The present disclosure relates generally to digital communications, and more particularly to a system and method for full-duplex operation in a wireless communications system.
Full-duplex is being considered as a radio access technology for Fifth Generation (5G) and beyond wireless communication systems. In full-duplex operation, a device simultaneously transmits and receives on the same channel. A significant challenge in a full-duplex communications system is interference at a device's receiver(s), where the interference comes directly from a transmitter(s) of the device. Such interference may be referred to as self-interference. As an example, for a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) base station transceiver, the self-interference may be as much as 120 dB higher than the sensitivity level of the receiver(s) of the 3GPP LTE base station transceiver.
Therefore, there is a need for a frame structure for 3GPP LTE wireless communications systems, such as time division duplexed (TDD) wireless communications systems, that requires minimal changes to existing technical standards, and maintains compatibility with legacy hardware.
Example embodiments of the present disclosure which provide a system and method for full-duplex operation in a wireless communications system.
In accordance with an example embodiment of the present disclosure, a method for operating a first device is provided. The method includes scheduling, by the first device, a first flexible allocation resource of a frame as a first resource for a second device served by the first device, scheduling, by the first device, a second flexible allocation resource of the frame as a second resource for a third device served by the first device, and generating, by the first device, the frame including the flexible allocation resources and a first half-duplex training period configured to convey a first training signal, where the first half-duplex training period and the first training signal facilitate an estimation of a channel impulse response (CIR) of a communications channel between a transmit antenna of the first device and a receive antenna of the first device. The method also includes transmitting, by the first device, the frame, and simultaneously receiving, by the first device, the frame.
In accordance with another example embodiment of the present disclosure, a first device is provided. The first device includes a processor, a transmitter operatively coupled to the processor, and a receiver operatively coupled to the processor. The processor schedules a first flexible allocation resource of a frame as a first resource for a second device served by the first device, schedules a second flexible allocation resource of the frame as a second resource for a third device served by the first device, and generates the frame including the flexible allocation resources and a first half-duplex training period configured to convey a first training signal, where the first half-duplex training period and the first training signal facilitate an estimation of a channel impulse response (CIR) of a communications channel between a transmit antenna of the first device and a receive antenna of the first device. The transmitter transmits the frame. The receiver simultaneously receives the frame.
In accordance with another example embodiment of the present disclosure, a communications system is provided. The communications system includes a plurality of user equipments, and a full-duplex device operatively coupled to the plurality of user equipments. The full-duplex device includes a processor, and a non-transitory computer readable storage medium storing programming for execution by the processor. The programming including instructions to schedule a first flexible allocation resource of a frame as a first resource for a second device served by the first device, schedule a second flexible allocation resource of the frame as a second resource for a third device served by the first device, generate the frame including the flexible allocation resources and a first half-duplex training period configured to convey a first training signal, where the first half-duplex training period and the first training signal facilitate an estimation of a channel impulse response (CIR) of a communications channel between a transmit antenna of the first device and a receive antenna of the first device, and simultaneously transmit and receive the frame.
One advantage of an embodiment is that the example embodiments are backwards compatible with legacy devices, enabling full-duplex compatible devices and legacy devices to coexist.
A further advantage of an embodiment is that the example embodiments require small changes to existing technical standards, which will simplify acceptance and implementation.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
The operating of the current example embodiments and the structure thereof are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific structures of the disclosure and ways to operate the disclosure, and do not limit the scope of the disclosure.
One embodiment of the disclosure relates to full-duplex operation in a wireless communications system. For example, a device schedules a first flexible allocation resource of a frame as a first resource for a second device served by the first device, schedules a second flexible allocation resource of the frame as a second resource for a third device served by the first device, and generates the frame including the flexible allocation resources and a first half-duplex training period configured to convey a first training signal, where the first half-duplex training period and the first training signal facilitate an estimation of a channel impulse response (CM) of a communications channel between a transmit antenna of the first device and a receive antenna of the first device. The device also transmits the frame, and simultaneously receives the frame.
The present disclosure will be described with respect to example embodiments in a specific context, namely Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) TDD compliant communications systems that support full-duplex operations. The disclosure may be applied to standards compliant communications systems, such as those that are compliant with 3GPP LTE frequency division duplexed (FDD), IEEE 802.11, and the like, technical standards, and non-standards compliant communications systems, that support full-duplex operations.
While it is understood that communications systems may employ multiple eNBs capable of communicating with a number of UEs, only one eNB, one RN, and a number of UEs are illustrated for simplicity.
A half-duplex device is capable of only transmitting or receiving at any given time, frequency, and/or space that it is allowed to communicate. In general, half-duplex devices do not have to worry about self-interference. In other words, since receivers of a half-duplex device are not being used at the same time, frequency, and/or space as transmitters of the half-duplex device, the receivers do not have to worry about interference caused by the transmitters. A full-duplex device is capable of transmitting and receiving at any given time, frequency, and/or space that it is allowed to communicate. Full-duplex devices may have built-in mechanisms to compensate for the self-interference. A full-duplex device may also operate as a half-duplex device.
As shown in
As discussed previously, self-interference is a significant hindrance to full-duplex operation. Self-interference cancellation may be used to remove the contribution of the self-interference at the receiver of the full-duplex device.
According to an example embodiment, existing subframe configurations are reused to help maintain compatibility with legacy devices and to minimize changes to existing technical standards. Maintaining compatibility with legacy devices and minimizing changes to existing technical standards may help to simplify acceptance of full-duplex devices and minimize expenditures in implementing full-duplex communications systems.
According to an example embodiment, a full-duplex device transmits a training signal (or pilot signal) in the GP of the special subframes to allow the full-duplex device to estimate a channel impulse response (CIR) of a communications channel from the transmit antenna to the receive antenna of the full-duplex device. When the GP includes the training signal (or pilot signal), the GP may be referred to as a training period (TP). In general, the GP when capable of carrying the training signal (or pilot signal) may be referred to as a GP/TP. The GP/TP may be a half-duplex period during which the full-duplex device transmits the training signal (or pilot signal) and transmissions from other devices served by the full-duplex device are not scheduled. The CIR may be used to cancel the self-interference in the received signal. The transmission of the training signal (or pilot signal) helps to ensure that the estimated CIR is not influenced by other signals received by the receive antenna, e.g., uplink transmissions received by the receive antenna. The presence of at least one GP/TP per frame (with subframe configurations 3, 4, and 5, while configurations 0, 1, 2, and 6 have two GP/TP per frame) allows the full-duplex device to regularly perform CIR estimation to help ensure that it is able to maintain an accurate estimate of the self-interference. Examples of training signal (or pilot signal) that may be used for CIR estimation are discussed in detail in co-assigned patent application entitled “System and Method for Training Signals for Full-Duplex Communications Systems”, attorney docket number HW 91018007US01, which is here incorporated herein by reference.
Remaining subframes of full-duplex subframe structure 450 may be utilized in a flexible (F) manner, meaning that each subframe may be used for downlink transmissions and/or uplink transmissions. In other words, one or more uplink transmissions and/or one or more downlink transmissions may be scheduled for each subframe. The scheduling for the subframes that may be used in a flexible manner may be optimized based on a number of criterion (criteria), such as maximum capacity, interference constraints, and the like. From a UE's perspective, the UE may need to be able to prepare an uplink transmission or a downlink reception based on scheduling assignments received on a control channel or higher layer signaling (such as radio resource control (RRC) signaling).
According to an example embodiment, a full-duplex device generates a special subframe including a half-duplex pilot signal in the GP/TP of the special subframe and transmits the special subframe.
Operations 500 may begin with the full-duplex device scheduling transmission opportunities (both downlink and uplink transmissions) (block 505). The full-duplex device may schedule downlink transmissions to UEs as well as uplink transmissions for UEs on the same or different subframe and frequency band. If the full-duplex device is scheduling transmissions for legacy UEs, the full-duplex device may follow subframe configurations compatible with the legacy UEs, such as the 3GPP LTE TDD subframe configurations discussed previously and upon which the full-duplex subframes are based. If the full-duplex device is scheduling transmissions for full-duplex UEs and/or full-duplex aware UEs, the full-duplex device may follow the flexible subframe configurations compatible with the full-duplex UEs and/or the full-duplex aware UEs.
The full-duplex device may generate a frame in accordance with the schedule transmission opportunities (block 510). The frame may include a GP/TP that comprises a training signal (or equivalently, pilot signal) to help the full-duplex device perform CIR estimation for self-interference cancellation purposes. The frame may follow the format of example frames discussed herein. Alternatively, the frame may follow the format of other frames not discussed herein as long as the frame includes a training period that may be allocated in a manner similar to or different from the GP/TP in the 3GPP LTE TDD example presented herein. The full-duplex device may transmit and receive the frame (block 515).
According to an example embodiment, it is possible to extend the length of the training signal (or pilot signal) to be longer than a GP/TP portion(s) that is limited due to restrictions imposed by the special frame configurations and the minimization of overhead of full-duplex operation. Since the training signal (or pilot signal) is transmitted by the full-duplex device, it may be possible to schedule and use a subset of portions of a special subframe dedicated for downlink transmissions to also carry the training signal (or pilot signal). The overhead of full-duplex is increased in this case due to the additional use of the system resources (a portion of the downlink portion of the special subframe(s)). More generally, any portion of the system resource (e.g., uplink and/or downlink) may be reserved and used for a training period transmitting pilot signal for full-duplex operations. It is noted that the portion of the special subframe dedicated for downlink transmission may be used for downlink transmissions when the special subframe is being used for legacy UE communications, while when full-duplex UE and/or full-duplex aware UE is available and requests for communications, the portion of the special subframe may be configured for flexible (F) communications.
Operations 900 may begin with the device transmitting a training signal for full-duplex CIR estimation (block 905). The half-duplex training signal may be transmitted in packets as described in the example embodiments presented herein. As an illustrative example, the training signal may be transmitted in GP/TP portions of special subframes of packets. As another illustrative example, the training signal may be transmitted in parts of downlink portions of special subframes of packets, as well as in GP/TP portions of the special subframes. The device may measure self-interference in accordance with the training signal, as well as estimate CIR (block 910). The device may send and/or receive (block 915). The device may cancel interference present in the received signals by using the estimated CIR (block 920).
A training signal generating unit 1020 is configured to generate training signals used in CIR estimation. A frame generating unit 1022 is configured to generate frames and subframes, such as full-duplex frames and subframes, as discussed herein. Frame generating unit 10222 is configured to place signals, such as training signals, as well as signals transmitted by communications device 1000, in the frames and subframes. A measuring/estimating unit 1024 is configured to measure self-interference in accordance with the training signals transmitted by communications device 1000. Measuring/estimating unit 1024 is configured to use the measurements of the training signals to estimate CIR. An interference cancelling unit 1026 is configured to cancel self-interference in received signals from transmissions made by communications device 1000 using the estimated CIR. Interference in received signals from transmissions made by other communications devices may be canceled or suppressed by other conventional units, such as a modulator, a demodulator, an encoder and a decoder (not shown in
The elements of communications device 1000 may be implemented as specific hardware logic blocks. In an alternative, the elements of communications device 1000 may be implemented as software executing in a processor, controller, application specific integrated circuit, or so on. In yet another alternative, the elements of communications device 1000 may be implemented as a combination of software and/or hardware.
As an example, receiver 1010 and transmitter 1005 may be implemented as a specific hardware block, while training signal generating unit 1015, frame generating unit 1022, measuring/estimating unit 1024, and interference cancelling unit 1026 may be software modules executing in a microprocessor (such as processor 1015) or a custom circuit or a custom compiled logic array of a field programmable logic array. Training signal generating unit 1015, frame generating unit 1022, measuring/estimating unit 1024, and interference cancelling unit 1026 may be modules stored in memory 1030.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims.
This application is related to the following co-assigned patent application: Ser. No. 14/617,598, filed Feb. 9, 2015, attorney docket number HW 91018007US01, entitled “System and Method for Training Signals for Full-Duplex Communications Systems,” which application is hereby incorporated herein by reference.