System and method for floor covering installation

Information

  • Patent Grant
  • 8381473
  • Patent Number
    8,381,473
  • Date Filed
    Thursday, November 13, 2008
    15 years ago
  • Date Issued
    Tuesday, February 26, 2013
    11 years ago
Abstract
Connectors for joining adjacent modular floor covering units. The connectors include a film and an adhesive layer coated on one side of the film. To install tiles using the connectors, a first tile is placed on the floor and a connector is positioned so that the adhesive layer faces upward and does not contact the floor. The connector is typically positioned so that only a portion of the adhesive layer adheres to the underside of the tile, leaving the remainder of the connector extending from the underside of the tile. Tiles are then positioned adjacent the first tile so that a portion of the connector adheres to the adjacent tiles. In this way, the connectors span adjacent tile edges. The tiles are assembled on a underlying flooring surface without the need to attach them to the floor surface. Rather, the tiles are linked to each other with the connectors, so that the tiles create a floor covering that “floats” on the underlying floor surface.
Description
FIELD OF THE INVENTION

This invention relates to systems and methods for installing floor coverings, particularly including carpet tile and other modular floor coverings.


BACKGROUND OF THE INVENTION

Floor coverings have been in use since before recorded human history. The first such materials were undoubtedly animal skins or plant materials like leaves or stems. Later, floor coverings were manufactured, such as by weaving or knotting a variety of naturally occurring fibers, including sisal and wool. Beginning in the twentieth century, such fiber-faced floor coverings began to be manufactured from man-made fibers as well.


While the first floor coverings were limited in size to the size of an animal skin, later floor coverings expanded to cover entire room floors. Such “wall-to-wall” installations of “broadloom” floor covering came into wide-spread use in the twentieth century. Paradigm installations of such materials utilize one or a small number of pieces of broadloom carpeting to cover entire room floors. This type of wall-to-wall floor covering is generally attached to the floor in some manner.


Later, modular floor coverings utilized smaller, uniform size modules or tiles in both solid surface floor coverings such as vinyl tiles and in textile-faced floor coverings, usually called carpet tiles. As explained in U.S. patent application Ser. No. 10/638,878 for “Re-Configurable Modular Floor Covering,” filed Aug. 11, 2003, tiles may be installed as area rugs that do not cover the entire flooring surface. However, the vast majority of tiles are used in wall-to-wall installations. Tiles have traditionally been installed in aligned rows and columns, with the edges of each tile aligned with the edges of adjacent tiles (“conventional carpet tile installation method”). Conventional carpet tile has historically been a product that sought to mimic the appearance of broadloom carpet and to hide or at least de-emphasize the fact that the product was modular. Achieving this result has required, at minimum, that carpet tiles or modules be placed in a flooring installation with the same orientation that the modules had at the time they were produced (i.e., monolithically). However, textile face modular flooring designers have recently begun to design flooring and flooring installations that do not seek to mask, but rather celebrate, the modularity of the flooring. For instance, while still installed in aligned rows and columns, modules are installed “quarter-turned” with each tile position rotated 90° relative to each adjacent tile.


Modules are not always installed in aligned rows and columns, however. For example, tiles are also installed in aligned columns that do not form aligned rows of modules so that a column of tiles appears shifted up or down relative to adjacent tile columns (“ashlar installation method”). In other installations, tiles are installed in aligned rows that do not form aligned, but rather staggered, columns (“brick-laid installation method”).


While the floor covering modules are generally of relatively substantial size and weight, which facilitates maintenance of the modules in the positions they are placed when the floor covering is assembled, it is desirable to provide a means for further resisting module movement. This has traditionally been accomplished by attaching the modules to the underlying flooring surface in a variety of ways.


Modules are often glued to the floor by first applying a layer of adhesive to the underlying flooring surface and then positioning the tiles on top of the adhesive. With this method, adhesive typically contacts the entire surface area of the underside of the flooring modules, which increases material costs and often leads to difficulty in re-positioning the tiles if they are positioned incorrectly. This is a particular problem during installation of patterned modules that must be matched at the seams. Moreover, when the tiles are eventually removed, glue remains on the flooring surface and that glue sometimes retains portions of the removed tiles. The glue (and any flooring materials held by the glue) must be removed from the floor to create a smooth surface before installing new tiles. This adds both cost and time to the installation process.


Modules may also be installed by pre-applying adhesive to the entire underside (or any part) of the module. For example, adhesive may be applied in a relatively narrow strip across each module underside and covered, prior to module installation, by a plastic film or paper strip that is peeled off just before module placement. Again, however, this method involves attaching the modules directly to the floor and can result in the consequent drawbacks discussed above.


Modules have also be installed using double-sided adhesive tape, whereby one side of the tape is positioned on the back of the module and the other side of the tape is positioned on the floor to thereby secure the module to the floor. Double-sided tape has also been positioned between and along the entirety of adjacent carpet and carpet tile edges. However, as with adhesive, double sided tape can be unforgiving with respect to tile re-positioning and can also leave a residue on the floor upon removal of the tiles. Moreover, the tape has a low tensile strength and is relatively inelastic and consequently is apt to stretch and not regain its shape. This can result in the gaps formed between adjacent tiles.


In addition to direct attachment to the floor, modules have also been indirectly attached to the underlying flooring surface, such as with mechanical fasteners or adhesive covered pads. For example, hook and loop fasteners have been used whereby a sheet of either the hook or the loop is secured to the floor and the other of the hook or the loop is provided on the back of the modules. The hook or loop on the modules then engages the hook or loop on the floor to secure the modules to the floor. Pads covered with adhesive have also been used. For example, a foam pad pre-coated on both sides with a releasable adhesive has been used. During installation, release paper is removed from both sides of the pad to expose the adhesive, and the pad is attached to the floor. Carpet tiles are then positioned on top of the pad and held in place by the adhesive. While these systems and methods may improve the installers' ability to re-position the tiles, they significantly increase the material cost of the installation. Moreover, with these installation methods, the tiles are more likely to move relative to each other and thereby create gaps in the installation.


Other installation methods exist whereby the tiles are neither directly nor indirectly attached to the floor. For example, one-sided adhesive tape, such as duct tape, has been used to secure adjacent tiles together. The tiles are positioned face down and the tape is secured along the entirety of the adjacent edges of the tiles. The tiles must then be carefully turned over to expose their wear surfaces without breaking the connection between adjacent tiles. This method requires a significant amount of time to position the tape on the tiles as well as a significant material investment to tape adjacent tile edges together along the entirety of the seams. Moreover, such adhesive tape is relatively flimsy, making it challenging to position the tape as desired on the underside of tiles, and, as with double-sided adhesive tape, suffers from low tensile strength and inelasticity, rendering it likely to permanently stretch when subjected to stress and thereby create permanent gaps between adjacent tiles.


While methods for installing floorcoverings exist, a need exists for a system and method that reduces both the time and material costs needed to install modules into a stable floorcovering.


SUMMARY OF THE INVENTION

This invention addresses the problems of previous modular flooring installation methods by providing systems and methods that reduce the time and material costs required to install a floor covering. Connectors are used to join adjacent floor covering units. The connectors are particularly useful in installing modular floor covering units (“tiles”). Each connector includes a film and an adhesive layer coated on one side of the film. To install tiles using the connectors, a first tile is placed on the floor at a position determined by conventional tile installation methods. A connector is positioned so that the adhesive layer faces upward and does not contact the floor. The connector is typically positioned so that only a portion of the adhesive layer adheres to the underside of the tile, leaving the remainder of the connector extending from the underside of the tile. Tiles are then positioned adjacent the first tile so that a portion of the connector adheres to the adjacent tiles. In this way, the connectors span the adjacent edges of the adjacent tiles. The tiles are assembled on a underlying floor surface without the need to attach them to the floor surface. Rather, the tiles are linked to each other with the connectors, so that the tiles create a floor covering that “floats” on the underlying floor surface.


The connectors need not be positioned along the entirety of the adjacent edges nor even across all adjacent tiles edges in the installation. Rather, the connectors are sized so that, when positioned in the installation, they do not extend along the entire length of the adjacent edges. Moreover, while any number of connectors may be used at any number of locations between adjacent tiles, the benefits of this invention may be fully realized by placing the connectors in strategic locations within the assembly (such as at some of the corners where four tiles meet). This is in contrast to prior installation methods that required stabilizing material be placed along the entirety of adjacent tiles edges so that all adjacent tiles edges in the installation were stabilized.


The size and relatively minimal number of connectors needed to stabilize a tile installation can result in a significant reduction in material costs from prior tile installation methods. Moreover, use of the connectors significantly reduces tile installation time by obviating the need to prep a floor prior to installation. Instead of the installer applying a layer of adhesive to the floor and then retracing his steps to position the tiles on the adhesive layer, with the connectors, the installer positions and secures as he goes. Moreover, given the releasable adhesive used on the connectors and the limited surface area of the tiles that contacts the connectors, the tiles can easily be re-positioned if necessary. Furthermore, because the tiles do not interact with the underlying floor, they are easily removable from the floor and leave the underlying floor pristine upon such removal. Consequently, the floor does not require refinishing before it is recovered with another floorcovering.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is perspective view of one embodiment of a connector and release layer of this invention.



FIG. 2 is a perspective view of another embodiment of connectors and a release layer of this invention.



FIG. 3 is a top plan view of yet another embodiment of connectors of this invention.



FIG. 4 is a schematic view of one embodiment of a connector dispenser of this invention.



FIG. 5 is a bottom plan view of an installation of tiles pursuant to this invention.



FIG. 6 is a bottom plan view of a subset of the tiles of FIG. 5.



FIG. 7 is a bottom plan view of another installation of tiles pursuant to this invention.



FIG. 8 is a bottom plan view of a subset of the tiles of FIG. 7.



FIG. 9 is a side schematic view of an embodiment of a connector of this invention attached to a tile edge.





DETAILED DESCRIPTION OF THE DRAWINGS

This invention relates to systems and methods for installing floor covering. One of skill in the art will understand that the systems and methods described herein may be used in a variety of floor covering installations. However, applicants have found the connectors described herein particularly useful in any type installation (including wall-to-wall and area rug installations) of modular floor covering units (hereinafter referred to as “tiles”). The tiles may be of various colors and textures in a range of sizes and shapes. For example, individual tiles may be in a shape that simulates wood planking or shapes of ceramic and other tiles, including, but not limited to, hexagons, squares, rectangles, triangles and other shapes. In addition, the tiles may be provided in a variety of textures. Tiles of this invention may typically be conventional carpet tile with textile faces (including, but not limited to, tufted, bonded, and printed faces), but could also be other modular materials, including woven and nonwoven textile flooring, solid vinyl, ceramics, leather, or any other suitable material. The tiles are preferably installed on a generally smooth surface, including, but not limited to plywood, laminates, linoleum, vinyl tile, hardwoods, and concrete. However, as discussed below, the tiles may be installed on an intermediate substrate, including pad and broad loom carpet, located between the tiles and the underlying floor.



FIG. 1 illustrates one embodiment of a connector 20 of this invention. The connector 20 includes a film 22 and an adhesive layer 24 coated on one side of the film 22. A release layer 26 is placed on top of the adhesive layer 24 to protect the underlying adhesive. In use, the release layer 26 is removed from the connector 20 to expose the adhesive layer 24. As will be described in more detail below, the connector 20 is then positioned so that the adhesive layer 24 contacts the underside of adjacent tiles to span the adjacent edges of the tiles and thereby connect the tiles together to form a floor covering. In this way, the tiles are assembled on a underlying flooring surface without the need to attach them to the floor surface, so that the tiles create a floor covering that “floats” on the underlying floor surface.


The film 22 may be of any suitable material, but, to facilitate rapid flooring installations in accordance with this invention, is preferably made of a material that is relatively stiff so that a connector positioned partly in contact with the underside of a tile will project beyond the edge of the tile in roughly the same plane as the underside of the tile. This facilitates proper positioning of the projecting connector portion to make appropriate contact with an adjacent tile. This is typically greater stiffness than most adhesive tapes that will significantly curl or droop down from an underside of a tile to which a portion (but not all) of a length of such adhesive tape is attached. At the same time, the film 22 from which connectors of this invention are made should be sufficiently flexible to facilitate handling the connectors in a roll if desired and to permit the connectors to conform to floor or tile irregularities.


The film 22 should also resist shrinkage, which can result in buckling of adjacent tiles, and exhibit a relatively high tensile strength to resist stretching under foot traffic and rolling loads. For example, materials that exhibit a tensile strength between 160-270 mega Pascals (“MPa”) in the machine direction and 165-210 MPa in the cross-machine direction have been found particularly suitable for this application. Moreover, the percentage by which the material may be elongated or stretched before breaking should also be relatively high to prevent connector breakage and failure when subjected to tensile stresses. For example, it is preferable, but not required, that the material used be capable of being stretched 120-200% of its machine direction dimension and 150-170% of its cross-machine direction dimension before breaking.


Polymeric materials, paperboard and other materials including textiles and metals that are suitably stiff, thin, strong, water-resistant and inexpensive may also be used for film 22. However, the film 22 is preferably a synthetic polymer material, such as a polyolefin, a polyamide, or a polyester, and more preferably polyethylene terephthalate (“PET”) polyester. These materials are relatively cheap, will conform to the underlying floor in use, and will resist corrosion. While not necessary, it is preferable that the film material be recyclable.


The film 22 preferably has a thickness between 0.0005 and 0.015 inches, inclusive, and more preferably between 0.003 and 0.01 inches, inclusive, and even more preferably is 0.005 inches. The film 22 may also have, but does not have to have, a primer coat 23, such as a coating of acrylic, applied to the same side on which the adhesive layer 24 is to be applied to promote adhesion between the film 22 and the adhesive layer 24. The film 22 may be corona treated on one or both sides to increase surface tension and promote adhesion between the film 22 and the adhesive 24 without the use of adhesion promoting coatings.


The film 22 may be any shape, including, but not limited to, a circular shape or any rectilinear shape such as a square or triangular. A square shape is suitable for most installations. Moreover, the size of the film 22 can depend on the size of the tiles being installed. However, as a general rule, the surface area of the film 22 can be as little as 1%, and preferably between 2-5%, of the surface area of the tiles for which the connectors are intended to be installed. It has been found that a connector surface area over nine square inches does not meaningfully contribute to the stability of an installation of 18 inch square or 50 centimeter square tiles. Thus, connectors 20 desirably should be, but do not have to be, no larger than about three inches by three inches square to conserve materials and limit expense.


While the adhesive layer 24 can be any adhesive that exhibits certain attributes desirable for use in this invention, the specific type or amount of adhesive used in the connector may often depend on the tile with which the connector 20 is intended for use. With all tiles, however, it is preferable to use a releasable adhesive. Water-based adhesives (rather than solvent based adhesives) with little or no volatile organic content (“VOC”) are also preferable. Acrylic adhesives, including those sold by 3M under the identification numbers 9465, 6032, 6035, and 6038, and in particular 9465 (which is primarily an acrylate terpolymer) and 6032 (a tackified acrylate copolymer), are suitable. Moreover, the adhesive 24 preferably, but not necessarily, is resistant to water and typical carpet cleaning detergents.


The adhesive layer 24 in all connectors 20 should adhere well to the back of the tiles. However, the adhesion to the tile should not be so strong as to prevent removal and repositioning of the tile relative to the connector 20, if necessary. If the bond strength between the tile and the adhesive (i.e., the amount of force required to separate the adhesive layer 24 from the tile backing, which can be measured using the ASTM D-3330 test (commonly referred to as the “90 degree peel test”)) is too strong, the adhesive layer 24 will peel from the film and remain with the tile, thereby destroying the connector. Thus, the bond strength between the adhesive layer 24 and the tile should not be stronger than that between the adhesive layer 24 and the film 24.


The bond strength is preferably between 5-100 ounces/inch, inclusive, at room temperature. The preferable bond strength may depend on the tile backing. For example, the bond strength between the adhesive and hardback tiles, such as, for example, those made from PVC, polyurethane, or polyolefin, is preferably about 50-70 ounces/inch. The bond strength between the adhesive and tiles having a textile backing, such as for example a woven polypropylene or felt backing, is preferably about 10-60 ounces/inch. Moreover, the bond strength between the adhesive and cushion back tiles is preferably about 40-60 ounces/inch, and the bond strength between the adhesive and bitumen backed tiles is preferably about 10-20 ounces/inch. It is preferable that the bond strength between a tile and the adhesive at elevated temperatures remain within +/−15% of the bond strength at room temperature.


The amount of adhesive (i.e., the thickness of the adhesive layer) provided on each connector 20 can depend both on the size of the connector 20 as well as the tile to be used with the connector 20. However, it is preferable that, while the amount of adhesive should enable the connector sufficiently to contact and engage the underside of the tile to achieve the bonding strengths set forth above, it should not be so much that the adhesive migrates beyond the interface of the connector 20 and tile to contact the underlying floor. In this way, the floorcovering installation will remain unsecured to the underlying floor to facilitate the eventual removal of the modular units. A connector 20 with an adhesive thickness about 0.0005-0.010 inches, and more preferably about 0.002-0.008 inches, has been found suitable for most applications.


For tiles having a textile backing, more adhesive will typically be necessary to penetrate the cavities formed in the backing and thereby provide sufficient interfacial contact between the tile and adhesive. Connectors having an adhesive layer 24 that is about 0.005-0.008 inches thick is preferable for tiles having textile backings. For tiles having a relatively flat or shallow embossed backing surface, such as hard back tiles, less adhesive, preferably with a thickness in the range of 0.002-0.003 inches, may be used.


All of the adhesives contemplated for use on the connectors should also have sufficient sheer strength to prevent the tiles from moving relative to the connectors or each other and thereby creating gaps between adjacent tiles after installation.


Although not shown in the figures, it is possible to provide a logo or other design elements on the connectors 20. For example, a logo may be inked on the side of the film on which the adhesive is to be applied. In this way, the ink, which typically has a high VOC content, is trapped between the film and the adhesive, preventing any undesirable emissions from the ink. Moreover, when the connector is positioned on the release paper, the logo is also protected by the film. This prevents the logo from being accidentally scratched off or otherwise removed from the connector.


The release layer 26 may be any material compatible with the adhesive such that the release layer 26 does not adhere to the adhesive to prevent its removal from the connector. Kraft paper having a low energy coating, such as a polymer coating (e.g., polymeric silicone), on at least one side has been found to be particularly suitable in this application. However, release materials suitable for use in this invention are widely commercially available, such as from 3M, and readily known to one of ordinary skill in the art.


The connectors 20 are preferably provided to the installation site as individual units already entirely or partially cut into the desired shape and size to be used in the installation. While each connector 20 may be manufactured separately, economies of manufacture may be achieved by first manufacturing a sandwich of film 22, adhesive layer 24, release layer 26 larger than the intended connector size, and then cutting the connectors 20 from that sandwich. The adhesive layer 24 can be coated onto the desired film 22, after which the release layer 26 is positioned in contact with the adhesive layer 24 to form the sandwich. In another manufacturing embodiment, the adhesive layer 24 is first applied to the release layer 26, after which the film 22 is positioned onto the release layer 26 to form the sandwich.


The resulting sandwich may obviously then be cut into connectors 20 of the desired shape and size. However, a number of connectors 20 is preferably provided on a single release layer 26. For example, multiple pre-cut or perforated connectors 20 may be positioned consecutively along a strip of release layer 26. For ease of handling and storage, this strip can be rolled so that the connectors are positioned on the outside (see FIG. 2) or inside of the roll or folded between consecutive connectors 20 into an accordion shape. Moreover, a number of connectors 20 may be provided on a sheet of release layer 26. The film 22 may be provided with perforations 28 (see FIG. 3) or may be fully cut into the desired connector shape and size for ease of removal from the release layer 26 (not shown) during installation. The ideal number of connectors 20 provided on a strip or sheet of release material will obviously vary depending on the size of the installation.


Provision of the connectors 20 on a strip or sheet of release material has been found to facilitate removal of the connectors 20 from the release layer 26 and thus reduce installation time. With respect to connectors 20 provided on a strip of release material (as shown in FIG. 2), installation can also be expedited through use of a connector dispenser that holds at least one rolled or accordion folded strip of connectors 20 and that preferably also provides a mechanism for separating the connectors 20 from the release layer 26. The dispenser, which, for example, may be fashioned as a backpack or mounted on the installer's belt, preferably includes structure for supporting at least one roll of connectors 20 (and preferably more).


In one embodiment of such a dispenser (see FIG. 4), a roll of release material bearing connectors 20 is housed in a box 30 made from any sufficiently-rigid material, such as, for example, plastic, metal, or cardboard. The box preferably includes three openings 32, 34, 36 through which the strip of release material is fed. The strip of release material is fed through the first opening 32, at which opening is positioned a projection 38. The release material is then fed back into the box 30 through a second opening 34 and out a third opening 36. In use, the installer pulls on the release material strip extending from the third opening 36. This, in turn, advances from the roll portions of the release layer 26 bearing connectors 20. As the release layer 26 extends over the projection 38, the connector 20, which is relatively rigid, is unable to conform to the shape of and travel over the projection 38. Instead, the connector's leading edge disengages from the release layer 26, after which the installer can easily grip the disengaged edge to remove the connector 20 fully from the release layer 26. Obviously, the more connectors the dispenser is able to support, the fewer times the installer must re-load the dispenser during installation. This can be especially beneficial during large installations.


In another embodiment of this invention, the release material 26 may be omitted entirely. Rather, the connectors 20 can be stacked on top of each other, with the adhesive layer 24 of one connector 20 contacting the film 22 of the connector 20 positioned above it in the stack. The installer then simply peels a connector 20 from the stack during installation.


In one method of installing tiles using the connectors, a first tile is placed on the floor at a position determined by conventional tile installation methods. A connector 20 is peeled from the release layer 26 (or from a stack of connectors 20) and positioned so that the adhesive layer 24 faces upward away from the underlying floor. The connector 20 is positioned so that only a portion of the adhesive layer 24 adheres to the underside of the tile, leaving the remainder of the connector 20 extending from the underside of the tile. A tile or tiles are then positioned adjacent the first tile so that a portion of the connector 20 adheres to the adjacent tile(s). In this way, the connector spans the adjacent edge(s) of the adjacent tile(s).


Any number of connectors 20 may be used to connect adjacent tiles in an installation. However, to create a stable floor covering, the connectors need not be positioned along the entirety of the adjacent tile edges nor even across all adjacent tile edges. Rather, unlike adhesive tape that has been used to secure adjacent tiles together along the entirety of adjacent tile edges, the connectors 20 of this invention need only extend along a very limited length of the adjacent edges. For example, the tiles of a floor covering installation where only 5%-10% of adjacent tile edges are stabilized with connectors 20 have been found to exhibit planar stability (measured by the cupping and/or curling of the tiles) and dimensional stability (measured by the skewing of the tiles), as well as the ability to retain their relative positions in the installation when subjected to foot traffic, rolling traffic, and stresses applied during cleaning and maintenance.



FIG. 5 shows one embodiment of a conventional installation (i.e., in aligned columns and rows) of tiles. For ease of discussion, the positioning of the connectors is discussed relative to a basic unit 40 of four tiles 41-44, as shown and arranged in FIG. 6. Tiles 41-44 are preferably connected with a central connector 46 at the corners where they intersect. Moreover, the corner of each tile diagonal from the center connector 46 is also connected to adjacent tiles with a connector 20. In this way, only a total of two tile connectors (the center connector 46 plus a quarter of a connector at each of the four diagonal tile corners) need be used to install the basic unit 40 of four tiles 41-44. Breaking this down even further, each of the four tiles 41-44, draws its stability from, on average, only one half of the surface area of a connector.



FIG. 7 illustrates possible connector placement in a brick-laid tile installation (or ashlar installation if FIG. 7 is rotated ninety degrees). For ease of discussion, the preferable positioning of the connectors 20 is discussed relative to a basic unit 60 of four tiles 61-64, as shown and arranged in FIG. 8. As with tiles 41-44, a total of only two tile connectors (½ of a connector per each tile) need be used to install the basic unit 60 of four tiles 61-64.



FIGS. 5-8 illustrate a few of only countless connector placement possibilities for installing tiles. Connectors 20 may be positioned at any location between adjacent tiles, and thus any given tile in the installation may contact a portion of as few as one connector and as many as feasible given the size of the tile and of the connectors 20. In addition to placement at the corners of intersecting tiles, connectors 20 may be positioned to span the adjacent edges of only two tiles. Moreover, different shaped or sized connectors 20 may be useful in a single installation. For example, in addition to the rectangular connectors shown in FIG. 5, triangular-shaped connectors may be useful at the border of an installation, such as where the tiles abut a wall.


In addition to on-site placement of the connectors 20, it is also possible to pre-position the connectors 20 at desired locations on the tiles during manufacture. For example, the release material 26 on the connectors 20 may be perforated. During manufacture, a portion of the release material 26 can thus be removed along the perforation to expose a portion of the adhesive layer 24. That portion of the connector 20 can then be adhered to the underside of the edge of a tile 50 as discussed above (see FIG. 9). The adhesive on the remainder of the connector 20 is still protected by the remaining release material 26. To prevent the connector 20, which extends from tile 50, from interfering with packaging of tile 50 for shipment, it may be preferable to bend the connector 20 along the perforation back (in direction A) so that the underside of the connector 20 is flush with itself. During installation, the installer need only extend the connector 20 from the edge of tile 50, remove the remaining release layer 26 and install the tiles 50 as discussed above.


Because the tiles are not attached to the floor, they need not be placed directly on an underlying flooring surface. Rather, the connectors 20 of this invention work equally well with tiles positioned on an intermediate substrate positioned between the tiles and the floor. For example, a barrier material, such as a plastic sheet, may be positioned on the floor prior to tile installation. The plastic sheet can serve to protect the floor from damage, such as might be caused by liquids spilled on the tiles that escape through the tile seams, as well as serve as a barrier to moisture present in the existing floor and thereby eliminate the need for sealants and barrier coatings. Moreover, a cushion or foam pad may also be positioned on the floor before tile installation. The cushion provides comfort underfoot and also eliminates the need to use cushion back carpet tiles. Rather, hardback tiles can simply be installed on an underlying cushion pad.


The connectors of this invention improve upon current tile installation systems and methods. The connectors use both less material and cheaper materials than traditional installation systems. Moreover, use of the connectors significantly reduces tile installation time (by as much as 60% of the time for adhesive systems) by obviating the need to prep a floor prior to installation. Rather than applying a layer of adhesive to the floor and then retracing his steps to position the tiles on the adhesive layer, with the connectors, the installer positions and secures as he goes. Moreover, given the releasable adhesive used on the connectors and the limited surface area of the tiles that contacts the connectors, the tiles can easily be re-positioned if necessary. Furthermore, because the tiles do not interact with the underlying floor, they are easily removable from the floor and leave the underlying floor pristine upon such removal. Consequently, the floor does not requires refinishing before it is recovered with another floorcovering.


The embodiment described above is illustrative and non-limiting. Many variations of the structures illustrated in the drawings and the materials described above are possible and within the scope of this invention as defined in the claims.

Claims
  • 1. A floor covering installation comprising: a. an intermediate substrate covering a flooring surface;b. carpet tiles positioned adjacent one another above the intermediate substrate; andc. connectors connecting the tiles, at least one of the connectors comprising a layer of adhesive located on a side of a film and at least one of the connectors positioned: (i) above the intermediate substrate without adhering to the intermediate substrate;(ii) without abutting other connectors; and(iii) to span adjacent edges of adjacent tiles and extend along only a portion of the adjacent edges,wherein the layer of adhesive contacts and forms a bond with undersides of adjacent tiles and prevents relative movement between the adjacent tiles.
  • 2. The installation of claim 1, wherein the intermediate substrate comprises a plastic film.
  • 3. The installation of claim 2, wherein the plastic film is a barrier to moisture.
  • 4. The installation of claim 1, wherein the intermediate substrate comprises at least one cushion.
  • 5. The installation of claim 1, wherein the adhesive is a releasable adhesive.
  • 6. An installation of modular carpet tiles connected together with connectors, each connector comprising: a. a film exhibiting a tensile strength between 160 and 270 MPa in a first direction;b. a layer of adhesive located on a side of the film, wherein the layer of adhesive is capable of forming a bond with the undersides of the tiles and comprises a sufficient shear strength so that, when a connector spans adjacent edges of adjacent tiles so that the layer of adhesive contacts the undersides of the adjacent tiles, the connector prevents adjacent tiles from moving relative to the connector or each other and thereby creating gaps between the adjacent tiles after installation,wherein at least one of the connectors are positioned: i. to span adjacent edges of at least two adjacent tiles in the installation and extend along only a portion of the adjacent edges;ii. without abutting other connectors; andiii. so as not to adhere to an underlying surface on which the tiles are positioned.
  • 7. The installation of claim 6, wherein the film exhibits a tensile strength between 165 and 210 MPa in a second direction different from the first direction.
  • 8. The installation of claim 6, wherein the film comprises plastic.
  • 9. The installation of claim 8, wherein the plastic is a polyolefin, a polyamide, or a polyester.
  • 10. The installation of claim 8, wherein the plastic is a polyethylene terephthalate polyester.
  • 11. The installation of claim 6, wherein the film comprises a thickness between approximately 0.0005 and 0.015 inches, inclusive.
  • 12. The installation of claim 11, wherein the thickness is between approximately 0.003 and 0.01 inches, inclusive.
  • 13. The installation of claim 6, wherein the adhesive layer comprises acrylic.
  • 14. The installation of claim 6, wherein the adhesive layer comprises a thickness between approximately 0.0005 and 0.01 inches, inclusive.
  • 15. The installation of claim 14, wherein the thickness is between approximately 0.002 and 0.008 inches, inclusive.
  • 16. An installation of modular flooring tiles connected together with connectors, each connector comprising: a. a film;b. a layer of adhesive located on a side of the film, wherein the layer of adhesive is capable of forming a bond with the undersides of the tiles so that, when a connector spans adjacent edges of adjacent tiles so that the layer of adhesive contacts the undersides of the adjacent tiles, adjacent edges of modular tiles remain in place under a 200 pound-based rolling chair test;wherein at least one of the connectors are positioned: i. to span adjacent edges of at least two adjacent tiles in the installation and extend along only a portion of the adjacent edges;ii. so as not to abut other connectors; andiii. so as not to adhere to an underlying surface on which the tiles are positioned.
  • 17. The installation of claim 16, wherein the film exhibits sufficient strength so that adjacent edges of modular tiles remain in place under a 200 pound-based rolling chair test without sides.
  • 18. The installation of claim 16, wherein the film exhibits sufficient strength so that adjacent edges of modular tiles remain in place under a 200 pound-based rolling chair test with small wheels.
  • 19. A floor covering installation comprising: a. an intermediate substrate covering a flooring surface;b. floor covering tiles positioned adjacent one another above the intermediate substrate; andc. between the substrate and tiles, connectors, each: i. comprising adhesive on a side of a film andii. connecting at least two of the tiles by adhering to undersides of the tiles along only a portion of abutting tile edges and without adhering to the intermediate substrate or abutting another connector.
  • 20. An installation of modular carpet tiles connected together with connectors, each connector comprising: a. a sheet having two sides; andb. a layer of adhesive located on one side of the sheet, wherein the layer of adhesive is capable of forming a bond between the sheet and the undersides of the tiles and comprises a sufficient shear strength so that, when a connector spans adjacent edges of adjacent tiles so that the layer of adhesive contacts the undersides of the adjacent tiles, the connector prevents adjacent tiles from moving relative to the connector or each other and thereby creating gaps between the adjacent tiles after installation; andwherein the sheet comprises material sufficiently stiff for a connector positioned partly in contact with an underside of a tile to project beyond the edge of the tile in roughly the same plane as the underside of the tile.
  • 21. The installation of claim 20, wherein at least one of the connectors are positioned: i. to span adjacent edges of at least two adjacent tiles in the installation and extend along only a portion of the adjacent edges;ii. so as not to abut other connectors; andiii. so as not to adhere to an underlying surface on which the tiles are positioned.
  • 22. The installation of claim 20 wherein each tile comprises a surface area and each connector comprises a surface area, wherein the surface area of a connector is no more than approximately 5% of the surface area of a tile.
  • 23. The installation of claim 20, wherein at least some of the connectors comprise a surface area of approximately 9 square inches.
  • 24. The installation of claim 20, wherein the adjacent edges of the adjacent tiles in the installation comprise a total length and wherein the connectors in the installation span up to approximately 10% of the total length of the adjacent tiles.
  • 25. The installation of claim 20, wherein the material comprises a tensile strength of at least 160 MPa in at least one direction.
  • 26. The installation of claim 25, wherein the material comprises a tensile strength of 160 to 270 MPa, inclusive, in the at least one direction.
  • 27. The installation of claim 26, wherein the material comprises a tensile strength of 165 to 210 MPa, inclusive, in the at least one direction.
  • 28. The installation of claim 20, wherein the material comprises a tensile strength of 165 to 210 MPa, inclusive, in at least one direction and of 160 to 270 MPa, inclusive, in at least one other direction.
  • 29. The installation of claim 20, wherein the layer of adhesive comprises a releasable adhesive.
  • 30. The installation of claim 20, wherein the bond comprises a bond strength that permits removal and repositioning of a tile relative to a connector.
  • 31. The installation of claim 30, wherein the bond strength is approximately 5-100 ounces/inch, inclusive.
  • 32. The installation of claim 20, wherein the sheet comprises a dimension and wherein the sheet is capable of being stretched at least 120% of the dimension before breaking.
  • 33. The installation of claim 32, wherein the sheet is capable of being stretched 120% to 200%, inclusive, of the dimension before breaking.
  • 34. The installation of claim 20, wherein the layer of adhesive comprises a thickness of approximately 0.0005 to 0.01 inches, inclusive.
  • 35. The installation of claim 34, wherein the thickness is approximately 0.002 to 0.008 inches, inclusive.
  • 36. The installation of claim 20, wherein the sheet comprises a thickness of approximately 0.0005 to 0.015 inches, inclusive.
  • 37. The installation of claim 20, wherein the connectors are adapted to connect the modular carpet tiles together without attaching the tiles to an underlying surface on which the tiles are positioned.
  • 38. The installation of claim 20 wherein the sheet comprises a plastic.
  • 39. The installation of claim 38 wherein the plastic comprises a polyolefin, a polyamide, or a polyester.
  • 40. An installation of modular carpet, comprising: a. rectangular carpet tiles having four corners; andb. tile connectors positioned at only two diagonally opposed corners of at least one of the tiles, each connector comprising: i.. a film; andii. a layer of adhesive located on a side of the film, wherein the layer of adhesive is capable of forming a bond with the undersides of the tiles and comprises a sufficient shear strength so that, when a connector spans adjacent edges of adjacent tiles so that the layer of adhesive contacts the undersides of the adjacent tiles, the connector prevents adjacent tiles from moving relative to the connector or each other and thereby creating gaps between the adjacent tiles after installation.
  • 41. The installation of claim 40 wherein the film comprises a plastic.
  • 42. The installation of claim 41 wherein the plastic is a polyolefin, a polyamide, or a polyester.
  • 43. An installation of modular carpet tiles coupled with connectors, each connector comprising: a. a film exhibiting a tensile strength between 160 and 270 MPa in a first direction; andb. a layer of adhesive located on at least one side of the film, wherein the layer of adhesive is capable of bonding the film to the undersides of adjacent tiles and comprises a sufficient shear strength so that the connectors prevent adjacent tiles from moving relative to the connectors or each other and thereby creating gaps between the adjacent tiles after installation, andwherein at least one of the connectors are positioned to span and extend along only a portion of the adjacent tile edges without abutting other connectors.
  • 44. The installation of claim 43 wherein the film comprises material sufficiently stiff for a connector positioned partly in contact with an underside of a tile to project without support beyond the edge of the tile in roughly the same plane as the underside of the tile.
  • 45. The installation of claim 43 wherein the film comprises material sufficiently stiff for a connector positioned with one half in contact with an underside of a tile to project without support beyond the edge of the tile in roughly the same plane as the underside of the tile.
  • 46. The installation of claim 43, wherein each tile comprises a surface area and each connector comprises a surface area, wherein the surface area of a connector is no more than approximately 5% of the surface area of a tile.
  • 47. The installation of claim 43, wherein at least some of the connectors comprise a surface area of approximately 9 square inches.
  • 48. The installation of claim 43, wherein the adjacent edges of the adjacent tiles in the installation comprise a total length and wherein the connectors in the installation span up to approximately 10% of the total length of the adjacent tiles.
  • 49. The installation of claim 43, wherein the film comprises a tensile strength of 165 to 210 MPa, inclusive, in a second direction.
  • 50. The installation of claim 43, wherein the layer of adhesive comprises a releasable adhesive.
  • 51. The installation of claim 43, wherein the layer of adhesive forms a bond with the undersides of the tiles, wherein the bond comprises a bond strength that permits removal and repositioning of a tile relative to a connector.
  • 52. The installation of claim 51, wherein the bond strength is approximately 5-100 ounces/inch, inclusive.
  • 53. The installation of claim 43, wherein the film comprises a dimension and wherein the film is capable of being stretched at least 120% of the dimension before breaking.
  • 54. The installation of claim 53, wherein the film is capable of being stretched 120% to 200%, inclusive, of the dimension before breaking.
  • 55. The installation of claim 43, wherein the layer of adhesive comprises a thickness of approximately 0.0005 to 0.01 inches, inclusive.
  • 56. The installation of claim 55, wherein the thickness is approximately 0.002 to 0.008 inches, inclusive.
  • 57. The installation of claim 43, wherein the film comprises a thickness of approximately 0.0005 to 0.015 inches, inclusive.
  • 58. The installation of claim 43, wherein the connectors are adapted to connect the modular carpet tiles together without attaching the tiles to an underlying surface on which the tiles are positioned.
RELATED APPLICATION DATA

This application is a continuation of U.S. patent application Ser. No. 11/018,947 filed Dec. 21, 2004, now U.S. Pat. No. 7,464,510, which claims the benefit of U.S. Provisional Application No. 60/619,340, filed Oct. 15, 2004, and is a continuation-in-part of U.S. patent application Ser. No. 10/638,878, filed Aug. 11, 2003, now abandoned, which claims the benefit of U.S. Provisional Application No. 60/403,790, filed Aug. 15, 2002, and is a continuation-in-part of U.S. patent application Ser. No. 10/381,025, now abandoned, filed Dec. 8, 2003, which is a 35 U.S.C. 371 national phase of PCT/US01/29313, filed Sep. 19, 2001, which claims the benefit of U.S. Provisional Application No. 60/233,680, filed Sep. 19, 2000, all of which applications are incorporated herein by reference in their entirety.

US Referenced Citations (140)
Number Name Date Kind
406866 Atwater Jul 1889 A
1685362 Joseph Sep 1928 A
1711149 Joseph Apr 1929 A
2250669 Jamgotchian Jul 1941 A
2367536 Spitzli Jan 1945 A
2522114 Reinhard May 1949 A
2647850 Reinhard Aug 1953 A
2702919 Judge Mar 1955 A
2709826 Reinhard Jun 1955 A
2726419 Saks et al. Dec 1955 A
3083393 Nappi Apr 1963 A
3120083 Dahlberg et al. Feb 1964 A
3241662 Robinson et al. Mar 1966 A
3271217 Mapson Sep 1966 A
3494006 Brumlik Feb 1970 A
3538536 Pecorella Nov 1970 A
3558384 Ronning Jan 1971 A
3558385 Ronning Jan 1971 A
3558386 Ronning Jan 1971 A
3696459 Kucera et al. Oct 1972 A
3712845 Hartung Jan 1973 A
3748211 Hoopengardner Jul 1973 A
3788941 Kupits Jan 1974 A
3819773 Pears Jun 1974 A
3858269 Sutton et al. Jan 1975 A
3928690 Settineri et al. Dec 1975 A
2969564 Carder Jul 1976 A
3969564 Carder Jul 1976 A
4012544 Richards Mar 1977 A
4114346 Kelly Sep 1978 A
4152473 Layman May 1979 A
4196254 Puskadi Apr 1980 A
4242389 Howell Dec 1980 A
4322516 Wiest et al. Mar 1982 A
4340633 Robbins, Jr. Jul 1982 A
4489115 Layman et al. Dec 1984 A
4557774 Hoopengardner Dec 1985 A
4561232 Gladden, Jr. et al. Dec 1985 A
4562938 Loder Jan 1986 A
4564546 Jones Jan 1986 A
4571363 Culbertson et al. Feb 1986 A
4680209 Zybko et al. Jul 1987 A
4695493 Friedlander et al. Sep 1987 A
4702948 Sieber-Gadient Oct 1987 A
4769895 Parkins Sep 1988 A
4822658 Pacione Apr 1989 A
4824498 Goodwin et al. Apr 1989 A
4920720 LaBianca May 1990 A
4947602 Pollasky Aug 1990 A
4988551 Zegler Jan 1991 A
5012590 Wagner et al. May 1991 A
5018235 Stamatiou et al. May 1991 A
5034258 Grace Jul 1991 A
5096764 Terry et al. Mar 1992 A
5114774 Maxim, Jr. May 1992 A
5116439 Raus May 1992 A
5120587 McDermott, III et al. Jun 1992 A
5191692 Pacione Mar 1993 A
5205091 Brown Apr 1993 A
5217522 Riebel et al. Jun 1993 A
5217552 Miyajima et al. Jun 1993 A
5304410 Webster Apr 1994 A
5401547 Blackwell et al. Mar 1995 A
5422156 Billarant Jun 1995 A
5438809 Ehrlich Aug 1995 A
5447004 Vrnak Sep 1995 A
5522187 Bogaerts Jun 1996 A
5564251 Van Bers Oct 1996 A
5609933 Stepanek Mar 1997 A
5634309 Polen Jun 1997 A
5672404 Callahan, Jr. et al. Sep 1997 A
5683780 Rodger et al. Nov 1997 A
5691027 Eckhardt et al. Nov 1997 A
5706623 Brown Jan 1998 A
5822828 Berard et al. Oct 1998 A
5834081 Fanti Nov 1998 A
5863632 Bisker Jan 1999 A
5888335 Kobe et al. Mar 1999 A
5931354 Braud et al. Aug 1999 A
5958540 Berard et al. Sep 1999 A
5995884 Allen Nov 1999 A
6068904 Stearns May 2000 A
6083596 Pacione Jul 2000 A
6093469 Callas Jul 2000 A
6253526 Murphy et al. Jul 2001 B1
6260326 Muller-Hartburg Jul 2001 B1
6306477 Pacione Oct 2001 B1
6333073 Nelson et al. Dec 2001 B1
6426129 Kalwara et al. Jul 2002 B1
6475594 Johnston et al. Nov 2002 B2
6599599 Buckwater et al. Jul 2003 B1
6694682 Fanti Feb 2004 B2
6701685 Rippey Mar 2004 B2
6756100 Pearson et al. Jun 2004 B2
6756102 Galo Jun 2004 B1
6803090 Castiglione et al. Oct 2004 B2
6850024 Peless et al. Feb 2005 B2
6861118 Kobayashi et al. Mar 2005 B2
6888459 Stilp May 2005 B2
6908656 Daniel Jun 2005 B2
6977579 Gilfix Dec 2005 B2
6984952 Peless et al. Jan 2006 B2
7039522 Landau May 2006 B2
7148803 Bandy Dec 2006 B2
7225980 Ku Jun 2007 B2
7242303 Patel Jul 2007 B2
7245215 Gollu Jul 2007 B2
7339523 Bye Mar 2008 B2
7464510 Scott et al. Dec 2008 B2
7672780 Kim Mar 2010 B2
7721502 Scott et al. May 2010 B2
7757457 Zah et al. Jul 2010 B2
8220221 Gray et al. Jul 2012 B2
20020140393 Peless Oct 2002 A1
20030003263 Smith Jan 2003 A1
20030071051 Martinsen Apr 2003 A1
20030180091 Stridsman Sep 2003 A1
20040095244 Conwell et al. May 2004 A1
20040185682 Foulke Sep 2004 A1
20040258870 Oakey et al. Dec 2004 A1
20050007057 Peless Jan 2005 A1
20050059308 Parsons Mar 2005 A1
20050089678 Mead Apr 2005 A1
20050099291 Landau May 2005 A1
20050099306 Gilfix et al. May 2005 A1
20050261571 Willis Nov 2005 A1
20060048797 Jung Mar 2006 A1
20060164236 Siegl Jul 2006 A1
20060261951 Koerner Nov 2006 A1
20060293794 Harwig Dec 2006 A1
20070061075 Kim Mar 2007 A1
20070069021 Elrod Mar 2007 A1
20070126634 Bye Jun 2007 A1
20080213529 Gray et al. Sep 2008 A1
20090045918 Droesler et al. Feb 2009 A1
20100024329 Gray et al. Feb 2010 A1
20100176189 Gray et al. Jul 2010 A1
20100251641 Gallagher et al. Oct 2010 A1
20110061328 Sandy et al. Mar 2011 A1
20110107720 Oakey et al. May 2011 A1
Foreign Referenced Citations (106)
Number Date Country
360217 Dec 1980 AT
2003265409 Mar 2004 AU
2008230828 Oct 2008 AU
2011200866 Mar 2011 AU
2005295322 May 2011 AU
PI 0313495-4 Jul 2005 BR
PI 0518165-8 Nov 2008 BR
1287966 Aug 1991 CA
2421763 Mar 2002 CA
2495101 Feb 2004 CA
2583532 Apr 2006 CA
2679004 Oct 2008 CA
2583532 Jul 2012 CA
2116040 Sep 1992 CN
101084350 Dec 2007 CN
ZL200580042610.7 Sep 2009 CN
101614066 Dec 2009 CN
101646737 Feb 2010 CN
1913002 Mar 1970 DE
2027415 Dec 1971 DE
2304392 Aug 1973 DE
2649644 May 1978 DE
10001551 Jul 2001 DE
20111113 Oct 2001 DE
102004007595 Sep 2005 DE
0017986 Oct 1980 EP
0044533 Jan 1982 EP
0237657 Sep 1987 EP
0239041 Sep 1987 EP
0942111 Sep 1999 EP
1313079 May 2003 EP
2129735 Dec 2009 EP
2258908 Dec 2010 EP
2258908 Dec 2010 EP
2258909 Dec 2010 EP
2258909 Dec 2010 EP
2374855 Oct 2011 EP
2374855 Oct 2011 EP
2374856 Oct 2011 EP
2374857 Oct 2011 EP
2374856 Nov 2011 EP
2374857 Nov 2011 EP
2417311 Feb 2012 EP
1239859 Aug 1960 FR
2582210 Nov 1996 FR
2903707 Jan 2008 FR
1350767 Apr 1974 GB
2113993 Sep 1983 GB
2182961 May 1987 GB
2299019 Sep 1996 GB
2342040 Apr 2000 GB
2389075 Mar 2005 GB
1114890 Apr 2010 HK
55086714 Jun 1980 JP
62010181 Jan 1987 JP
2-038152 Aug 1990 JP
5-163825 Jun 1993 JP
09209545 Aug 1997 JP
9-279106 Oct 1997 JP
09209546 Dec 1997 JP
11270115 Oct 1999 JP
2000328759 Nov 2000 JP
2004003191 Jan 2004 JP
2005-538760 Dec 2005 JP
2008-517190 May 2008 JP
2010-523841 Jul 2010 JP
2011-94478 May 2011 JP
10-2007-0068368 Jun 2007 KR
10-2010-0014594 Feb 2010 KR
PA 03002223 Jun 2003 MX
285845 Apr 2011 MX
1028881 Apr 2005 NL
9810688 Mar 1998 WO
9820330 May 1998 WO
WO-9835276 Aug 1998 WO
0047837 Aug 2000 WO
0075417 Dec 2000 WO
0225004 Mar 2002 WO
02025004 Jul 2002 WO
03060256 Jul 2003 WO
WO-2004016848 Feb 2004 WO
2004016848 May 2004 WO
WO-2005071597 Aug 2005 WO
WO-2005092632 Oct 2005 WO
2005118273 Dec 2005 WO
WO-2005112775 Dec 2005 WO
2006044928 Apr 2006 WO
WO-2006045819 May 2006 WO
2006066299 Jun 2006 WO
WO-2006065430 Jun 2006 WO
WO-2006065839 Jun 2006 WO
2006044928 Aug 2006 WO
WO-2006096431 Sep 2006 WO
WO-2006116528 Nov 2006 WO
WO-2006128783 Dec 2006 WO
WO-2007002708 Jan 2007 WO
WO-2007018523 Feb 2007 WO
WO-2007033980 Mar 2007 WO
WO-2007072389 Jun 2007 WO
WO-2007081823 Jul 2007 WO
2007098925 Sep 2007 WO
WO-2008119003 Oct 2008 WO
2008119003 Dec 2008 WO
2010118084 Oct 2010 WO
2010144897 Dec 2010 WO
2010118084 Mar 2011 WO
Non-Patent Literature Citations (152)
Entry
“JP 09 209546 A (Inax Corp.) Aug. 12, 1997”, Patent Abstracts of Japan, vol. 1997, No. 12, Dec. 25, 1997.
“JP 55 086714 A (Dantoo KK) Jun. 30, 1980”, Patent Abstracts of Japan, vol. 004, No. 128 (M-031), Sep. 9, 1980.
“PCT/US2005/037507, PCT Search Report”, May 31, 2006.
El-Zabadani, Hicham et al., “A Mobile Sensor Platform Approach to Sensing and Mapping Pervasive Spaces and Their Contents”, Mobile & Pervasive Computing Laboratory, CISE Dept., University of Florida, date unknown.
“PCT/US2008/058361, PCT Search Report”, Nov. 7, 2008.
“CN200580042610.7, Decision on Granting of Patent Right and allowed claims”, issued May 8, 2009.
“EP05812737.4, Response to Communication”, filed May 29, 2009.
“WOLFF TFV Carpet Tile Connector, WOLFF GmbH”, 1987.
European Patent Application No. 05812737.4, Office Action mailed Nov. 28, 2008.
European Patent Application No. 05812737.4, Response to Office Action filed May 29, 2009.
European Patent Application No. 05812737.4, Office Action mailed Nov. 19, 2009.
European Patent Application No. 05812737.4, Response to Office Action filed May 20, 2010.
European Patent Application No. 05812737.4, Office Action mailed Nov. 15, 2010.
Japanese Patent Application No. 2007-537027, Office Action mailed Sep. 14 2010.
Mexican Patent Application No. MX/a/2007/004405, Office Action received Oct. 27, 2010.
U.S. Appl. No. 12/573,960, Office Action mailed on Oct. 4, 2010.
European Patent Application No. 10180426.8, Extended European Search Report, mailed Nov. 17, 2010.
International Patent Application No. PCT/US2010/038471, International Search Report and Written Opinion mailed Sep. 6, 2010.
U.S. Appl. No. 11/018,947, Non Final Office Action, mailed Apr. 19, 2007.
U.S. Appl. No. 11/018,947, Non-Final Office Action mailed Nov. 28, 2007.
U.S. Appl. No. 11/018,947, Notice of Allowance mailed Aug. 13, 2008.
U.S. Appl. No. 11/251,733, Non-Final Office Action mailed Aug. 31, 2009.
U.S. Appl. No. 11/251,733, Notice of Allowance mailed Jan. 11, 2010.
U.S. Appl. No. 12/056,916, Notice of Allowance mailed Apr. 26, 2010.
U.S. Appl. No. 12/702,509, Office Action mailed Apr. 26, 2010.
U.S. Appl. No. 12/702,509, Final Office Action mailed Aug. 17, 2010.
“Office Action Mailed Aug. 9, 2011”, Japanese patent Application No. 2007-537027.
“Request for Inter Partes Reexamination”, Control No. 95/001,725 (Patent No. 7,464,510).
“Request for Inter Partes Reexamination”, Control No. 95/001,726 (Patent No. 7,721,502).
PCT/US2010/030170, International Preliminary Report on Patentability, Mailing date—Oct. 20, 2011.
“EP Communication Pursuant to Rule 69 EPC and Request to Correct Deficiencies”, EP Application 111720314, 2 pages, Nov. 14, 2011.
“EP Communication Rule 161(1) and 162 EPC”, EP Application No. 107147282, 2 pages, Dec. 1, 2011.
“EP Extended European Search Report”, EP Application No. 11172031.4, 3 pages, Oct. 10, 2011.
“EP Extended European Search Report”, EP Application No. 11172028.0, 3 pages, Sep. 29, 2011.
“EP Extended European Search Report”, EP Application No. 11172023.1, 6 pages, Sep. 27, 2011.
“EP Office Action”, EP Appln No. 101804938, 7 pages, Nov. 10, 2011.
“EP Rule 161(1) and 162 EPC Communication”, EPO Application No. 107147282, 2 pages, Dec. 1, 2011.
“EP Summons to Attend Oral Proceedings”, EP Application No. 058127374, 4 pages, Nov. 15, 2011.
“EPO Office Action”, EP Application No. 10180426.8, 4 pages, Sep. 7, 2011.
“Office Action”, U.S. Appl. No. 95/001,726, 32 pages, Nov. 10, 2011.
“Office Action”, U.S. Appl. No. 95/001,725, 46 pages, Nov. 10, 2011.
“Office Action”, U.S. Appl. No. 12/573,960, 9 pages, Nov. 17, 2011, Nov. 17, 2011.
“Office Action (No Translation Available)”, China Patent Application No. 200910164633.5, 5 pages, Oct. 19, 2011.
Amendment and Response to Apr. 19, 2007 Office Action, U.S. Appl. No. 11/018,947, Jul. 19, 2007, 11 pages.
Breaking New Ground in Flooring, TacFast systems international website, www.tacfastsystems.com, downloaded on, Mar. 3, 2004, 1 page.
Carpet Bargains, http://web.archive.org/web/19990827025011/carpetbargains.com/index.htm, Retrieved 2006 Apr. 10, 2006, 2 pages.
Communication Pursuant to Article 94(3) EPC, EP Application No. 10180426.8, Sep. 7, 2011, 4 pages.
Communication Pursuant to Article 94(3) EPC, EP Application No. 08744428.7, Jan. 13, 2011, 5 pages.
Communication Pursuant to Article 96(2) EPC, EP Application No. 01977126.0, Oct. 30, 2006, 3 pages.
Communication Pursuant to Rule 69 EPC and Invitation Pursuant to Rule 70a(1) EPC, EP Application No. 10180426.8, Dec. 20, 2010, 2 pages.
Communication Pursuant to Rule 69 EPC and Invitation Pursuant to Rule 70a(1)EPC, EP Application No. 11172028.0, Nov. 7, 2011, 2 pages.
Commuincation Pursuant to Rule 69 EPC and Rule 70a(1)EPC, EP Application No. 11172023.1, Oct. 31, 2011, 2 pages.
Communication Pursuant to Rules 109 and 110 EPC, EP Application No. 03788382.4, Apr. 25, 2005, 2 pages.
Communication Pursuant to Rules 109 and 110 EPC, EP Application No. 01977126.0, May 9, 2003, 2 pages.
Communication Pursuant to Rules 161 and 162 EPC, EP Application No. 08744428.7, Nov. 3, 2009, 2 pages.
Examination, Prior Art and Voluntary Amendment, Canadian Patent Application No. 2,583,532, Jan. 17, 2008, 14 pages.
Examiner's First Report, Australian Patent Application No. 005295322, Feb. 3, 2010, 2 pages.
Extended Search Report and Written Opinion, EP Application No. 10180426.8, Nov. 17, 2010, 6 pages.
Final Office Action, U.S. Appl. No. 10/638,878, Jan. 4, 2007, 7 pages.
First Office Action, Chinese Patent Application No. 2005800426107, Aug. 15, 2008, 18 pages.
First Office Action, Chinese Patent Application No. 2009101646335, May 10, 2010, 6 pages.
International Preliminary Examination Report, PCT/US2003/025120, Dec. 28, 2004, 7 pages.
International Preliminary Report on Patentability, PCT/US2005/037507, Apr. 17, 2007, 13 pages.
International Preliminary Report on Patentability, PCT/US2005/018587, Nov. 29, 2006, 4 pages.
International Preliminary Report on Patentability with Written Opinion, PCT/US2010/038471, Dec. 12, 2011, 7 pages.
International Search Report, PCT/US2003/025120, Apr. 5, 2004, 3 pages.
International Search Report, PCT/US2005/18587, Sep. 9, 2005, 3 pages.
International Search Report, PCT/US2001/29313, Apr. 8, 2002, 4 pages [best available copy].
Invitation to Pay Additional Fees, PCT/US2005/037507, Mar. 2, 2006, 9 pages.
Merchandising. Merriam-Webster Online Dictionary, http://webster.com/dictionary/merchandising, retrieved Apr. 10, 2006, 2 pages.
Notice of Acceptance, Australian Patent Application No. 2005295322, Nov. 23, 2010, 3 pages.
Notice of Allowance, Canadian Patent Application No. 2,583,532, Nov. 18, 2011, 1 page.
Notice of Allowance, Mexican Patent Application No., MX/a/2007/004405, Feb. 24, 2011, 1 page [no translation available].
Office Action, Japanese Patent Application No. 2007537027, Sep. 14, 2010, 10 pages.
Office Action, U.S. Appl. No. 12/573,960, Mar. 7, 2011, 10 pages.
Office Action, Mexican Patent Application No. MX/a/2007/004405, Oct. 6, 2010, 3 pages [no translation available].
Office Action, Canadian Patent Application No. 2,583,532, Apr. 8, 2010, 3 pages.
Office Action, Canadian Patent Application No. 2,583,532, May 13, 2009, 3 pages.
Office Action, U.S. Appl. No. 10/638,878, Apr. 27, 2006, 5 pages.
Office Action, U.S. Appl. No. 10/381,025, Jan. 24, 2007, 8 pages.
Patent Owner's Response to Office Action in Inter Partes Reexamination with Exhibits A—J3, U.S. Reexamination Control No. 95/001,726, Mar. 9, 2012, 270 pages.
Patent Owner's Response to Office Action in Inter Partes Reexamination with Exhibits A—J3, U.S. Reexamination Control No. 95/001,725, Mar. 9, 2012, 280 pages.
Petition Under 37 C.F.R. § 1.91(a)(3) to Admit Non-Conforming Exhibits in an Inter Partes Reexamination, U.S. Reexamination Control No. 95/001,725, Mar. 9, 2012, 6 pages.
Petition Under 37 C.F.R. § 1.91(a)(3) to Admit Non-Conforming Exhibits in an Inter Partes Reexamination, U.S. Reexamination Control No. 95/001,726, Mar. 9, 2012, 6 pages.
Communication Proceeding Pursuant to Article 96(1) and Rule 51 (1) EPC, EP Application No. 019771260, Jun. 8, 2006, 3 pages.
Response to Aug. 15, 2008 First Office Action, Chinese Patent Application No. 2005800426107, Feb. 26, 2009, 27 pages [translation of claims only].
Response to Apr. 16, 2010 Office Action, U.S. Appl. No. 12/702,509, Jun. 9, 2010, 4 pages.
Response to Apr. 25, 2005 Rule 109 Communication, EP Application No. 03788382.4, May 24, 2005, 9 pages.
Response to Apr. 27, 2006 Office Action, U.S. Appl. No. 10/638,878, Oct. 24, 2006, 7 pages.
Response to Apr. 5, 2011 Office Action, Canadian Patent Application No. 2,583,532, Sep. 29, 2011, 8 pages.
Response to Apr. 8, 2010 Office Action, Canadian Patent Application No. 2,583,532, Oct. 7, 2010, 14 pages.
Response to Aug. 31, 2009 Office Action, U.S. Appl. No. 11/251,733, Oct. 22, 2009, 9 pages.
Response to Aug. 9, 2011 Office Action, Japanese Patent Application No. 2007-537027, Dec. 9, 2011, 9 pages.
Response to Feb. 3, 2010 Examiner's First Report, Australian Patent Application No. 20050295322, Nov. 9, 2010, 17 pages.
Response to Aug. 17, 2010 Final Office Action, U.S. Appl. No. 12/702,509, Dec. 17, 2010, 5 pages.
Response to Mar. 7, 2011 Office Action, U.S. Appl. No. 12/573,960, Aug. 11, 2011, 11 pages.
Response to May 10, 2010 First Office Action, Chinese Patent Application Serial No. 2009101646335, Jul. 20, 2010, 9 pages [translation of claims only].
Response to May 13, 2009 Office Action, Canadian Patent Application No. 2,583,532, Nov. 13, 2009, 18 pages.
Response to May 25, 2011 Third Office Action, Chinese Patent Application Serial No. 2009101646335, Aug. 9, 2011, 12 pages [translation of claims only].
Response to May 9, 2003 Communication Pursuant to Rules 109 and 110 EPC, EP Application No. 019771260, Jun. 6, 2003, 5 pages.
Response to Nov. 15, 2010 Communication Pursuant to Article 94(3) EPC, EP Application No. 05812737.4, May 13, 2011, 12 pages.
Response to Nov. 15, 2010 Extended European Search Report Pursuant to Rule 62 EPC, EP Application No. 10180493.8, Jun. 15, 2011, 55 pages.
Response to Nov. 17, 2010 Communication Pursuant to Rule 62 EPC, EP Application No. 101804268, Jun. 15, 2011, 54 pages.
Response to Nov. 28, 2007 Office Action, U.S. Appl. No. 11/018,947, Mar. 28, 2008, 15 pages.
Response to Oct. 4, 2010 Office Action, U.S. Appl. No. 12/573,960, Nov. 15, 2010, 9 pages.
Response to Oct. 6, 2010 Office Action, Mexican Patent Application No. MX/a/2007/004405, Dec. 9, 2010, 9 pages.
Response to Sep. 14, 2010 Office Action, Japanese Patent Application No. 2007537027, Jan. 14, 2011, 8 pages [no translation available].
Response to Sep. 29, 2009 Communication Pursuant to Rule 161 EPC, EP Application No. 08744428.7, Dec. 11, 2009, 6 pages.
Response to Sep. 9, 2010 Second Office Action, Chinese Patent Application No. 2009101646335, Oct. 14, 2010, 9 pages [translation of claims only].
Second Office Action, Chinese Patent Application No. 2009101646335, Sep. 9, 2010, 8 pages.
Supplemental Petition Under 37 C.F.R. § 1.183 to Exceed the Page Limit for Patent Owner's Response in an Inter Partes Reexamination, U.S. Reexamination Control No. 95/001,725, Mar. 9, 2012, 4 pages.
Supplemental Petition Under 37 C.F.R. § 1.183 to Exceed the Page Limit for Patent Owner's Response in an Inter Partes Reexamination, U.S. Reexamination Control No. 95/001,726, Mar. 9, 2012, 4 pages.
Supplementary European Search Report, EP Application No. 01977126.0, May 18, 2006, 3 pages.
Third Office Action, Canadian Patent Application No. 2,583,532, Apr. 5, 2011, 2 pages.
Third Office Action, Chinese Patent Application No. 2009101646335, May 25, 2011, 5 pages [no translation available].
Voluntary Amendment, Brazilian Patent Application No. PI0313495-4, Feb. 23, 2006, 16 pages [no translation available].
Voluntary Amendment, Australian Patent Application No. 2003265409, Apr. 11, 2005, 20 pages.
Voluntary Amendment, Korean Patent Application No. 1020077008403, Oct. 15, 2010, 44 pages [translation of claims only].
Voluntary Amendment, Japanese Patent Application No. 2004-529303, Aug. 3, 2005, 5 pages [no translation available].
Voluntary Amendment, Canadian Patent Application No. 2,495,101, Feb. 9, 2005, 6 pages.
Voluntary Amendment, Chinese Patent Application No. 2005800426107, Oct. 12, 2007, 9 pages [no translation available].
Voluntary Amendment, Brazilian Patent Application No. PI0518165-8, Oct. 17, 2008, 90 pages [no translation available].
Wolff TFV Carpet Tile Connector, Wolff GmbH, Wolff TFV Carpet Tile Connector, Wolff GmbH, 1987, 2 pages.
Written Opinion, PCT/US2005/018587, Sep. 9, 2005, 3 pages.
Written Opinion, PCT/US2003/025120, Oct. 8, 2004, 6 pages.
International Search Report and Written Opinion, PCT/US2005/037507, May 31, 2006, 19 pages.
International Preliminary Report on Patentabilty, PCT/US2008/058361, Nov. 8, 2009, 11 pages.
International Search Report and Written Opinion, PCT/US2010/030170, Jan. 5, 2011, 17 pages.
Response to Oct. 19, 2011 Fourth Office Action, Chinese Patent Application Serial No. 2009101646335, Mar. 5, 2012, 16 pages [translation of claims only].
Final Office Action, U.S. Appl. No. 12/573,960, Mar. 15, 2012, 10 pages.
Response to Sep. 7, 2011 Communication Pursuant to Article 94(3) EPC, EP Application No. 10180426.8, Mar. 7, 2012, 21 pages.
Communication Pursuant to Rules 109 and 110 EPC, EP Application No. 05812737.4, May 25, 2007, 2 pages.
Notice of Publication of the Registration and Grant of a Standard Patent, Hong Kong Application No. 08104813.9, Apr. 1, 2010, 1 page.
Notice of Allowance with Examiner's Amendment, U.S. Appl. No. 12/702,509, Mar. 19, 2012, 8 pages.
Decision to Grant Patent, Japanese Patent Application No. 2007537027, Feb. 7, 2012, 6 pages.
Amendment to Response to Sep. 7, 2011 Communication Pursuant to Article 94(3) EPC, EP Application No. 10180426.8, Mar. 19, 2012, 57 pages.
Comments of Requester, Tandus Flooring, Inc., U.S. Reexamination Control No. 95/001,726, Apr. 6, 2012, 37 pages.
Comments of Requester, Tandus Flooring, Inc., U.S. Reexamintaion Control No. 95/001,725, Apr. 6, 2012, 37 pages.
Communication Regarding Summons to Attend Oral Proceedings, EP Application No. 05812737.4, Mar. 26, 2012, 2 Pages.
Response to Communication Pursuant to Rule 62 EPC and Request for Examination, EP Application No. 11172028.0, Mar. 29, 2012, 102 pages.
Response to Communication Pursuant to Rule 62 EPC and Request for Examination, EP Application No. 11172031.4, Mar. 29, 2012, 152 pages.
Fifth Office Action, Chinese Patent Application No. 2009101646335, Mar. 27, 2012, 6 pages [partial translation].
Response to Dec. 1, 2011 Rule 161(1) EPC and 162 EPC Communication, European Patent Application No. 10714728.2, Jun. 11, 2012, 17 pages.
Communication Pursuant to Article 94(3) EPC, European Patent Application No. 11172028.0, Jun. 14, 2012, 4 pages.
Communication Pursuant to Article 94(3) EPC, European Patent Application No. 11172031.4, Jun. 25, 2012, 4 pages.
Response to Mar. 27, 2012 First Office Action, Chinese Patent Application No., 200880010206.5, Aug. 10, 2012, 20 pages [translation of claims only] [best available copy].
Action Closing Prosecution, U.S. Reexamination Control No. 95/001,726, Aug. 28, 2012, 57 pages.
Action Closing Prosecution, U.S. Reexamination Control No. 95/001,725, Apr. 6, 2012, 56 pages.
Response to Mar. 27, 2012 Fifth Office Action, Chinese Patent Application No. 2009101646335, Jun. 11, 2012, 8 pages [translation of claims only].
Response to Final Office Action Accompanying Request for Continued Examination, U.S. Appl. No. 12/573,960, Jun. 15, 2012, 9 pages.
Action Closing Prosecution, U.S. Appl. No. 95/001,726, Aug. 28, 2012, 57 pages.
Action Closing Prosecution, U.S. Reexamination Control No. 95/001,725, Aug. 28, 2012, 56 pages.
Related Publications (1)
Number Date Country
20090094919 A1 Apr 2009 US
Provisional Applications (3)
Number Date Country
60619340 Oct 2004 US
60403790 Aug 2002 US
60233680 Sep 2000 US
Continuations (1)
Number Date Country
Parent 11018947 Dec 2004 US
Child 12270129 US
Continuation in Parts (2)
Number Date Country
Parent 10381025 US
Child 11018947 US
Parent 10381025 US
Child 10381025 US