This disclosure is generally related to the field of data storage. More specifically, this disclosure is related to a system and method for flash ma nagement in, e.g., a solid state drive (SSD), using multiple open page stripes.
The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Various storage systems and servers have been created to access and store such digital content. A storage system or server can include volatile memory (e.g., dynamic random access memory (DRAM) and multiple drives (e.g., a solid state drive (SSD)). A drive can include non-volatile memory for persistent storage (e.g., NAND flash). The memory in a server plays a crucial role in the performance and capacity of a storage system.
For example, in an SSD, flash memory is organized into channels/dies. A channel can include multiple dies; a die can include multiple blocks; and a block can include multiple pages. A host typically writes data to an SSD in units of logical pages (e.g., 4 KB). However, the flash memory itself can only be written in units of physical pages, which are typically greater in size than a logical page (e.g., 16 KB or larger). An SSD controller typically includes a write buffer which holds the data for a host write before the data is flushed (or written) to the flash memory.
Upon receiving a write request, the SSD controller typically stores the data sequentially into “page stripes,” which are physical pages across multiple dies. One of the physical pages in a page stripe is typically used to store parity information. A “super page stripe” is a page stripe across all dies on the SSD, i.e., that includes one physical page from each die on the SSD. When the controller has committed the write request to the host, the controller must protect the committed data (stored in the write buffer) from power loss, e.g., by using capacitors. However, because of the power consumption of the flash memory and the limited space on the SSD for power-loss capacitors, the power-loss protected write buffer is typically very small (e.g., several megabytes).
Furthermore, a write request from a host may not fill exact units of physical pages, and typically does not fill an entire super page stripe. These partially filled pages can result in unused space in, e.g., a 16-32 KB physical page. A page stripe which is only partially filled with data (an “open page stripe” or an “incomplete page stripe”) is kept in the power-loss protected write buffer. When a page stripe is filled with data (a “closed page stripe” or a “complete page stripe”), the closed page stripe is flushed back to the flash memory. Because the power-loss protected write buffer is small, it can only hold a limited number of open page stripes, e.g., between 1 and 4 super page stripes. Thus, conventional SSDs can typically only support a small number of open page stripes. If the host software attempts to open a greater number of page stripes on the SSD, the system cannot provide a sufficiently large power-loss protected buffer to hold the relevant states. This limitation can reduce the flexibility of host software, and may create a bottleneck in the performance of the server. Furthermore, this limitation can result in inefficiencies in the storage system.
One embodiment facilitates flash storage management. During operation, the system receives a request to write data to a non-volatile memory. The system writes, in a buffer in association with a controller, the data to a next available portion of a current physical page in a page stripe, wherein the page stripe includes physical pages which each correspond to a sequentially ordered die of the non-volatile memory. The system provides power-loss protection to the current physical page and a second physical page which indicates parity information for the page stripe, thereby allowing the controller to provide power-loss protection to an increased number of partially full page stripes.
In some embodiments, providing the power-loss protection to the current physical page is in response to determining that the current physical page is partially full.
In some embodiments, providing the power-loss protection to the current physical page and the second physical page further comprises, in response to detecting a power loss: marking any unfilled portions of the current physical page and of the second physical page by padding the unfilled portions with dummy data or by including an indicator that the unfilled portions do not contain any relevant data; and flushing the current physical page from the buffer to the non-volatile memory.
In some embodiments, the physical pages included in the page stripe correspond to a plurality or an entirety of sequentially ordered dies of the non-volatile memory.
In some embodiments, writing the data to the next available portion of the current physical page involves writing a logical page of the data.
In some embodiments, flushing the current physical page involves: writing data stored in the current physical page in the write buffer to the non-volatile memory; and marking the flushed current physical page to indicate that the flushed page no longer requires the power-loss protection.
In some embodiments, In response to determining that the current physical page is full, the system: flushes the current physical page from the buffer to the non-volatile memory; and sets as the current physical page a next physical page which corresponds to a next sequentially ordered die in the page stripe.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the embodiments described herein are not limited to the embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein.
Overview
The embodiments described herein provide a system which solves the problem of limited data (e.g., a limited number of open page stripes) which can be held in the buffer of a controller and properly protected in the event of a power loss.
In a conventional SSD controller, data can be written to and temporarily held in a write buffer before being flushed or written to the non-volatile memory (e.g., NAND flash). The data is written sequentially into “page stripes,” which are physical pages across multiple dies. One of the physical pages in a page stripe is typically used to store parity information. A “super page stripe” is a page stripe across all dies on the SSD, i.e., that includes one physical page from each die on the SSD. The controller must protect the committed data (stored in the write buffer) from power loss, e.g., by using capacitors. However, because of the power consumption of the flash memory and the limited space on the SSD for power-loss capacitors, the power-loss protected write buffer is typically very small (e.g., several megabytes).
Furthermore, a write request from a host may not fill exact units of physical pages, and typically does not fill an entire super page stripe. These partially filled pages can result in unused space in, e.g., a 16-32 KB physical page. A page stripe which is only partially filled with data (an “open page stripe” or an “incomplete page stripe”) is kept in the power-loss protected write buffer. When a page stripe is filled with data (a “closed page stripe” or a “complete page stripe”), the closed page stripe is flushed back to the flash memory. Because the power-loss protected write buffer is small, it can only hold a limited number of open page stripes, e.g., between 1 and 4 super page stripes. Thus, conventional SSDs can typically only support a small number of open page stripes. If the host software attempts to open a greater number of page stripes on the SSD, the system cannot provide a sufficiently large power-loss protected buffer to hold the relevant states. This limitation can reduce the flexibility of host software, and may create a bottleneck in the performance of the server. Furthermore, this limitation can result in inefficiencies in the storage system.
The embodiments described herein address these limitations by providing a system which, rather than arranging host write operations in a “horizontal” manner across dies in a page stripe, instead arranges host operations in a “vertical/horizontal hybrid” manner to first fill in each page in the page stripe and then proceed to the next available portion of the next physical page in the next sequentially ordered die in the page stripe.
In the conventional horizontal manner, the system must provide power-loss protection for an entire open page stripe (including all the pages from the dies in the page stripe), as described below in relation to
In contrast, in the “vertical/horizontal hybrid” manner of the embodiments described herein, the system need only provide power-loss protection for two pages in each open page stripe, as described below in relation to
Thus, the embodiments described herein provide a system which improves the efficiency and performance of a storage system. The system can significantly reduce the power-loss protection requirement of each open page stripe, which allows the system to provide protection to multiple open page stripes at the same time. The system can also result in an improved efficiency by increasing the flexibility of the host software (to open multiple page stripes at the same time). By implementing the “vertical/horizontal hybrid” manner to write data to non-volatile memory, the system can provide sufficient power-loss protection to a significantly increased number of open page stripes (e.g., multiple open page stripes at the same time).
Exemplary Environment and Network
A controller can include interfaces to a host and to a non-volatile memory. A controller can also include a write buffer, which is power-loss protected, as well as firmware which includes instructions and/or code to execute the methods described herein. For example, SSD 140 can include SSD controller 142. Controller 142 can include: a host interface 150; an embedded processor 152, which includes a write buffer 154 and a firmware 156; and a channel management 158. SSD controller 142 can communicate with a host (e.g., via host interface 150 and a communication to/from host 192). SSD controller 142 can also communicate with the non-volatile memory (via channel management 158). The non-volatile memory can be accessed via multiple channels. For example, NAND dies 172, 174, and 176 may be accessed via a channel 170, and NAND dies 182, 184, and 186 may be accessed via a channel 180.
During operation, in the embodiments described herein, firmware 156 can include instructions and/or code which allow incoming write data from the host to be written in a “vertical/horizontal hybrid” manner in the physical pages of a page stripe, as described below in relation to
Exemplary Environment with Entire Power-Loss Protected Open Page Stripe in the Prior Art
Recall that a page stripe can include a physical page across multiple dies. A page stripe which is only partially filled in with data can be referred to as an “open page stripe,” and is protected from power loss in the write buffer of the SSD controller. In environment 200, blocks 210, 220, 230, and 240 are completely filled in with data (as indicated with the diagonally shaded pattern). Physical pages 211, 221, 231, and 241 (of, respectively, blocks 212, 222, 232, and 242) are partially filled in (as indicated by the diagonally shaded pattern in 211.1, 221.1, 231.1, and 241.1), and comprise an open page stripe 209.
During operation, in executing host write 204, the system can write data to the pages of open page stripe 209 in a “horizontal” manner. That is, the system writes 4K of data to the next available portion (211.1) of a current physical page (211) of a first sequentially ordered die (208) in the page stripe. Then system then continues to write additional 4K segments to the next available portion (221.1) of the next current physical page (221) of the next sequentially ordered die (218), writes to the next available portion (231.1) of the next current physical page (231), and finally writes the parity information to the next available portion (241.1) of the parity page (e.g., 241).
At this point, the physical pages which comprise open page stripe 209 are partially filled in (as indicated by the mix of the diagonally shaded pattern and no pattern). For example, physical page 211 is partially filled in, as it contains relevant data (4K) 211.1 and also no data in 211.2 (i.e., an unfilled portion). The partially filled physical pages are what define “open” page stripe 209.
If the system suffers a power loss, the SSD controller must provide power-loss protection to the entire open page stripe 209. This can also involve padding the unfilled portions of the physical pages in open page stripe 209 with dummy data. As described above, a conventional SSD controller (given 128 NAND dies and super page stripes) may only be able to provide power-loss protection to two open super page stripes at any given time. This can result in an inefficient storage system.
In the conventional SSD controller, data is written in a “horizontal” manner. Physical page 250 includes 4 k data segments: data “0” 251, data “3” 252, data “6” 253, and data “9” 254. Similarly: physical page 260 includes data “1” 261, data “4” 262, data “7” 263, and data “10” 264; physical page 270 includes data “3” 271, data “5” 272, data “8” 273, and data “11” 274; and physical page 280 includes parity data 281, parity data 282, parity data 283, and parity data 284. Data is written in a horizontal manner, following the flow depicted by, e.g., communications 293, 294, 295, and 296. That is, data is first written to a beginning portion of a first physical page of a first die, then to a beginning portion of the next physical page on the next die, etc. For example, data is written first to physical page 250 (as block 251), then to physical page 260 (as block 261), then to physical page 270 (as block 271), then to physical page 280 (as parity information 281), as shown via communication 293. Subsequently, data is written starting from the next available portion of the first physical page of the first die, and then across each next available portion of the next sequentially ordered die, e.g.: to physical page 250 (as block 252), then to physical page 260 (as block 262), then to physical page 270 (as block 272), then to physical page 280 (as parity information 282), as shown via communication 294.
Thus, environment 298 depicts an open page stripe 292 which includes partially filled physical pages (e.g., 4K portions 251 and 252 of physical page 250) across multiple dies, where the data has been written in a horizontal manner (e.g., via communications 293 and 294). During a power loss, the SSD controller must provide power-loss protection to the entire open page stripe 292, which can result in an inefficient storage system.
Exemplary Environment for Facilitating Flash Storage Management with Only Two Power-Loss Protected Pages Per Page Stripe
In the embodiments described herein, data is written in a “vertical/horizontal hybrid” manner. Physical page 310 includes the following 4 k data segments: data “0” 311; data “1” 312; data “2” 313; and data “3” 314. Similarly: physical page 320 includes data “4” 321, data “5” 322, data “6” 323, and data “7” 324; physical page 330 includes data “8” 331, data “9” 332, data “10” 333, and data “11” 334; and physical page 340 includes partial parity data 341, partial parity data 342, partial parity data 343, and partial parity data 344. Data is written in a vertical/horizontal hybrid manner, following the flow depicted by, e.g., communications 360, 361, 362, 363, 364, 365, and 366. That is, data is first written sequentially to a beginning portion of a first physical page of a first die, and then to the next available portion of the same physical page of the first die, until the physical page is full, at which point, the data from that single full physical page is flushed to flash. Subsequently, data is then written beginning from the first available portion of the next physical page of the next sequentially ordered die, and then to the next available portion of that next physical page, until that next physical page is full, at which point, the data from that single full next physical page is flushed to flash.
For example, data is written first to physical page 310 (as block 311), and then is written sequentially within that same physical page 310 (as blocks 312, 313, and 314) until physical page 310 is full (e.g., as shown by communication 360). At that point (indicated by a time 371), the data from the full physical page 310 is flushed to flash. Subsequently, data is written starting from the first available portion of the next physical page of the next sequentially ordered die. That is, data is written to the next physical page 320 (as block 321), and then written sequentially within that same next physical page 320 (as block 322) (e.g., as shown by communication 362). At this point (indicated by a time 372), page 320 is an open page, which has been partially filled with data (e.g., blocks 321 and 322), and must be power-loss protected. Furthermore, page 340 is a page which indicates partial parity information for the partially filled data of page stripe 352, and thus must also be power-loss protected.
Therefore, environment 300 depicts a system in which, by using the vertical/horizontal hybrid manner of placing data and by flushing a full page to flash, the system need only provide power-loss protection for two pages in any open page stripe. That is, during a power loss, the SSD controller does not need to provide power-loss protection to the entire open page stripe (as shown above in environment 298). Instead, the SSD controller only needs to provide power-loss protection to the currently open physical page and the parity page of any given open page stripe, i.e., to two pages per open page stripe. The system can thus provide power-loss protection at a much reduced granularity as compared to conventional systems, i.e., at the page level granularity rather than at a page stripe granularity. This allows the system to provide power-loss protection to a significantly greater number of open page stripes (as compared to the conventional system), and thus improves the efficiency of the storage system.
Method for Facilitating Flash Storage Management
If the current physical page is full (decision 406), the system flushes (the data in) the current physical page from the buffer to the non-volatile memory (operation 408). The system sets as the current physical page a next physical page which corresponds to a next sequentially ordered die in the page stripe (operation 410). The system provides power-loss protection to the current physical page and a second physical page which indicates parity information for the page stripe, thereby allowing the controller to provide power-loss protection to an increased number of partially full page stripes (i.e., to only two pages for each open page stripe) (operation 412).
Limitations Associated with Alternative Solutions
In one alternative solution, an SSD may include a multi-stream feature which supports multiple write streams from the host. For example, Kang et al., “The Multi-streamed Solid-State Drive,” available at “http://csl.skku.edu/uploads/ICE3028S17/multi-stream.pdf” (hereinafter “Kang”), describes how, in a multi-stream SSD, a host system can explicitly open streams in the SSD and send write requests to different streams based on their expected lifetime. However, a multi-stream SSD requires the host to attach additional information (e.g., stream ID) to its write requests, which transforms the command interface between the host and the SSD to a non-standard interface. In contrast, the embodiments described herein are transparent to the host, and require no modification to the host/device interface.
Furthermore, a multi-stream SSD maps host write streams to blocks, where data from a given stream is written sequentially in a block. This design does not take into account the need for parity or parity groups, which are crucial for SSDs operating in data centers. Without this crucial parity information, a multi-stream SSD can be vulnerable to die failure, which can result in data loss. In contrast, the embodiments described herein specifically provide power-loss protection to two pages per open stripe, one page of which contains parity information.
Yet another limitation of a multi-stream SSD is that all of the data of a stream is in the same block, which prevents the multi-stream SSD from leveraging the internal parallelism from multiple dies. In contrast, the embodiments described herein can leverage the internal parallelism of multiple dies, which can result in much better read performance than the multi-stream SSD.
Another alternative solution is to sub-divide or split a super page stripe into multiple smaller sections (i.e., smaller page stripes). For example, if a super page stripe covers 128 dies, in this alternative solution, a system can split the super page stripe into four sub-groups, where each sub-group covers 32 dies. By decreasing the size of the page stripe, such a solution can increase the number of open page stripes that can be power-loss protected. However, this solution is still limited by the following factors: 1) The system cannot divide the page stripes infinitely, i.e., the page stripes are limited on a minimum size, or how few dies a page stripe can cover; 2) A shorter page stripe can result in a reduced bandwidth; and 3) Accounting for the necessary parity in the increased number of smaller page stripes can increase the overhead (e.g., a super page stripe only requires one parity page for 127 dies, whereas, given the example above, a smaller page stripe requires one parity page for 31 dies).
In contrast, the embodiments described herein are independent of the width of the page stripe. Furthermore, the embodiments described herein require only a firmware update to the SSD controller, include the necessary parity information to support reliability and performance in a data center, leverage the internal parallelism from multiple dies, and do not require any interface changes.
Exemplary Computer System and Apparatus
Content-processing system 518 can include instructions, which when executed by computer system 500, can cause computer system 500 to perform methods and/or processes described in this disclosure. For example, content-processing system 518 can include instructions for receiving and transmitting data packets, including a request to write or read data, data to be encoded and stored, or a block or a page of data.
Content-processing system 518 can further include instructions for receiving a request to write data to a non-volatile memory (communication module 520). Content-processing system 518 can include instructions for writing, in a buffer of a controller, the data to a next available portion of a current physical page in a page stripe (buffer-writing module 522). Content-processing system 518 can include instructions for, in response to determining that the current physical page is full (page status-managing module 524): flushing the current physical page from the buffer to the non-volatile memory (buffer-flushing module 526 and non-volatile memory-managing module 528); and setting as the current physical page a next physical page which corresponds to a next sequentially ordered die in the page stripe (page status-managing module 524). Content-processing system 518 can include instructions for providing power-loss protection to the current physical page and a second physical page which indicates parity information for the page stripe (power loss-protecting module 530).
Content-processing system 518 can also include instructions for, in response to detecting a power loss (power loss-protecting module 530): marking any unfilled portions of the current physical page and of the second physical page by padding the unfilled portions with dummy data or by including an indicator that the unfilled portions do not contain any relevant data (page status-managing module 524); and flushing the current physical page from the buffer to the non-volatile memory (buffer-flushing module 526 and non-volatile memory-managing module 528).
Data 532 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 532 can store at least: data to be stored, written, loaded, moved, retrieved, deleted, or copied; a logical unit of data; a physical unit of data; a physical page of data; a block of data; a page stripe; an open page stripe; a closed page stripe; a super page stripe; a request; a request which indicates data to be read or written; dummy data; an indicator that a portion of a page does not contain any relevant data; a logical block address (LBA); a physical block address (PBA); an indicator of a status of a page; an indicator of a next available portion of a page; a sequential order; a sequential order for a plurality or an entirety of dies of a non-volatile memory; a write buffer; instructions to flush data from the write buffer to the non-volatile memory; and an indicator of whether a page or a page stripe is open or partially full.
The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.
The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.
Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.
The foregoing embodiments described herein have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the embodiments described herein to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the embodiments described herein. The scope of the embodiments described herein is defined by the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/088188 | 5/24/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/222958 | 11/28/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3893071 | Bossen | Jul 1975 | A |
4562494 | Bond | Dec 1985 | A |
4718067 | Peters | Jan 1988 | A |
4775932 | Oxley | Oct 1988 | A |
4858040 | Hazebrouck | Aug 1989 | A |
5394382 | Hu | Feb 1995 | A |
5602693 | Brunnett | Feb 1997 | A |
5715471 | Otsuka | Feb 1998 | A |
5732093 | Huang | Mar 1998 | A |
5802551 | Komatsu | Sep 1998 | A |
5930167 | Lee | Jul 1999 | A |
6098185 | Wilson | Aug 2000 | A |
6148377 | Carter | Nov 2000 | A |
6226650 | Mahajan et al. | May 2001 | B1 |
6243795 | Yang | Jun 2001 | B1 |
6457104 | Tremaine | Sep 2002 | B1 |
6658478 | Singhal | Dec 2003 | B1 |
6795894 | Neufeld | Sep 2004 | B1 |
7351072 | Muff | Apr 2008 | B2 |
7565454 | Zuberi | Jul 2009 | B2 |
7599139 | Bombet | Oct 2009 | B1 |
7953899 | Hooper | May 2011 | B1 |
7958433 | Yoon | Jun 2011 | B1 |
8085569 | Kim | Dec 2011 | B2 |
8144512 | Huang | Mar 2012 | B2 |
8166233 | Schibilla | Apr 2012 | B2 |
8260924 | Koretz | Sep 2012 | B2 |
8281061 | Radke | Oct 2012 | B2 |
8452819 | Sorenson, III | May 2013 | B1 |
8516284 | Chan | Aug 2013 | B2 |
8527544 | Colgrove | Sep 2013 | B1 |
8751763 | Ramarao | Jun 2014 | B1 |
8819367 | Fallone | Aug 2014 | B1 |
8825937 | Atkisson | Sep 2014 | B2 |
8832688 | Tang | Sep 2014 | B2 |
8868825 | Hayes | Oct 2014 | B1 |
8904061 | O'Brien, III | Dec 2014 | B1 |
8949208 | Xu | Feb 2015 | B1 |
9015561 | Hu | Apr 2015 | B1 |
9031296 | Kaempfer | May 2015 | B2 |
9043545 | Kimmel | May 2015 | B2 |
9088300 | Chen | Jul 2015 | B1 |
9092223 | Pani | Jul 2015 | B1 |
9129628 | Fallone | Sep 2015 | B1 |
9141176 | Chen | Sep 2015 | B1 |
9208817 | Li | Dec 2015 | B1 |
9213627 | Van Acht | Dec 2015 | B2 |
9280472 | Dang | Mar 2016 | B1 |
9280487 | Candelaria | Mar 2016 | B2 |
9311939 | Malina | Apr 2016 | B1 |
9336340 | Dong | May 2016 | B1 |
9436595 | Benitez | Sep 2016 | B1 |
9495263 | Pang | Nov 2016 | B2 |
9529601 | Dharmadhikari | Dec 2016 | B1 |
9529670 | James | Dec 2016 | B2 |
9575982 | Sankara Subramanian | Feb 2017 | B1 |
9588698 | Karamcheti | Mar 2017 | B1 |
9588977 | Wang | Mar 2017 | B1 |
9607631 | Rausch | Mar 2017 | B2 |
9671971 | Trika | Jun 2017 | B2 |
9747202 | Shaharabany | Aug 2017 | B1 |
9852076 | Garg | Dec 2017 | B1 |
9875053 | Frid | Jan 2018 | B2 |
9912530 | Singatwaria | Mar 2018 | B2 |
9946596 | Hashimoto | Apr 2018 | B2 |
10013169 | Fisher | Jul 2018 | B2 |
10199066 | Feldman | Feb 2019 | B1 |
10229735 | Natarajan | Mar 2019 | B1 |
10235198 | Qiu | Mar 2019 | B2 |
10268390 | Warfield | Apr 2019 | B2 |
10318467 | Barzik | Jun 2019 | B2 |
10361722 | Lee | Jul 2019 | B2 |
10437670 | Koltsidas | Oct 2019 | B1 |
10459663 | Agombar | Oct 2019 | B2 |
10642522 | Li | May 2020 | B2 |
10649657 | Zaidman | May 2020 | B2 |
10678432 | Dreier | Jun 2020 | B1 |
10756816 | Dreier | Aug 2020 | B1 |
10928847 | Suresh | Feb 2021 | B2 |
20010032324 | Slaughter | Oct 2001 | A1 |
20020010783 | Primak | Jan 2002 | A1 |
20020039260 | Kilmer | Apr 2002 | A1 |
20020073358 | Atkinson | Jun 2002 | A1 |
20020095403 | Chandrasekaran | Jul 2002 | A1 |
20020112085 | Berg | Aug 2002 | A1 |
20020161890 | Chen | Oct 2002 | A1 |
20030074319 | Jaquette | Apr 2003 | A1 |
20030145274 | Hwang | Jul 2003 | A1 |
20030163594 | Aasheim | Aug 2003 | A1 |
20030163633 | Aasheim | Aug 2003 | A1 |
20030217080 | White | Nov 2003 | A1 |
20040010545 | Pandya | Jan 2004 | A1 |
20040066741 | Dinker | Apr 2004 | A1 |
20040103238 | Avraham | May 2004 | A1 |
20040143718 | Chen | Jul 2004 | A1 |
20040255171 | Zimmer | Dec 2004 | A1 |
20040267752 | Wong | Dec 2004 | A1 |
20040268278 | Hoberman | Dec 2004 | A1 |
20050038954 | Saliba | Feb 2005 | A1 |
20050097126 | Cabrera | May 2005 | A1 |
20050138325 | Hofstee | Jun 2005 | A1 |
20050144358 | Conley | Jun 2005 | A1 |
20050149827 | Lambert | Jul 2005 | A1 |
20050174670 | Dunn | Aug 2005 | A1 |
20050177672 | Rao | Aug 2005 | A1 |
20050177755 | Fung | Aug 2005 | A1 |
20050195635 | Conley | Sep 2005 | A1 |
20050235067 | Creta | Oct 2005 | A1 |
20050235171 | Igari | Oct 2005 | A1 |
20060031709 | Hiraiwa | Feb 2006 | A1 |
20060101197 | Georgis | May 2006 | A1 |
20060156012 | Beeson | Jul 2006 | A1 |
20060184813 | Bui | Aug 2006 | A1 |
20070033323 | Gorobets | Feb 2007 | A1 |
20070061502 | Lasser | Mar 2007 | A1 |
20070101096 | Gorobets | May 2007 | A1 |
20070250756 | Gower | Oct 2007 | A1 |
20070266011 | Rohrs | Nov 2007 | A1 |
20070283081 | Lasser | Dec 2007 | A1 |
20070283104 | Wellwood | Dec 2007 | A1 |
20070285980 | Shimizu | Dec 2007 | A1 |
20080034154 | Lee | Feb 2008 | A1 |
20080065805 | Wu | Mar 2008 | A1 |
20080082731 | Karamcheti | Apr 2008 | A1 |
20080112238 | Kim | May 2008 | A1 |
20080163033 | Yim | Jul 2008 | A1 |
20080301532 | Uchikawa | Dec 2008 | A1 |
20090006667 | Lin | Jan 2009 | A1 |
20090089544 | Liu | Apr 2009 | A1 |
20090113219 | Aharonov | Apr 2009 | A1 |
20090125788 | Wheeler | May 2009 | A1 |
20090183052 | Kanno | Jul 2009 | A1 |
20090254705 | Abali | Oct 2009 | A1 |
20090282275 | Yermalayeu | Nov 2009 | A1 |
20090287956 | Flynn | Nov 2009 | A1 |
20090307249 | Koifman | Dec 2009 | A1 |
20090307426 | Galloway | Dec 2009 | A1 |
20090310412 | Jang | Dec 2009 | A1 |
20100031000 | Flynn | Feb 2010 | A1 |
20100169470 | Takashige | Jul 2010 | A1 |
20100217952 | Iyer | Aug 2010 | A1 |
20100229224 | Etchegoyen | Sep 2010 | A1 |
20100241848 | Smith | Sep 2010 | A1 |
20100321999 | Yoo | Dec 2010 | A1 |
20100325367 | Kornegay | Dec 2010 | A1 |
20100332922 | Chang | Dec 2010 | A1 |
20110031546 | Uenaka | Feb 2011 | A1 |
20110055458 | Kuehne | Mar 2011 | A1 |
20110055471 | Thatcher | Mar 2011 | A1 |
20110060722 | Li | Mar 2011 | A1 |
20110072204 | Chang | Mar 2011 | A1 |
20110099418 | Chen | Apr 2011 | A1 |
20110153903 | Hinkle | Jun 2011 | A1 |
20110161784 | Selinger | Jun 2011 | A1 |
20110191525 | Hsu | Aug 2011 | A1 |
20110218969 | Anglin | Sep 2011 | A1 |
20110231598 | Hatsuda | Sep 2011 | A1 |
20110239083 | Kanno | Sep 2011 | A1 |
20110252188 | Weingarten | Oct 2011 | A1 |
20110258514 | Lasser | Oct 2011 | A1 |
20110289263 | Mcwilliams | Nov 2011 | A1 |
20110289280 | Koseki | Nov 2011 | A1 |
20110292538 | Haga | Dec 2011 | A1 |
20110296411 | Tang | Dec 2011 | A1 |
20110299317 | Shaeffer | Dec 2011 | A1 |
20110302353 | Confalonieri | Dec 2011 | A1 |
20120017037 | Riddle | Jan 2012 | A1 |
20120039117 | Webb | Feb 2012 | A1 |
20120084523 | Littlefield | Apr 2012 | A1 |
20120089774 | Kelkar | Apr 2012 | A1 |
20120096330 | Przybylski | Apr 2012 | A1 |
20120117399 | Chan | May 2012 | A1 |
20120147021 | Cheng | Jun 2012 | A1 |
20120151253 | Horn | Jun 2012 | A1 |
20120159099 | Lindamood | Jun 2012 | A1 |
20120159289 | Piccirillo | Jun 2012 | A1 |
20120173792 | Lassa | Jul 2012 | A1 |
20120203958 | Jones | Aug 2012 | A1 |
20120210095 | Nellans | Aug 2012 | A1 |
20120233523 | Krishnamoorthy | Sep 2012 | A1 |
20120246392 | Cheon | Sep 2012 | A1 |
20120278579 | Goss | Nov 2012 | A1 |
20120284587 | Yu | Nov 2012 | A1 |
20120324312 | Moyer | Dec 2012 | A1 |
20120331207 | Lassa | Dec 2012 | A1 |
20130013880 | Tashiro | Jan 2013 | A1 |
20130016970 | Koka | Jan 2013 | A1 |
20130018852 | Barton | Jan 2013 | A1 |
20130024605 | Sharon | Jan 2013 | A1 |
20130054822 | Mordani | Feb 2013 | A1 |
20130061029 | Huff | Mar 2013 | A1 |
20130073798 | Kang | Mar 2013 | A1 |
20130080391 | Raichstein | Mar 2013 | A1 |
20130145085 | Yu | Jun 2013 | A1 |
20130145089 | Eleftheriou | Jun 2013 | A1 |
20130151759 | Shim | Jun 2013 | A1 |
20130159251 | Skrenta | Jun 2013 | A1 |
20130159723 | Brandt | Jun 2013 | A1 |
20130166820 | Batwara | Jun 2013 | A1 |
20130173845 | Aslam | Jul 2013 | A1 |
20130191601 | Peterson | Jul 2013 | A1 |
20130205183 | Fillingim | Aug 2013 | A1 |
20130219131 | Alexandron | Aug 2013 | A1 |
20130227347 | Cho | Aug 2013 | A1 |
20130238955 | Antonio | Sep 2013 | A1 |
20130254622 | Kanno | Sep 2013 | A1 |
20130318283 | Small | Nov 2013 | A1 |
20130318395 | Kalavade | Nov 2013 | A1 |
20130329492 | Yang | Dec 2013 | A1 |
20140006688 | Yu | Jan 2014 | A1 |
20140019650 | Li | Jan 2014 | A1 |
20140025638 | Hu | Jan 2014 | A1 |
20140082273 | Segev | Mar 2014 | A1 |
20140082412 | Matsumura | Mar 2014 | A1 |
20140095769 | Borkenhagen | Apr 2014 | A1 |
20140095827 | Wei | Apr 2014 | A1 |
20140108414 | Stillerman | Apr 2014 | A1 |
20140108891 | Strasser | Apr 2014 | A1 |
20140164447 | Tarafdar | Jun 2014 | A1 |
20140164879 | Tam | Jun 2014 | A1 |
20140181532 | Camp | Jun 2014 | A1 |
20140195564 | Talagala | Jul 2014 | A1 |
20140215129 | Kuzmin | Jul 2014 | A1 |
20140223079 | Zhang | Aug 2014 | A1 |
20140233950 | Luo | Aug 2014 | A1 |
20140250259 | Ke | Sep 2014 | A1 |
20140279927 | Constantinescu | Sep 2014 | A1 |
20140304452 | De La Iglesia | Oct 2014 | A1 |
20140310574 | Yu | Oct 2014 | A1 |
20140359229 | Cota-Robles | Dec 2014 | A1 |
20140365707 | Talagala | Dec 2014 | A1 |
20150019798 | Huang | Jan 2015 | A1 |
20150082317 | You | Mar 2015 | A1 |
20150106556 | Yu | Apr 2015 | A1 |
20150106559 | Cho | Apr 2015 | A1 |
20150121031 | Feng | Apr 2015 | A1 |
20150142752 | Chennamsetty | May 2015 | A1 |
20150143030 | Gorobets | May 2015 | A1 |
20150199234 | Choi | Jul 2015 | A1 |
20150227316 | Warfield | Aug 2015 | A1 |
20150234845 | Moore | Aug 2015 | A1 |
20150269964 | Fallone | Sep 2015 | A1 |
20150277937 | Swanson | Oct 2015 | A1 |
20150286477 | Mathur | Oct 2015 | A1 |
20150294684 | Qjang | Oct 2015 | A1 |
20150301964 | Brinicombe | Oct 2015 | A1 |
20150304108 | Obukhov | Oct 2015 | A1 |
20150310916 | Leem | Oct 2015 | A1 |
20150317095 | Voigt | Nov 2015 | A1 |
20150341123 | Nagarajan | Nov 2015 | A1 |
20150347025 | Law | Dec 2015 | A1 |
20150363271 | Haustein | Dec 2015 | A1 |
20150363328 | Candelaria | Dec 2015 | A1 |
20150372597 | Luo | Dec 2015 | A1 |
20160014039 | Reddy | Jan 2016 | A1 |
20160026575 | Samanta | Jan 2016 | A1 |
20160041760 | Kuang | Feb 2016 | A1 |
20160048327 | Jayasena | Feb 2016 | A1 |
20160048341 | Constantinescu | Feb 2016 | A1 |
20160054922 | Awasthi | Feb 2016 | A1 |
20160062885 | Ryu | Mar 2016 | A1 |
20160077749 | Ravimohan | Mar 2016 | A1 |
20160077764 | Ori | Mar 2016 | A1 |
20160077968 | Sela | Mar 2016 | A1 |
20160098344 | Gorobets | Apr 2016 | A1 |
20160098350 | Tang | Apr 2016 | A1 |
20160103631 | Ke | Apr 2016 | A1 |
20160110254 | Cronie | Apr 2016 | A1 |
20160132237 | Jeong | May 2016 | A1 |
20160154601 | Chen | Jun 2016 | A1 |
20160155750 | Yasuda | Jun 2016 | A1 |
20160162187 | Lee | Jun 2016 | A1 |
20160179399 | Melik-Martirosian | Jun 2016 | A1 |
20160188223 | Camp | Jun 2016 | A1 |
20160188890 | Naeimi | Jun 2016 | A1 |
20160203000 | Parmar | Jul 2016 | A1 |
20160224267 | Yang | Aug 2016 | A1 |
20160232103 | Schmisseur | Aug 2016 | A1 |
20160234297 | Ambach | Aug 2016 | A1 |
20160239074 | Lee | Aug 2016 | A1 |
20160239380 | Wideman | Aug 2016 | A1 |
20160274636 | Kim | Sep 2016 | A1 |
20160306699 | Resch | Oct 2016 | A1 |
20160306853 | Sabaa | Oct 2016 | A1 |
20160321002 | Jung | Nov 2016 | A1 |
20160335085 | Scalabrino | Nov 2016 | A1 |
20160342345 | Kankani | Nov 2016 | A1 |
20160343429 | Nieuwejaar | Nov 2016 | A1 |
20160350002 | Vergis | Dec 2016 | A1 |
20160350385 | Poder | Dec 2016 | A1 |
20160364146 | Kuttner | Dec 2016 | A1 |
20160381442 | Heanue | Dec 2016 | A1 |
20170004037 | Park | Jan 2017 | A1 |
20170010652 | Huang | Jan 2017 | A1 |
20170075583 | Alexander | Mar 2017 | A1 |
20170075594 | Badam | Mar 2017 | A1 |
20170091110 | Ash | Mar 2017 | A1 |
20170109199 | Chen | Apr 2017 | A1 |
20170109232 | Cha | Apr 2017 | A1 |
20170123655 | Sinclair | May 2017 | A1 |
20170147499 | Mohan | May 2017 | A1 |
20170161202 | Erez | Jun 2017 | A1 |
20170162235 | De | Jun 2017 | A1 |
20170168986 | Sajeepa | Jun 2017 | A1 |
20170177217 | Kanno | Jun 2017 | A1 |
20170177259 | Motwani | Jun 2017 | A1 |
20170185498 | Gao | Jun 2017 | A1 |
20170192848 | Pamies-Juarez | Jul 2017 | A1 |
20170199823 | Hayes | Jul 2017 | A1 |
20170212708 | Suhas | Jul 2017 | A1 |
20170220254 | Warfield | Aug 2017 | A1 |
20170221519 | Matsuo | Aug 2017 | A1 |
20170228157 | Yang | Aug 2017 | A1 |
20170242722 | Qiu | Aug 2017 | A1 |
20170249162 | Tsirkin | Aug 2017 | A1 |
20170262176 | Kanno | Sep 2017 | A1 |
20170262178 | Hashimoto | Sep 2017 | A1 |
20170262217 | Pradhan | Sep 2017 | A1 |
20170269998 | Jung | Sep 2017 | A1 |
20170279460 | Camp | Sep 2017 | A1 |
20170285976 | Durham | Oct 2017 | A1 |
20170286311 | Juenemann | Oct 2017 | A1 |
20170322888 | Booth | Nov 2017 | A1 |
20170344470 | Yang | Nov 2017 | A1 |
20170344491 | Pandurangan | Nov 2017 | A1 |
20170353576 | Guim Bernat | Dec 2017 | A1 |
20180024772 | Madraswala | Jan 2018 | A1 |
20180024779 | Kojima | Jan 2018 | A1 |
20180033491 | Marelli | Feb 2018 | A1 |
20180052797 | Barzik | Feb 2018 | A1 |
20180067847 | Oh | Mar 2018 | A1 |
20180069658 | Benisty | Mar 2018 | A1 |
20180074730 | Inoue | Mar 2018 | A1 |
20180076828 | Kanno | Mar 2018 | A1 |
20180088867 | Kaminaga | Mar 2018 | A1 |
20180107591 | Smith | Apr 2018 | A1 |
20180113631 | Zhang | Apr 2018 | A1 |
20180143780 | Cho | May 2018 | A1 |
20180150640 | Li | May 2018 | A1 |
20180165038 | Authement | Jun 2018 | A1 |
20180165169 | Camp | Jun 2018 | A1 |
20180165340 | Agarwal | Jun 2018 | A1 |
20180167268 | Liguori | Jun 2018 | A1 |
20180173620 | Cen | Jun 2018 | A1 |
20180188970 | Liu | Jul 2018 | A1 |
20180189175 | Ji | Jul 2018 | A1 |
20180189182 | Wang | Jul 2018 | A1 |
20180212951 | Goodrum | Jul 2018 | A1 |
20180219561 | Litsyn | Aug 2018 | A1 |
20180226124 | Perner | Aug 2018 | A1 |
20180232151 | Badam | Aug 2018 | A1 |
20180260148 | Klein | Sep 2018 | A1 |
20180270110 | Chugtu | Sep 2018 | A1 |
20180293014 | Ravimohan | Oct 2018 | A1 |
20180300203 | Kathpal | Oct 2018 | A1 |
20180321864 | Benisty | Nov 2018 | A1 |
20180322024 | Nagao | Nov 2018 | A1 |
20180329776 | Lai | Nov 2018 | A1 |
20180336921 | Ryun | Nov 2018 | A1 |
20180349396 | Blagojevic | Dec 2018 | A1 |
20180356992 | Lamberts | Dec 2018 | A1 |
20180357126 | Dhuse | Dec 2018 | A1 |
20180373428 | Kan | Dec 2018 | A1 |
20180373655 | Liu | Dec 2018 | A1 |
20180373664 | Vijayrao | Dec 2018 | A1 |
20190012111 | Li | Jan 2019 | A1 |
20190050327 | Li | Feb 2019 | A1 |
20190065085 | Jean | Feb 2019 | A1 |
20190073261 | Halbert | Mar 2019 | A1 |
20190073262 | Chen | Mar 2019 | A1 |
20190087089 | Yoshida | Mar 2019 | A1 |
20190087115 | Li | Mar 2019 | A1 |
20190087328 | Kanno | Mar 2019 | A1 |
20190116127 | Pismenny | Apr 2019 | A1 |
20190171532 | Abadi | Jun 2019 | A1 |
20190172820 | Meyers | Jun 2019 | A1 |
20190196748 | Badam | Jun 2019 | A1 |
20190196907 | Khan | Jun 2019 | A1 |
20190205206 | Hornung | Jul 2019 | A1 |
20190212949 | Pletka | Jul 2019 | A1 |
20190220392 | Lin | Jul 2019 | A1 |
20190227927 | Miao | Jul 2019 | A1 |
20190272242 | Kachare | Sep 2019 | A1 |
20190278654 | Kaynak | Sep 2019 | A1 |
20190317901 | Kachare | Oct 2019 | A1 |
20190339998 | Momchilov | Nov 2019 | A1 |
20190377632 | Oh | Dec 2019 | A1 |
20190377821 | Pleshachkov | Dec 2019 | A1 |
20190391748 | Li | Dec 2019 | A1 |
20200004456 | Williams | Jan 2020 | A1 |
20200004674 | Williams | Jan 2020 | A1 |
20200013458 | Schreck | Jan 2020 | A1 |
20200042223 | Li | Feb 2020 | A1 |
20200042387 | Shani | Feb 2020 | A1 |
20200089430 | Kanno | Mar 2020 | A1 |
20200097189 | Tao | Mar 2020 | A1 |
20200143885 | Kim | May 2020 | A1 |
20200159425 | Flynn | May 2020 | A1 |
20200167091 | Haridas | May 2020 | A1 |
20200225875 | Oh | Jul 2020 | A1 |
20200242021 | Gholamipour | Jul 2020 | A1 |
20200250032 | Goyal | Aug 2020 | A1 |
20200257598 | Yazovitsky | Aug 2020 | A1 |
20200326855 | Wu | Oct 2020 | A1 |
20200328192 | Zaman | Oct 2020 | A1 |
20200348888 | Kim | Nov 2020 | A1 |
20200387327 | Hsieh | Dec 2020 | A1 |
20200401334 | Saxena | Dec 2020 | A1 |
20200409791 | Devriendt | Dec 2020 | A1 |
20210010338 | Santos | Jan 2021 | A1 |
20210089392 | Shirakawa | Mar 2021 | A1 |
20210103388 | Choi | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
2003022209 | Jan 2003 | JP |
2011175422 | Sep 2011 | JP |
9418634 | Aug 1994 | WO |
1994018634 | Aug 1994 | WO |
Entry |
---|
https://web.archive.Org/web/20071130235034/http://en.wikipedia.org:80/wiki/logical_block_addressing Wikipedia screen shot retriefed on wayback Nov. 20, 2007 showing both physical and logical addressing used historically to access data on storage devices (Year: 2007). |
Ivan Picoli, Carla Pasco, Bjorn Jonsson, Luc Bouganim, Philippe Bonnet. “uFLIP-OC: Understanding Flash I/O Patterns on Open-Channel Solid-State Drives.” APSys'17, Sep. 2017, Mumbai, India, pp. 1-7, 2017, <10.1145/3124680.3124741 >. |
EMC Powerpath Load Balancing and Failover Comparison with native MPIO operating system solutions. Feb. 2011. |
Tsuchiya, Yoshihiro et al. “DBLK: Deduplication for Primary Block Storage”, MSST 2011, Denver, CO, May 23-27, 2011 pp. 1-5. |
Chen Feng, et al. “CAFTL: A Content-Aware Flash Translation Layer Enhancing the Lifespan of Flash Memory based Solid State Devices”< FAST'11, San Jose, CA Feb. 15-17, 2011, pp. 1-14. |
Wu, Huijun et al. “HPDedup: A Hybrid Prioritized Data Deduplication Mechanism for Primary Storage in the Cloud”, Cornell Univ. arXiv: 1702.08153v2[cs.DC], Apr. 16, 2017, pp. 1-14https://www.syncids.com/#. |
WOW: Wise Ordering for Writes—Combining Spatial and Temporal Locality in Non-Volatile Caches by Gill (Year: 2005). |
Helen H. W. Chan et al. “HashKV: Enabling Efficient Updated in KV Storage via Hashing”, https://www.usenix.org/conference/atc18/presentation/chan, (Year: 2018). |
S. Hong and D. Shin, “NAND Flash-Based Disk Cache Using SLC/MLC Combined Flash Memory,” 2010 International Workshop on Storage Network Architecture and Parallel I/Os, Incline Village, NV, 2010, pp. 21-30. |
Arpaci-Dusseau et al. “Operating Systems: Three Easy Pieces”, Originally published 2015; Pertinent: Chapter 44; flash-based SSDs, available at http://pages.cs.wisc.edu/˜remzi/OSTEP/. |
Jimenex, X., Novo, D. and P. lenne, “Pheonix:Reviving MLC Blocks as SLC to Extend NAND Flash Devices Lifetime,”Design, Automation & Text in Europe Conference & Exhibition (DATE), 2013. |
Yang, T. Wu, H. and W. Sun, “GD-FTL: Improving the Performance and Lifetime of TLC SSC by Downgrading Worn-out Blocks,” IEEE 37th International Performance Computing and Communications Conference (IPCCC), 2018. |
C. Wu, D. Wu, H. Chou and C. Cheng, “Rethink the Design of Flash Translation Layers in a Component-Based View”, in IEEE Acess, vol. 5, p. 12895-12912, 2017. |
Po-Liang Wu, Yuan-Hao Chang and T. Kuo, “A file-system-aware FTL design for flash-memory storage systems,” 2009, pp. 393-398. |
S. Choudhuri and T. Givargis, “Preformance improvement of block based NAND flash translation layer”, 2007 5th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Systems Synthesis (CODES+ISSS). Saizburg, 2007, pp. 257-262. |
A. Zuck, O. Kishon and S. Toledo. “LSDM: Improving the Preformance of Mobile Storage with a Log-Structured Address Remapping Device Driver”, 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, Oxford, 2014, pp. 221-228. |
J. Jung and Y. Won, “nvramdisk: A Transactional Block Device Driver for Non-Volatile RAM”, in IEEE Transactions on Computers, vol. 65, No. 2, pp. 589-600, Feb. 1, 2016. |
Te I et al. (Pensieve: a Machine Assisted SSD Layer for Extending the Lifetime: (Year: 2018). |
ARM (“Cortex-R5 and Cortex-R5F”, Technical reference Manual, Revision r1p1) (Year:2011). |
Number | Date | Country | |
---|---|---|---|
20210034301 A1 | Feb 2021 | US |