−13, 8, 5), teat coordinates 604c of (−7, −12, 5), and teat coordinates 604d of (−10, 10, 6). Record 606c may contain teat coordinates 604a of (10, 8, 7), teat coordinates 604b of (−12, 9, 5), teat coordinates 604c of (−9, −10, 6), and teat coordinates 604d of (−9, 12, 6).
Controller 200 may be operable to determine various locations in the vicinity of the hind legs as discussed previously. For example, controller 200 may be operable to determine hip locations 704 of the dairy livestock. Hip location 704a may correspond to a located first hip of the diary livestock and hip location 704b may correspond to a located second hip of the dairy livestock. After determining hip location 704, controller 200 may be further operable to determine outer hind locations 706. For example, 706a may correspond to a located outer hind edge of a first hind leg of the dairy livestock and 706b may correspond to a located outer hind edge of a second hind leg of the dairy livestock. Controller 200 may also determine inner hind leg locations 708. For example, inner hind leg location 708a may correspond to a located inner hind edge of the first hind leg and 708b may correspond to a located inner hind edge of the second hind leg.
Controller 200 may be further operable to determine a position of the udder of the dairy livestock. In certain embodiments, controller 200 may determine the position of the udder of the dairy livestock based on the accessed first image 176 and/or the determined positions of the hind legs of the dairy livestock. For example, controller 200 may process first image 176 (which may change as vision system 158 moves toward the dairy livestock, as described above) in order to trace the located edges in depth corresponding to the inside of the hind legs of the dairy livestock (e.g., inner hind locations 708) upwardly until they intersect with the udder of the dairy livestock at udder edges 710. In certain embodiments, controller 200 may process first image 176 to determine where the edges in depth transition from being substantially vertical, indicating the inside of the hind legs, to substantially horizontal, indicating the udder. This location may correspond to udder edge 710. For example, udder edge 710a may correspond to the edge of the udder near one hind leg, while udder 710b may correspond to the edge of the udder near the other hind leg. Additionally, controller 200 may use udder edges 710a and 710b to calculate center udder location 712. In certain embodiments, center udder location 712 may be a location on the udder in the middle of udder edges 710a and 710b.
Controller 200, having determined the positions of each of the hind legs of the dairy livestock and the udder, may then communicate signals to one or more of actuators that may facilitate movement of robotic attacher 150 such that at least a portion of robotic attacher 150 (e.g., supplemental arm 154) extends toward the space between the hind legs of the dairy livestock (e.g., at a predetermined height relative to the milking stall in which the dairy livestock is located). Because first image 176 may comprise a three-dimensional video image, first image 176 may change in real time as first camera 158a moves toward the dairy livestock. Accordingly, the present disclosure contemplates that controller 200 may update, either continuously or at predetermined intervals, the determined leg positions as first image 176 changes.
Second axis 904 may be any unit of measurement that may specify a distance in a particular dimension. For example, second axis 904 may represent the distance from first camera 158a to an object depicted in a particular portion, such as a pixel, of first image 176. Data points 906 may represent the distance of a particular portion of first image 176 in a particular dimension. For example, a data point 906 may signify the distance of a particular pixel from first camera 158a. Threshold band 908 may be any threshold that can be used by controller 200 to filter particular data. For example, controller 200 may filter data that is outside of threshold band 908, i.e., is too far or too close to first camera 158a. Controller 200 may determine that a cluster of pixels within threshold band 908 are part of the same object and pixels adjacent to that cluster that may fall outside of threshold band 908 may be part of a different object. This may signify that an edge of an object has been found by controller 200.
Second axis 1004 may be any unit of measurement that can be used to distinguish one cluster of pixels from another cluster of pixels. For example, second axis 1004 may represent the light intensity of a particular portion of second image 180. Data points 1006 may represent the light intensity of a particular portion of second image 180 in a particular dimension. For example, a data point 1006 may signify the light intensity of a particular pixel of second image 180. Threshold 1008 may be any threshold that can be used by controller 200 to filter particular data. For example, controller 200 may filter data that is outside of threshold 1008, i.e., the light intensity is too high signifying a reflection from a metal post, or other erroneous data. Controller 200 may determine that a cluster of pixels aligned closely together within threshold 1008 with similar light intensities are part of the same object and pixels adjacent to that cluster that may fall outside of threshold 1008, or otherwise have too dissimilar of a light intensity, may be part of a different object. This may signify that an edge of an object has been found by controller 200.
The example method may begin at step 1100. At step 1100, controller 200 may begin to compare pixels of an upper outer area of an image. For example, controller 200 may access first image 176 generated by first camera 158a. Controller 200 may compare the pixels of first image 176 by determining the depth of the pixels. In certain embodiments, the depth may be determined by measuring the time of flight of a light signal between first camera 158a and a particular object captured in first image 176. After collecting the depth information of a particular portion of pixels, the method may proceed to step 1101. At step 1101, controller 200 may determine whether some pixels exceed a distance threshold. Generally, depth information analyzed from first image 176 should stay fairly constant signifying that a particular object is being analyzed. However, controller 200 may determine that one or more pixels are too close to first camera 158a. Pixels that are too close to first camera 158a may suggest undesirable data has been captured by first camera 158a. Examples of undesirable data captured by first camera 158a may be a fly, a livestock's tail, dirt, fog, moisture, a reflection off a metal post in enclosure 100, or any other object that may interfere with controller 200 analyzing first image 176. As another example, controller 200 may determine that the measured depths of adjacent pixels are fluctuating, exceeding a certain threshold. As a further example, controller 200 may determine that measured depths of adjacent pixels are changing excessively, exceeding a certain threshold. If controller 200 has determined that some pixels do exceed a distance threshold and have depth information signifying certain pixels represent undesirable visual data captured by first camera 158a, then the example method may proceed to step 1102. Otherwise, the example method may proceed to step 1104.
Once it is determined that certain visual data exceeds a distance threshold, that data may be filtered. At step 1102, controller 200 may filter pixels containing depth information that exceeds a certain distance threshold. For example, controller 200 may determine that a certain set of pixels are too close to or too far from camera 158a and will eliminate those pixels from consideration when analyzing first image 176. Or controller 200 may have determined that certain adjacent pixels contained depth information that fluctuated. As another example, controller 200 may have determined that certain adjacent pixels contained depth information that changed excessively from pixel to pixel. All of these examples may be examples of data potentially filtered by controller 200.
Controller 200 may next attempt to locate particular edges of the dairy livestock by comparing the depth locations of various pixels to each other at step 1104. Controller 200 may determine whether some pixels are closer than other pixels. For example, controller 200 may compare the depth information of a group of pixels to determine if a portion of the pixels are closer than other portions of pixels. A cluster of pixels closer to first camera 158a may signify that an edge of a dairy livestock has been found. The cluster of pixels with depth information further away from camera 158a may signify that the image data is of an object other than an edge of the dairy livestock. If controller 200 has determined that some pixels are not closer than other pixels, then the example method may return to step 1100 and continue analyzing information captured by first camera 158a. Otherwise, the example method may proceed to step 1108.
At step 1108, controller 200 may associate the location of the cluster of pixels that are closer to first camera 158a with an edge of the dairy livestock. For example, controller 200 may have determined that the cluster of pixels represents a first edge corresponding to the hip of the dairy livestock. In certain embodiments, this location may correspond with hip location 704a of
After finding the hip of the dairy livestock, controller 200 may attempt to locate the hind leg of the dairy livestock. To do this, at step 1112, controller 200 may compare the depth information of pixels in a lower outer area of first image 176 or any other portion of first image 176 that may include the hind legs of the dairy livestock. For example, controller 200 may traverse pixels of first image 176 in a downward direction trying to locate the outer edge of a hind leg of a dairy livestock. At step 1113, controller 200 may determine whether some pixels exceed a distance threshold. Controller 200 may make this determination similar to the determination in step 1101. If controller 200 has determined that some pixels exceed a distance threshold, then the example method may proceed to step 1114. Otherwise, the example method may proceed to step 1116. At step 1114, controller 200 may filter pixels containing depth information that exceeds a certain distance threshold. Controller 200 may filter pixels as discussed in step 1102.
Controller 200 may then proceed with determining the location of an outer edge of a hind leg at step 1116. Controller 200 may do this by determining whether some pixels are closer than other pixels. For example, controller 200 may compare the depth information of a group of pixels to determine if a portion of the pixels are closer than other portions of pixels. A cluster of pixels closer to first camera 158a may signify that an edge of a dairy livestock has been found. The cluster of pixels with depth information further away from camera 158a may signify that the image data is of an object other than an edge of the dairy livestock. If controller 200 has determined that some pixels are not closer than other pixels, then the example method may return to step 1112 and continue analyzing information captured by first camera 158a. Otherwise, the example method may proceed to step 1120.
At step 1120, controller 200 may associate the location of the cluster of pixels that are closer to first camera 158a with an edge of the dairy livestock. For example, controller 200 may have determined that the cluster of pixels represents an edge corresponding to an outer edge of a hind leg of the dairy livestock. In certain embodiments, this location may correspond with outer edge location 706a of
Controller 200 may then attempt to determine an inner edge location of a hind leg. At step 1124, controller 200 may begin to scan the depth information of pixels along a lower inner area of first image 176. For example, controller 200 may traverse pixels along the z-dimension (as illustrated in
Controller 200 may then proceed with determining the location of an inner edge of a hind leg at step 1128. Controller 200 may determine whether some pixels are closer than other pixels. For example, controller 200 may compare the depth information of a group of pixels to determine if a portion of the pixels are closer than other portions of pixels. A cluster of pixels closer to first camera 158a may signify that an edge of the dairy livestock has been found. The cluster of pixels with depth information further away from camera 158a may signify that the image data is of an object other than an edge of the dairy livestock. If controller 200 has determined that some pixels are not closer than other pixels, then the example method may return to step 1124 and continue analyzing information captured by first camera 158a. Otherwise, the example method may proceed to step 1132.
At step 1132, controller 200 may associate the location of the cluster of pixels that are closer to first camera 158a with an edge of the dairy livestock. For example, controller 200 may have determined that the cluster of pixels represents an edge corresponding to an inner edge of a hind leg of the dairy livestock. In certain embodiments, this location may correspond with inner edge location 708a of
After locating the inner edge of the hind leg, controller 200 may search for the location of the udder of the dairy livestock. At step 1136, controller 200 may begin to scan the depth information of pixels along an upper area of first image 176. For example, controller 200 may scan pixels along a vertical dimension above the location of the inner edge found in step 1132, trying to locate an edge of the udder of the dairy livestock. In certain embodiments, this edge may be where the udder of the livestock meets an inner edge of a hind leg of the dairy livestock. At step 1137, controller 200 may determine whether some pixels exceed a distance threshold. Controller 200 may make this determination similar to the determination in step 1101. If controller 200 has determined that some pixels exceed a distance threshold, then the example method may proceed to step 1138. Otherwise, the example method may proceed to step 1140. At step 1138, controller 200 may filter pixels containing depth information that exceed a certain distance threshold. Controller 200 may filter pixels as discussed in step 1102.
Continuing to determine the location of the udder edge, at step 1140, controller 200 may determine whether the edges in depth of first image 178 have transitioned from being substantially vertical to substantially horizontal. For example, controller 200 may compare the depth information of a group of pixels to determine if a portion of the pixels are closer than other portions of pixels. A cluster of pixels closer to first camera 158a than other clusters may signify that an edge has been found. If the located edge is substantially vertical, the edge of the udder has not been found and the example method may return to step 1136 and controller 200 may continue to scan information captured by first camera 158a. If controller 200 has determined that the located edge has is substantially horizontal, an edge of the udder may have been found. This location may signify where the edges in depth transition from being substantially vertical, indicating the inside of the hind legs, to substantially horizontal, indicating the udder. The example method may proceed to step 1144.
At step 1144, controller 200 may associate the location of the cluster of pixels where pixels are no longer substantially closer to first camera 158a than other pixels with an edge of the dairy livestock. For example, controller 200 may have determined that the cluster of pixels represents an edge corresponding to an udder edge of the dairy livestock where the udder meets the hind leg. In certain embodiments, this location may correspond with udder edge location 710a of
After finding the edges corresponding to a side of the dairy livestock, controller 200 may determine if data points from both sides of the dairy livestock have been collected at step 1148. In certain embodiments, this determination may be based on whether controller 200 has enough data points to calculate a center location of the udder of the dairy livestock. For example, controller 200 may use at least two locations of the udder to calculate the center of the udder (e.g., center location 712 of
After determining edge locations for both sides of the dairy livestock, at step 1152, controller 200 may calculate a center location of the udder. For example, controller 200 may calculate center location 712 of
The example method may begin at step 1198. At step 1198, gripping portion 156 may grip teat cup 168 and be positioned near the rear of the dairy livestock. At step 1200, stored coordinates signifying the location of teats may be received. For example, controller 200 of
At step 1208, controller 200 may calculate a first reference coordinate for a particular teat. The first reference coordinate may be calculated using the stored coordinates of the particular teat (e.g., historical data 184) as well as the received coordinates of the center of the udder. For example, the stored coordinate may signify the distance from the center of an udder that that particular teat may be located. The first reference coordinate may be a coordinate signifying the distance of the particular teat from the center of the udder in a lateral direction towards the side of a dairy livestock in the z-dimension (as illustrated in
At step 1212, controller 200 may calculate a second reference coordinate for the particular teat. For example, the second reference coordinate may be calculated using the stored coordinates of the particular teat, the center of the udder, and a displacement measurement obtained using backplane 138. In certain embodiments, the second coordinate may be the distance from the rear of the cow to the particular teat based on the position of backplane 138 and the previously stored distance of the teat from the rear of the cow. Using this information, controller 200 may be able to calculate a second coordinate for the particular teat in the x-dimension (as depicted in
Once reference coordinates for a particular teat are determined, steps may be taken to prepare robotic attacher 150 for attaching teat cup 168 to the particular teat. At step 1224, using the reference coordinates calculated, second camera 158b may be positioned near the teats of the dairy livestock. Robotic attacher 150 may move into position to scan the udder for teats by moving to the calculated reference coordinates. In certain embodiments, the reference coordinates may be slightly offset to avoid collision with one or more of the teats of the dairy livestock. According to some embodiments, robotic attacher 150 may move into position to allow second camera 158b to determine current coordinates of a particular teat of the dairy livestock. For example, the coordinates of the particular teat may correspond to coordinates in the x-, y-, and z-dimensions.
Once in position, controller 200 may start to scan the udder for a particular teat. At step 1228, controller 200 may begin by scanning for the tip of a particular teat using second camera 158b. In certain embodiments, second camera 158b may generate second image 180 using lens 264 and transmitter 260. Second image 180 may comprise data signifying the light intensity measurements of particular portions of the visual data captured by second image 180. Controller 200 may then analyze second image 180 generated by second camera 158b to locate a first teat. In certain embodiments, analyzing second image 180 may include analyzing light intensity measurements captured by second camera 158b.
In determining the location of teats, controller 200 may also determine whether any undesirable visual data may be filtered. At step 1232, controller 200 may determine whether any light intensity measurements exceed a particular threshold. For example, controller 200 may scan second image 180 searching for light intensity measurements that vary beyond a threshold amount in intensity from neighboring pixels. Controller 200 may also determine that the distance between particular pixels with particularly similar light intensity measurements may be spaced too far apart. In these examples, light intensity measurements exceeding certain thresholds may signify objects other than the teats of a dairy livestock such as hair, dirt, fog, or a fly.
In certain embodiments, controller 200 may instruct second camera 158b to generate two images. One image will be generated using the laser turned on and the other image will be generated while the laser is turned off. Using the light intensity measurements from both of these generated images, controller 200 may determine an ambient light measurement which will be taken into account when calculating the light intensity measurements of second image 180. If any light intensity measurements exceed a certain threshold, then the example method may proceed to step 1236. Otherwise, the example method may proceed to step 1240. At step 1236, controller 200 may filter data that is determined to exceed a certain threshold. Such data may be determined to have captured an object that may lead to an erroneous calculation for the coordinates of a particular teat of the dairy livestock. For example, when calculating the coordinates of a particular teat, controller 200 may ignore filtered data in its calculations.
After scanning the udder for a teat has been initiated, controller 200 may begin to calculate the actual coordinates of a particular teat location. At step 1240, controller 200 may calculate a first coordinate of the tip of a particular teat. In certain embodiments, the first coordinate may be a coordinate in the z-dimension (as depicted in
At step 1244, controller 200 may calculate a second coordinate of the particular teat. For example, the second coordinate may signify the distance from the tip of the teat hanging below an udder of a dairy livestock to the ground in the y-dimension (as depicted in
At step 1248, controller 200 may calculate a third coordinate of the particular teat. For example, the third coordinate may signify the distance between second camera 158b and the tip of the particular teat in an x-dimension (as depicted in
At this point, controller 200 may facilitate the attachment of teat cup 168 to a particular teat. At step 1256, teat cup 168 may be moved towards a teat of a dairy livestock. For example, teat cup 168 may be moved to a particular set of coordinates provided by controller 200. In certain embodiments, teat cup 168 may be positioned under a teat of the dairy livestock based on the coordinates calculated in steps 1240, 1244, and 1248 above. Once positioned in the vicinity of the teat, teat cup 168 may begin to be moved towards the actual calculated location of a particular teat. For example, supplemental arm 154 may be instructed by controller 200 to maneuver in an upward direction towards a particular teat. At step 1260, controller 200 may determine whether teat cup 168 is within a particular threshold. If teat cup 168 is not within a particular threshold, the example method may proceed to step 1264. Otherwise, the example method may proceed to step 1268.
At step 1264, controller 200 may attempt to determine whether it is appropriate to initiate the recalculation of the actual location of a particular teat. Generally, attaching teat cup 168 to a particular teat is a feedback-based process where the actual location of a particular teat may be determined and updated as appropriate until teat cup 168 is attached to the particular teat. Based at least in part upon visual data captured by vision system 158, controller 200 may fine-tune the current coordinates of the particular teat. Calculating (and potentially re-calculating) the actual location of a particular teat allows controller 200 to accurately determine the location of the particular teat during the attachment process until teat cup 168 is attached to a particular teat. For example, the livestock may move and it may be appropriate to update the actual coordinates of a particular teat based on visual data captured by vision system 158. If this is the case, the example method may proceed back to step 1228 to determine updated coordinates of the particular teat. Otherwise, teat cup 168 may continue to be moved towards the teat of the dairy livestock as the example method returns to step 1256.
If teat cup 168 is within a threshold distance of a particular teat, then, at step 1268, pressure may be applied to teat cup 168. In certain embodiments, this may be vacuum pressure applied to teat cup 168 by a pulsation device. By applying vacuum pressure to teat cup 168, teat cup 168 may draw in a particular teat for milking into teat cup 168. At step 1272, it may be determined whether a particular teat has been drawn into teat cup 168. If the teat is determined to not have been drawn into teat cup 168, the example method may proceed to step 1264. Otherwise, the example method may proceed to step 1276. At step 1276, controller 200 may provide an instruction for gripping portion 156 to release teat cup 168. At step 1280, controller 200 may instruct supplemental arm 154 to move gripping portion 156 upwards and away at a particular angle from the teat of the dairy livestock. By instructing gripping portion 156 to move up and away from the particular teat of the dairy livestock at a particular angle, the possibility of gripping portion 156 to detach teat cup 168 is decreased. At step 1284, controller 200 may determine whether another teat cup 168 may be attached. If another teat cup 168 may be attached, then the example method may proceed to step 1198. Otherwise, the example method may end.
Although the present disclosure describes or illustrates particular operations as occurring in a particular order, the present disclosure contemplates any suitable operations occurring in any suitable order. Moreover, the present disclosure contemplates any suitable operations being repeated one or more times in any suitable order. Although the present disclosure describes or illustrates particular operations as occurring in sequence, the present disclosure contemplates any suitable operations occurring at substantially the same time, where appropriate. Any suitable operation or sequence of operations described or illustrated herein may be interrupted, suspended, or otherwise controlled by another process, such as an operating system or kernel, where appropriate. The acts can operate in an operating system environment or as stand-alone routines occupying all or a substantial part of the system processing.
Although the present disclosure has been described with several embodiments, diverse changes, substitutions, variations, alterations, and modifications may be suggested to one skilled in the art, and it is intended that the disclosure encompass all such changes, substitutions, variations, alterations, and modifications as fall within the spirit and scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/695,279 filed Apr. 24, 2015 entitled “System and Method for Filtering Data Captured by a 3D Camera,” which is a continuation of U.S. patent application Ser. No. 13/448,840 filed Apr. 17, 2012 entitled “System and Method for Filtering Data Captured by a 3D Camera,” now U.S. Pat. No. 9,058,657 issued Jun. 16, 2015 which is a continuation-in-part application of U.S. patent application Ser. No. 13/095,994 entitled “Vision System for Robotic Attacher,” filed Apr. 28, 2011, now U.S. Pat. No. 8,671,885 issued Mar. 18, 2014.
Number | Name | Date | Kind |
---|---|---|---|
2731300 | Jansen | Jan 1956 | A |
2830559 | McMurray | Apr 1958 | A |
3174457 | Lyttle et al. | Mar 1965 | A |
3835814 | Jacobs et al. | Sep 1974 | A |
4306454 | Olrik et al. | Dec 1981 | A |
4508058 | Jakobson et al. | Apr 1985 | A |
4617876 | Hayes | Oct 1986 | A |
4726322 | Torsius | Feb 1988 | A |
4735172 | Wahlström et al. | Apr 1988 | A |
4819875 | Beal | Apr 1989 | A |
4867103 | Montalescot et al. | Sep 1989 | A |
4941433 | Hanauer | Jul 1990 | A |
5020477 | Dessing et al. | Jun 1991 | A |
5069160 | Street et al. | Dec 1991 | A |
5088447 | Spencer et al. | Feb 1992 | A |
5285746 | Moreau | Feb 1994 | A |
5379721 | Dessing et al. | Jan 1995 | A |
5479876 | Street et al. | Jan 1996 | A |
5553569 | Street et al. | Sep 1996 | A |
5596945 | van der Lely | Jan 1997 | A |
5666903 | Bull et al. | Sep 1997 | A |
5678506 | van der Berg et al. | Oct 1997 | A |
5718185 | Pichler et al. | Feb 1998 | A |
5722343 | Aurik et al. | Mar 1998 | A |
5784994 | van der Lely | Jul 1998 | A |
5816190 | van der Lely | Oct 1998 | A |
5862776 | van den Berg | Jan 1999 | A |
5918566 | van den Berg | Jul 1999 | A |
5934220 | Hall et al. | Aug 1999 | A |
5979359 | Hansson | Nov 1999 | A |
6050219 | van der Lely | Apr 2000 | A |
6055930 | Stein et al. | May 2000 | A |
6105536 | DeWaard | Aug 2000 | A |
6118118 | van der Lely et al. | Sep 2000 | A |
6167839 | Isaksson et al. | Jan 2001 | B1 |
6189486 | Lindholm | Feb 2001 | B1 |
6205949 | van den Berg | Mar 2001 | B1 |
6213051 | Fransen | Apr 2001 | B1 |
6227142 | Birk | May 2001 | B1 |
6234109 | Andersson et al. | May 2001 | B1 |
6257169 | Oosterling | Jul 2001 | B1 |
6321682 | Eriksson et al. | Nov 2001 | B1 |
6323942 | Bamji | Nov 2001 | B1 |
6341575 | Forsén | Jan 2002 | B1 |
6363883 | Birk | Apr 2002 | B1 |
6401654 | Hallsten et al. | Jun 2002 | B1 |
6443094 | DeWaard | Sep 2002 | B1 |
6532892 | Nilsson | Mar 2003 | B1 |
6543381 | Birk et al. | Apr 2003 | B1 |
6549289 | Ellis | Apr 2003 | B1 |
6553942 | Eriksson | Apr 2003 | B1 |
6568352 | Fransen | May 2003 | B2 |
6591784 | Eriksson | Jul 2003 | B1 |
6626130 | Eriksson | Sep 2003 | B1 |
6729262 | Ealy et al. | May 2004 | B2 |
6864914 | Birk | Mar 2005 | B1 |
6974373 | Kriesel | Dec 2005 | B2 |
6976644 | Troudt | Dec 2005 | B2 |
7039220 | Kriesel | May 2006 | B2 |
7128020 | Björk et al. | Oct 2006 | B2 |
7146928 | Ealy et al. | Dec 2006 | B2 |
7246571 | Van Den Berg et al. | Jul 2007 | B2 |
7299766 | Van Den Berg et al. | Nov 2007 | B2 |
7377232 | Holmgren et al. | May 2008 | B2 |
7690327 | Van Den Berg | Apr 2010 | B2 |
7882802 | Van Den Berg et al. | Feb 2011 | B2 |
8036429 | Doyle, II | Oct 2011 | B2 |
8074600 | Källèn et al. | Dec 2011 | B2 |
8210122 | Pettersson et al. | Jul 2012 | B2 |
8385684 | Sandrew | Feb 2013 | B2 |
8934711 | Park | Jan 2015 | B2 |
20010024514 | Matsunaga | Sep 2001 | A1 |
20020108576 | Lely et al. | Aug 2002 | A1 |
20030097990 | Bjork et al. | May 2003 | A1 |
20030198378 | Ng | Oct 2003 | A1 |
20040032974 | Kriesel | Feb 2004 | A1 |
20040103846 | Fransen | Jun 2004 | A1 |
20050223997 | Umegard | Oct 2005 | A1 |
20060196431 | Kaever et al. | Sep 2006 | A1 |
20070137579 | Osthues et al. | Jun 2007 | A1 |
20070223057 | Berestov | Sep 2007 | A1 |
20070245964 | Van Den Berg et al. | Oct 2007 | A1 |
20070277737 | Maier et al. | Dec 2007 | A1 |
20080202432 | Petterson | Aug 2008 | A1 |
20090185800 | Lee et al. | Jul 2009 | A1 |
20100031889 | Eriksson et al. | Feb 2010 | A1 |
20100079581 | Russell et al. | Apr 2010 | A1 |
20100095893 | Kallen et al. | Apr 2010 | A1 |
20100186675 | Van Den Berg | Jul 2010 | A1 |
20100282172 | Eriksson et al. | Nov 2010 | A1 |
20100289649 | Holmgren et al. | Nov 2010 | A1 |
20110102438 | Mathe | May 2011 | A1 |
20110114024 | Van Den Berg | May 2011 | A1 |
20110239945 | Van Den Berg | Oct 2011 | A1 |
20110245975 | Daubner | Oct 2011 | A1 |
20120000427 | Nilsson | Jan 2012 | A1 |
20120006269 | McCain et al. | Jan 2012 | A1 |
20120048207 | Hofman et al. | Mar 2012 | A1 |
20120048208 | Hofman et al. | Mar 2012 | A1 |
20120173184 | Ovsiannikov | Jul 2012 | A1 |
20120180729 | Van Dorp | Jul 2012 | A1 |
20150110414 | Cho | Apr 2015 | A1 |
20150228057 | Ishigami | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
386 922 | Nov 1988 | AT |
387 686 | Feb 1989 | AT |
404 537 | Dec 1998 | AT |
406 108 | Feb 2000 | AT |
2005222545 | Nov 2005 | AU |
1 253 956 | May 1989 | CA |
2 313 533 | Jun 1999 | CA |
2315018 | Jul 1999 | CA |
37 42 867 | Jul 1989 | DE |
39 38 077 | May 1991 | DE |
689 19 414 | May 1995 | DE |
691 16 926 | Nov 1996 | DE |
196 36 551 | Mar 1998 | DE |
689 28 489 | Apr 1998 | DE |
38 75 414 | Aug 1999 | DE |
691 32 321 | Feb 2001 | DE |
102 12 676 | Mar 2002 | DE |
144542 | May 1980 | DK |
147721 | Jul 1981 | DK |
218482 | Nov 1983 | DK |
328482 | Jan 1984 | DK |
169247 | Sep 1994 | DK |
173139 | Jun 1998 | DK |
0 188 303 | Jul 1986 | EP |
0 209 202 | Jan 1987 | EP |
0 229 682 | Jul 1987 | EP |
0 232 568 | Aug 1987 | EP |
0 119 222 | Apr 1988 | EP |
0 300 582 | Jan 1989 | EP |
0 306 579 | Mar 1989 | EP |
0 309 036 | Mar 1989 | EP |
0 327 037 | Aug 1989 | EP |
0 329 248 | Aug 1989 | EP |
0 349 019 | Jan 1990 | EP |
0 360 354 | Mar 1990 | EP |
0 432 148 | Jun 1991 | EP |
0 440 313 | Aug 1991 | EP |
0 448 132 | Sep 1991 | EP |
0 455 305 | Nov 1991 | EP |
0 467 489 | Jan 1992 | EP |
0 472 247 | Feb 1992 | EP |
0 479 397 | Apr 1992 | EP |
0 511 722 | Nov 1992 | EP |
0 511 723 | Nov 1992 | EP |
0 516 246 | Dec 1992 | EP |
0 541 517 | May 1993 | EP |
0 545 916 | Jun 1993 | EP |
0 548 058 | Jun 1993 | EP |
0 553 940 | Aug 1993 | EP |
0 565 189 | Oct 1993 | EP |
0 574 089 | Dec 1993 | EP |
0 630 558 | Dec 1994 | EP |
0 634 097 | Jan 1995 | EP |
0 643 907 | Mar 1995 | EP |
0 688 498 | Dec 1995 | EP |
0 689 762 | Jan 1996 | EP |
0 779 025 | Jun 1997 | EP |
0 789 995 | Aug 1997 | EP |
0 824 857 | Feb 1998 | EP |
0 880 889 | Dec 1998 | EP |
0 900 522 | Mar 1999 | EP |
0 951 651 | Oct 1999 | EP |
1 089 614 | Apr 2001 | EP |
1 211 928 | Jun 2002 | EP |
1 253 440 | Oct 2002 | EP |
1 316 253 | Nov 2002 | EP |
1 279 327 | Jan 2003 | EP |
1 388 281 | Feb 2004 | EP |
1 447 002 | Aug 2004 | EP |
1 460 453 | Sep 2004 | EP |
1 520 468 | Apr 2005 | EP |
1 537 774 | Jun 2005 | EP |
1 537 775 | Jun 2005 | EP |
1 523 882 | Mar 2009 | EP |
2 064 892 | Feb 1995 | ES |
88099 | Dec 1992 | FI |
20002169 | Apr 2002 | FI |
2 595 197 | Sep 1987 | FR |
2 184 233 | Jun 1987 | GB |
2 218 888 | Nov 1989 | GB |
2 258 382 | Feb 1993 | GB |
62-159078 | Jul 1987 | JP |
9-196631 | Jul 1997 | JP |
9-243315 | Sep 1997 | JP |
9-275834 | Oct 1997 | JP |
9-285234 | Nov 1997 | JP |
11-276002 | Oct 1999 | JP |
11-281340 | Oct 1999 | JP |
2001-504944 | Apr 2001 | JP |
2002-521007 | Jul 2002 | JP |
2002-253075 | Sep 2002 | JP |
8502039 | Feb 1987 | NL |
8503580 | Jul 1987 | NL |
8600076 | Aug 1987 | NL |
8602699 | May 1988 | NL |
8800042 | Aug 1989 | NL |
8801785 | Feb 1990 | NL |
9101088 | Jan 1993 | NL |
9201434 | Mar 1994 | NL |
9201902 | Jun 1994 | NL |
9400220 | Sep 1995 | NL |
9400471 | Nov 1995 | NL |
9500276 | Sep 1996 | NL |
9500277 | Sep 1996 | NL |
9500363 | Oct 1996 | NL |
9500566 | Nov 1996 | NL |
1 009 632 | Jul 1998 | NL |
1006804 | Feb 1999 | NL |
1009711 | Jan 2000 | NL |
1013026 | Mar 2001 | NL |
1018563 | Jan 2003 | NL |
419 901 | Aug 1981 | SE |
425 821 | Nov 1982 | SE |
433 553 | Jun 1984 | SE |
512 334 | Feb 2000 | SE |
WO 9620587 | Jul 1996 | WO |
WO 9715183 | May 1997 | WO |
WO 9715901 | May 1997 | WO |
WO 9737528 | Oct 1997 | WO |
WO 9801022 | Jan 1998 | WO |
WO 9835547 | Aug 1998 | WO |
WO 9844782 | Oct 1998 | WO |
WO 9845808 | Oct 1998 | WO |
WO 9847348 | Oct 1998 | WO |
WO 9909430 | Feb 1999 | WO |
WO 9930277 | Jun 1999 | WO |
WO 9933020 | Jul 1999 | WO |
WO 0004763 | Feb 2000 | WO |
WO 0004765 | Feb 2000 | WO |
WO 0011935 | Mar 2000 | WO |
WO 0011936 | Mar 2000 | WO |
WO 0011940 | Mar 2000 | WO |
WO 0062602 | Oct 2000 | WO |
WO 0119171 | Mar 2001 | WO |
WO 0119172 | Mar 2001 | WO |
WO 0152633 | Jul 2001 | WO |
WO 0200011 | Jan 2002 | WO |
WO 0207098 | Jan 2002 | WO |
WO 0215676 | Feb 2002 | WO |
WO 02082201 | Oct 2002 | WO |
WO 03055297 | Jul 2003 | WO |
WO 2005015985 | Feb 2005 | WO |
WO 2006038840 | Apr 2006 | WO |
WO 2007050012 | May 2007 | WO |
WO 2008030086 | Mar 2008 | WO |
WO 2008030116 | Mar 2008 | WO |
WO 2008058723 | May 2008 | WO |
WO 2008118068 | Oct 2008 | WO |
WO 2009093965 | Jul 2009 | WO |
WO 2010012625 | Feb 2010 | WO |
WO 2010014002 | Feb 2010 | WO |
WO 2010046669 | Apr 2010 | WO |
WO 2010110663 | Sep 2010 | WO |
WO 2010119079 | Oct 2010 | WO |
WO 2011032901 | Mar 2011 | WO |
WO 2011098454 | Aug 2011 | WO |
WO 2011098994 | Aug 2011 | WO |
WO 2011102717 | Aug 2011 | WO |
WO 2011117386 | Sep 2011 | WO |
Entry |
---|
PCT Invitation to Pay Additional Fees and, Where Applicable, Protest Fee and Partial National Search Report for Application No. PCT/US2012/035077; 7 pages, Jul. 25, 2012. |
U.S. Appl. No. 13/095,983, filed Apr. 28, 2011, Henk Hofman. |
U.S. Appl. No. 13/095,994, filed Apr. 28, 2011, Henk Hofman. |
U.S. Appl. No. 13/448,751, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/448,799, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/448,873, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/448,882, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/448,897, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/448,913, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/448,929, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/448,951, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/448,993, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/449,002, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/449,056, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/449,105, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/449,142, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/449,162, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/449,173, filed Apr. 17, 2012, Henk Hofman. |
U.S. Appl. No. 13/449,951, filed Apr. 18, 2012, Henk Hofman. |
U.S. Appl. No. 13/451,248, filed Apr. 19, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,281, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,298, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,351, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,386, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,490, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,670, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,716, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,833, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,876, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,913, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,953, filed Apr. 24, 2012, Henk Hofman. |
U.S. Appl. No. 13/454,975, filed Apr. 24, 2012, Henk Hofman. |
Jan W. Weingarten, et al.; A State-of-the-Art 3D Sensor for Robot Navigation; 6 pages, Sep. 2004. |
PCT International Patent Application No. PCT/NL2010/050154 entitled Robot and Method for Milking a Cow by this Robot; 19 pages, Mar. 25, 2010. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for Application No. PCT/US2011/047510; 9 pages, Jan. 2, 2012. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for Application No. PCT/US2011/047511; 9 pages, Jan. 2, 2012. |
PCT Invitation to Pay Additional Fees and, Where Applicable, Protest Fee and Partial National Search Report for Application No. PCT/US2012/035074; 7 pages, Jul. 16, 2012. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for Application No. PCT/US2012/033894; 11 pages, Jul. 23, 2012. |
PCT Invitation to Pay Additional Fees and, Where Applicable, Protest Fee and Partial National Search Report for Application No. PCT/US2012/035079; 8 pages, Jul. 31, 2012. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for Application No. PCT/US2012/033892; 13 pages, Jul. 31, 2012. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for .Application No. PCT/US2012/035356; 14 pages, Jul. 31, 2012. |
PCT Invitation to Pay Additional Fees and, Where Applicable, Protest Fee and Partial National Search Report for Application No. PCT/US2012/035107; 7 pages, Jul. 31, 2012. |
Canadian Intellectual Property Office; Office Action for Application No. 2,775,132; 3 pages, Aug. 20, 2012. |
Canadian Intellectual Property Office; Office Action for Application No. 2,775,130; 2 pages, Aug. 20, 2012. |
Canadian Intellectual Property Office; Office Action for Application No. 2,775,169; 3 pages, Aug. 20, 2012. |
Canadian Intellectual Property Office; Office Action for Application No. 2,775,177; 2 pages, Aug. 20, 2012. |
Canadian Intellectual Property Office; Office Action for Application No. 2,775,252; 3 pages, Aug. 21, 2012. |
Canadian Intellectual Property Office; Office Action for Application No. 2,783,887; 2 pages, Oct. 1, 2012. |
Canadian Intellectual Property Office; Office Action for Application No. 2,784,070; 3 pages, Oct. 1, 2012. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2012/035107; 28 pages, Oct. 16, 2012. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for Application No. PCT/US2012/035077; 25 pages, Dec. 12, 2012. |
Canadian Office Action for Application No. 2,775,395, 2 pages, Jan. 14, 2014. |
Canadian Intellectual Property Office; Office Action for Application No. 2,775,130; 4 pages, Nov. 27, 2012. |
Canadian Intellectual Property Office; Office Action for Application No. 2,775,177; 3 pages, Nov. 27, 2012. |
Number | Date | Country | |
---|---|---|---|
20150379705 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14695279 | Apr 2015 | US |
Child | 14842874 | US | |
Parent | 13448840 | Apr 2012 | US |
Child | 14695279 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13095994 | Apr 2011 | US |
Child | 13448840 | US |