This patent specification pertains to x-ray mammography and tomosynthesis, and more specifically to techniques and equipment for acquiring and/or synthesizing, processing, storing and displaying mammograms, tomosynthesis projection images, synthesized two-dimensional (2D) images and/or tomosynthesis reconstructed images, and to medical image softcopy reading systems, to hanging protocols and to other medical image display features.
Mammography has long been used to screen for breast cancer and other abnormalities and for diagnostics. Traditionally, mammograms were formed on X-ray film, but more recently flat panel digital imagers have been introduced that acquire a mammogram in digital form and thereby facilitate analysis and storage and provide other benefits as well. Further, substantial attention and technological development has been dedicated towards obtaining a three-dimensional image of the breast, using methods such as breast tomosynthesis. In contrast to the 2D images generated by legacy mammography systems, breast tomosynthesis systems construct a 3D image volume from a series of 2D projection images, each projection image obtained at a different angular displacement of the x-ray source relative to the image detector as the x-ray source is scanned over the detector. The constructed 3D image volume is typically presented as a plurality of slabs or slices of image data, the slabs geometrically reconstructed on planes parallel to the imaging detector. The reconstructed tomosynthesis slices reduce or eliminate the problems caused by tissue overlap and structure noise in single slice two-dimensional mammography imaging by permitting a radiologist to scroll through the slabs and view underlying structures.
Tomosynthesis systems have recently approved for breast cancer screening and diagnosis.
The assignee of this patent specification, Hologic, Inc., has demonstrated at trade shows in this country a fused, multimode mammography/tomosynthesis system that takes either or both types of mammogram and tomosynthesis images, either while the breast remains immobilized or in different compressions of the breast. Other companies have proposed the introduction of systems which are dedicated to tomosynthesis imaging, i.e., which do not include the ability to also acquire a mammogram.
Restricting systems to tomosynthesis acquisition and image display may present an obstacle to acceptance of the tomosynthesis imaging technology, as medical professionals have grown accustomed to screening and analysis of mammogram images. Mammograms offer good visualization of micro-calcifications, and can offer higher spatial resolution when compared with tomosynthesis images. While tomosynthesis images provided by dedicated breast tomosynthesis systems in the art have other desirable characteristics (i.e., better visualization of structures), such systems do not leverage the existing interpretation expertise of medical professionals.
One method of leveraging existing medical expertise to facilitate the transition to tomosynthesis technology was described in U.S. Pat. No. 7,760,924, entitled “System and Method for Generating a 2D Image from a Tomosynthesis Data Set.” The '924 patent describes a method of generating a synthesized 2D image which may be displayed along with tomosynthesis projection or reconstructed images, to assist in screening and diagnosis.
According to one aspect of the invention, it is realized that an improved synthesized 2D image may be obtained by merging the most relevant data from a plurality of data sources. In one embodiment, the merging is performed using a combination of 2D and 3D image data, wherein the 2D image may include either an acquired mammogram, a synthesized mammogram, or a tomosynthesis projection image, and the 3D image data may comprises a reconstructed 3D data set. In an alternate embodiment, the merged data is formed using 3D projection images and/or reconstruction images. The improved synthesized image, referred to herein as a ‘merged’ image IMERGE, incorporates the most relevant information from all acquired and computer generated data sets into one ‘supreme’ 2D image for display on a workstation. Thus, regions of pixels in the displayed merged image may be sourced by different images in a data set including but not limited to one or more of an acquired 2D image (mammogram or tomosynthesis projection image), a synthesized 2D image, or a reconstructed tomosynthesis slice or slab. The particular regions may be identified statically (i.e., within a particular grid), or dynamically, and may range in granularity from one pixel to all pixels in the image. With such an arrangement, the radiologist may quickly view a large number of regions of interest within a breast while referencing only a single 2D image, thereby increasing the performance and efficiency of breast cancer screening and diagnosis.
According to a further aspect of the invention, a map is automatically generated for each region in the merged image, identifying the particular image that sourced the region in the merged image. An interface feature may be provided that enables the origin source image to be displayed when the region is selected by the user. The origin source image may be displayed in a variety of manners, e.g., overlaid over the merged image to allow toggling between the two images or display using cine mode, or displayed adjacent to the merged image, etc.
According to a further aspect of the invention, it is determined that particular types of images may include different types of relevant information. For example, calcifications are best visualized in 2D mammograms, while masses are best visualized using 3D reconstructed images. In one embodiment, different filters are applied to each of the different types of images (i.e., 2D and 3D), where the filters are selected to highlight the particular characteristics of the images which are best displayed in the respective imaging mode. Appropriate filtering of the respective types of images prior to the merge ensures that the final merged image includes the most relevant information that can be obtained from all image types. Alternatively, the type of filtering that is performed for the various images may be defined via user input, which permits a user to select a ‘merge mode’, for example, geared towards highlighting masses, calcifications, or making the merged image appear to be a particular image type, such as a 3D reconstructed slice, or a 2D mammogram.
Merging of the images may be done in a variety of ways. According to one embodiment, general purpose Computer Assisted Diagnosis (CAD) algorithms are used to identify features within each of the 2D and 3D images. The various features are assigned weights, and the merged image is built by selecting the image having the region with the most significant weight. The size of the region may vary in granularity from one pixel to many (or even all) pixels, and may be statically pre-defined, or may have margins which vary in accordance with the varying thresholds of the source images.
In accordance with a further aspect of the invention, it is envisioned that the merged image may be pre-processed and stored following tomosynthesis acquisition, or dynamically generated in response to a request for a merged image at a radiologist work station.
It is realized that the visualization of such a merged image may have some drawbacks. For example, there may be neighboring regions in the merged image which exhibit bright calcifications but in fact are sourced from image slices which are distant from one another in the z-plane. Therefore, what may appear to as a mass of calcifications in the merged image may, in fact, be calcifications which are distributed throughout the breast and thus do not actually represent a calc cluster that requires further review. According to a further aspect of the invention, this problem is overcome by the inclusion of a cluster spread indicator. The cluster spread indicator is a graphical indicator provided with the merged image, and visually indicates the distribution of calcifications along the z-plane, allowing the medical professional to quickly assess whether a group of calcifications comprise a calcification cluster.
One aspect of the invention includes a method including the steps of obtaining a plurality of images, each of the images in the plurality having at least one corresponding region, generating a merged image, the merged image also having the corresponding region, the step of generating including: selecting an image source from the plurality of images to source image data for the corresponding region in the merged image by comparing attributes of the corresponding regions of the plurality of images to identify the image source having preferred attributes.
The foregoing aspect can include any one or more of the following embodiments. The preferred attributes includes attributes indicative of regions of interest, such as cancers, or alternatively such as more accurate representation of breast density or breast anatomy (e.g. truthful breast-border/nipple appearance). In general, any attribute capable of delivering a high/better-quality image can be relevant here. The method can further include filtering the plurality of images to magnify attributes of the plurality of images. The filtering can apply different filters to images of different types. The method can further include visually indicating a distribution of the preferred attributes in the corresponding region by providing a histogram to illustrate a depth of the preferred attributes. The plurality of images can comprise a 2D image and a 3D image. The plurality of images can be selected from a group consisting of tomosynthesis projection images, reconstructed tomosynthesis slices, mammograms, and synthesized two dimensional images. The method can further include generating a map for a region in the merged image, whereby the map identifies at least one of the plurality of images that sourced the region in the merged image. The method can further include displaying the at least one of the plurality of images that sourced the region when the region is selected by a user. The at least one of the plurality of images that sourced the region can overlay the merged image such that a user can view both types of images at the same time or by toggling between the types.
According to another aspect of the invention, a display workstation comprises an interface, the interface including a mechanism which, upon selection, results in the generation and/or display of a merged image, the merged image comprising a two dimensional synthesized image comprising a plurality of regions, wherein at least two of the regions are sourced by different images selected from a group of images, and wherein the group of images include tomosynthesis projection images, tomosynthesis reconstruction slices, mammograms and synthesized 2D images.
The foregoing aspect can include any one or more of the following embodiments. The interface can further include a mode selection mechanism enabling a user to select a mode of either generation or display of the merged image. The interface can further include a mechanism for selecting a region of the merged image and a mechanism for displaying three-dimensional information related to the selected region on a display station. Additionally or alternatively, the generation of the merged display does not take place at the workstation, but can happen in another part of the system. The interface can display a map for at least one of the plurality of regions in the merged image such that a user can select at least one of the plurality of regions to display one of the group of images that sourced the at least one of the plurality of regions. The interface can allow a user to view both of or toggle between the merged image and the one of the group of images that sourced the at least one of the plurality of regions. The interface can provide a graphical indicator along with a display of the merged image such that the graphical indicator illustrates a depth of attributes within the regions. The interface can display simultaneously, sequentially, or in toggle mode two or more of the merged image, the tomosynthesis projection image, the tomosynthesis reconstruction slice, the mammogram and the synthesized 2D image.
The present invention can include any one or more of the foregoing aspects and/or embodiments, in any combination, and can include any one or more of any of the details described herein.
These and other aspects of the invention will be described in more detail with regard to the below figures.
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner.
The following abbreviations shall have the following definitions throughout this application. The notation Mp refers to a conventional mammogram, which is a two-dimensional projection image of a breast and encompasses both a digital image as acquired by a flat panel detector or another imaging device and the image after conventional processing to prepare it for display to a health professional or for storage, e.g. in the PACS system of a hospital or another institution.
Tp refers to an image that is similarly two-dimensional but is taken at a respective tomosynthesis angle between the breast and the origin of the imaging X-rays (typically the focal spot of an X-ray tube), and also encompasses the image as acquired as well as the image after being processed for display or for some other use. Tr refers to an image that is reconstructed from images Tp, for example in the manner described in said earlier-filed patent applications, and represents a slice of the breast as it would appear in a projection X-ray image of that slice at any desired angle, not only at an angle used for Tp or Mp images.
The term Ms refers to synthesized 2D projection images which simulate mammography images, such as a craniocaudal (CC) or mediolateral oblique (MLO) images, and are constructed using tomosynthesis projection images Tp, tomosynthesis reconstructed images Tr or a combination thereof. Ms images may be provided for display to a health professional or for storage in the PACS system of a hospital or another institution. An example of methods that may be used to generate synthesized 2D projection images are described in U.S. patent application Ser. No. 12/471,981, filed May 26, 2009, as well as U.S. Pat. No. 7,760,924, filed Nov. 21, 2008, both incorporated herein by reference in their entireties.
The term IMERGE refers to a 2D image generated by merging together any two or more of Mp, Ms, Tp or Tr images.
The terms IMERGE, Tp, Tr, Ms and Mp also encompasses information, in whatever form, that is sufficient to describe such an image for display, further processing, or storage. The images IMERGE, Mp, Ms, Tp and Tr typically are in digital form before being displayed, and are defined by information identifying properties of each pixel in a two-dimensional array of pixels. The pixel values typically relate to respective measured or estimated or computed responses to X-rays of corresponding volumes in the breast (voxels or columns of tissue). In a preferred embodiment, the geometry of the tomosynthesis images (Tr and Tp), mammography images (Ms, Mp) and the merged image IMERGE are matched to a common coordinate system as described in U.S. patent application Ser. No. 11/667,650 “Matching Geometry Generation and Display of Mammograms and Tomosynthesis Images”, filed Nov. 15, 2005 and incorporated herein by reference.
Following tomosynthesis image acquisition, the projection images Tp are sent to storage device 2, which is preferably a DICOM-compliant PACS. When images are needed for display 5, the Tp images are sent (from either acquisition system 1 or from storage device 2) to a computer system 3 configured as a reconstruction engine that reconstructs the Tp images into reconstructed image slabs Tr representing breast slices of selected thickness and at selected orientations, as disclosed in said earlier-filed patent applications and detailed below. The computer system may be further configured with 2D synthesis functionality 4, which may operate substantially in parallel with reconstruction engine 3 to generate a synthesized 2D image (interchangeably referenced as T2d or Ms). The reconstructed slice images Tr are then sent to a display system 5 so that they can be viewed. Additionally or alternatively the Tr slices can be returned to the storage device. If the reconstruction engine 3 is connected to display 5 via a fast link, then large datasets can be transmitted quickly. Other images, such as the Ms, Mp and/or Tp images may also be forwarded to the display unit for concurrent or toggled viewing.
As shown in
As will be described in more detail later herein, a set of mode filters 7a, 7b are disposed between image acquisition and image display. Each of the filters 7a and 7b may additionally include customized filters for each type of image (i.e., Tp, Mp, Tr) arranged to highlight certain aspects of the particular types of images. Thus each mode can be tuned/configured in a optimal way for a specific purpose. The tuning or configuration may be automatic, based on the type of the image, or may be defined by manual input, for example through a user interface coupled to a display. For example, filters could be provided to define a mass/calc-emphasis mode, 3D-tomo-slice-look mode, 2D-mammo-look mode, etc.
According to one aspect of the invention, an image merge processor 6 merges relevant image data obtained from a set of available images to provide a merged image IMERGE for display. The set of available images includes at least filtered and/or unfiltered Ms, Mp, Tr and/or Tp images. It should be noted that although
The display 5 may be the display of an acquisition workstation, or a technologists review station, or a display that is physically remote from the acquisition system or storage device, ie., connected via the network.
A display of the system preferably should be able to display IMERGE, Ms, Mp and Tr (and/or Tp) images concurrently (either in separate windows on the display, on separate monitors of a technology workstation, or overlaid) or sequentially or in toggled mode, wherein the IMERGE, Ms, Mp, Tp and Tr images may be those currently acquired, or those that were acquired in previous studies. Thus, in general, the display can simultaneously or sequentially or in toggled mode display merged images IMERGE, mammograms (Ms, Mp) and tomosynthesis images Tr (and/or Tp) from the current and previous studies. Tr slices can be reconstructed all to the same size, which can be the same as the size of an Mp or Ms image of the breast, or they can be initially reconstructed to sizes determined by the fan shape of the x-ray beam used in the acquisition and later converted to that same size by appropriate interpolate]on/extrapolation.
Images of different types and from different sources can be displayed in desirable size and resolution. For example, an image can be displayed in (1) Fit To View Port mode, in which the size of the displayed image size is maximized such that the entire imaged breast tissue is visible, (2) True Size mode, in which a display pixel on the screen corresponds to a pixel of the image, or (3) Right Size mode, in which the size of a displayed image is adjusted so that it matches that of another image that is concurrently displayed or with which the displayed image is or can be toggled. For example, if two images of the same breast are taken and are not the same size or do not have the same special resolution, provisions are made to selectively zoom in or zoom out one of them, or zoom both, such that they appear to be the same size on the screen when they are concurrently displayed or the user toggles between them, to facilitate comparison or to otherwise facilitate detection/diagnosis. Known interpolation/extrapolation and weighting techniques can be used in such re-sizing, and known image processing technology can be used to make other characteristics of the displayed images similar in a way that facilitates detection/diagnosis. When viewing such resized images, according to one aspect of the invention the merged image IMERGE is automatically resized accordingly.
The system described as a non-limiting example in this patent specification is thus capable of receiving and displaying selectively the tomosynthesis projection images Tp, the tomosynthesis reconstruction images Tr, the synthesized mammogram image Ms and/or the mammogram images Mp, or a single type, or any sub combination of types. The system has software to perform reconstruction of tomosynthesis image data for images Tp into images Tr, software for synthesizing mammogram images Ms and software for merging a set of images to provide a supreme image that displays, for every region of the merged image, the most relevant feature in that region among all images in the image set.
For the purpose of this application, a feature is the ‘most relevant’ based upon the application of one or more a computer assisted detection (CAD) algorithms to the image, wherein the CAD algorithms assign numerical values, weights or thresholds, to pixels or regions based upon detected features within the region or between features. The features may include, for example, speculated lesions, calcifications and the like. Various systems and methods are currently known for computerized detection of abnormalities in radiographic images, such as those disclosed by Giger et al. in RadioGraphics, May 1993, pp. 647 656; Giger et al. in Proceedings of SPIE, Vol. 1445 (1991), pp. 101 103; U.S. Pat. No. 4,907,156 to Doi et al.; U.S. Pat. No. 5,133,020 to Giger et al.; U.S. Pat. No. 5,343,390 to Doi et al.; U.S. Pat. No. 5,491,627 to Zhang et al.
As the regions of the merged image are populated, a merge map 40 is constructed. The merge map 40 stores, for each region of the merged image 30, an identifier of the image which sourced the region. Therefore, as shown in
Although the regions of
At step 68, image filters are applied and, for each of the regions (indicated by “step” 70), the process of comparing regions among the different images begins, indicated by step 72. At step 74, each IMERGE region is populated with the pixels of the region of the image in the image set having the most desirable pixels, value or pattern. The process of populating regions continues until it is determined, at step 76, that all regions have been evaluated, at which point the merged image is ready for display.
The merged image may also be dynamically modified by the selection of different filters, modes or sources at a user interface of the display.
According to another aspect of the invention, it is realized that a merged image may obfuscate data presented to the reviewer by essentially removing depth information provided by the tomosynthesis reconstruction. For example, as shown in
Accordingly, a system and method for merging the most relevant data from a plurality of data sources to provide a ‘merged’ image IMERGE for display has been shown and described. The merged image may combine regions of any combination of 2D and 3D image data, including an acquired mammogram, a synthesized mammogram, or a tomosynthesis projection image and a reconstructed 3D data set, thereby allowing the radiologist to quickly view a large number of regions of interest within a breast while referencing only a single 2D image and increasing the performance and efficiency of breast cancer screening and diagnosis.
Having described exemplary embodiments, it can be appreciated that the examples described above are only illustrative and that other examples also are encompassed within the scope of the appended claims. For example, flow diagrams are illustrative of exemplary steps; the overall image merge may be achieved in a variety of manners using data merge methods known in the art. The system block diagrams are similarly representative only, illustrating functional delineations that are not to be viewed as limiting requirements of the invention. Thus the above specific embodiments are illustrative, and many variations can be introduced on these embodiments without departing from the spirit of the disclosure or from the scope of the appended claims. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure and appended claims.
This patent application is a continuation of U.S. Pat. No. 10,573,276, filed Jun. 20, 2018, which is a continuation of U.S. Pat. No. 10,008,184, filed May 23, 2014, which is a National Phase entry under 35 U.S.C § 371 of International Patent Application No. PCT/US2012/66526, having an international filing date of Nov. 26, 2012, which claims priority under 35 U.S.C. § 119 to U.S. Provisional Patent Application No. 61/563,785, filed Nov. 27, 2011. This application is also related to U.S. patent application Ser. No. 12/471,981, filed May 26, 2009, now U.S. Pat. No. 8,571,289; U.S. patent application Ser. No. 12/276,006, filed Nov. 21, 2008, now U.S. Pat. No. 7,760,924; U.S. application Ser. No. 11/827,909, filed Jul. 13, 2007, now U.S. Pat. No. 7,616,801; U.S. patent application Ser. No. 11/604,069, filed on Nov. 24, 2006, now abandoned; and U.S. application Ser. No. 11/271,050, filed Nov. 11, 2005, now U.S. Pat. No. 7,577,282. Each of the above applications is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3502878 | Stewart et al. | Mar 1970 | A |
3863073 | Wagner | Jan 1975 | A |
3971950 | Evans et al. | Jul 1976 | A |
4160906 | Daniels | Jul 1979 | A |
4310766 | Finkenzeller et al. | Jan 1982 | A |
4496557 | Malen et al. | Jan 1985 | A |
4559641 | Caugant et al. | Dec 1985 | A |
4706269 | Reina et al. | Nov 1987 | A |
4744099 | Huettenrauch | May 1988 | A |
4773086 | Fujita | Sep 1988 | A |
4773087 | Plewes | Sep 1988 | A |
4819258 | Kleinman et al. | Apr 1989 | A |
4821727 | Levene et al. | Apr 1989 | A |
4907156 | Doi et al. | Mar 1990 | A |
4969174 | Schied | Nov 1990 | A |
4989227 | Tirelli et al. | Jan 1991 | A |
5018176 | Romeas et al. | May 1991 | A |
RE33634 | Yanaki | Jul 1991 | E |
5029193 | Saffer | Jul 1991 | A |
5051904 | Griffith | Sep 1991 | A |
5078142 | Siczek et al. | Jan 1992 | A |
5133020 | Giger et al. | Jul 1992 | A |
5163075 | Lubinsky | Nov 1992 | A |
5164976 | Scheid et al. | Nov 1992 | A |
5199056 | Darrah | Mar 1993 | A |
5240011 | Assa | Aug 1993 | A |
5289520 | Pellegrino et al. | Feb 1994 | A |
5343390 | Doi et al. | Aug 1994 | A |
5359637 | Webber | Oct 1994 | A |
5365562 | Toker | Nov 1994 | A |
5415169 | Siczek et al. | May 1995 | A |
5426685 | Pellegrino et al. | Jun 1995 | A |
5452367 | Bick | Sep 1995 | A |
5491627 | Zhang et al. | Feb 1996 | A |
5506877 | Niklason et al. | Apr 1996 | A |
5526394 | Siczek | Jun 1996 | A |
5539797 | Heidsieck et al. | Jul 1996 | A |
5553111 | Moore | Sep 1996 | A |
5592562 | Rooks | Jan 1997 | A |
5594769 | Pellegrino | Jan 1997 | A |
5596200 | Sharma | Jan 1997 | A |
5598454 | Franetzki | Jan 1997 | A |
5609152 | Pellegrino et al. | Mar 1997 | A |
5627869 | Andrew et al. | May 1997 | A |
5657362 | Giger et al. | Aug 1997 | A |
5668889 | Hara | Sep 1997 | A |
5719952 | Rooks | Feb 1998 | A |
5735264 | Siczek et al. | Apr 1998 | A |
5769086 | Ritchart et al. | Jun 1998 | A |
5803912 | Siczek et al. | Sep 1998 | A |
5818898 | Tsukamoto et al. | Oct 1998 | A |
5828722 | Ploetz | Oct 1998 | A |
5872828 | Niklason | Feb 1999 | A |
5878104 | Ploetz | Mar 1999 | A |
5878746 | Lemelson et al. | Mar 1999 | A |
5896437 | Ploetz | Apr 1999 | A |
5941832 | Tumey | Aug 1999 | A |
5986662 | Argiro | Nov 1999 | A |
6005907 | Ploetz | Dec 1999 | A |
6022325 | Siczek et al. | Feb 2000 | A |
6075879 | Roehrig et al. | Jun 2000 | A |
6091841 | Rogers | Jul 2000 | A |
6137527 | Abdel-Malek | Oct 2000 | A |
6141398 | He | Oct 2000 | A |
6149301 | Kautzer et al. | Nov 2000 | A |
6175117 | Komardin | Jan 2001 | B1 |
6196715 | Nambu | Mar 2001 | B1 |
6216540 | Nelson | Apr 2001 | B1 |
6219059 | Argiro | Apr 2001 | B1 |
6256370 | Yavus | Apr 2001 | B1 |
6233473 | Sheperd | May 2001 | B1 |
6243441 | Zur | Jun 2001 | B1 |
6272207 | Tang | Aug 2001 | B1 |
6289235 | Webber et al. | Sep 2001 | B1 |
6292530 | Yavus | Sep 2001 | B1 |
6327336 | Gingold et al. | Dec 2001 | B1 |
6341156 | Baetz | Jan 2002 | B1 |
6375352 | Hewes | Apr 2002 | B1 |
6389104 | Bani-Hashemi et al. | May 2002 | B1 |
6411836 | Patel | Jun 2002 | B1 |
6415015 | Nicolas | Jul 2002 | B2 |
6442288 | Haerer | Aug 2002 | B1 |
6459925 | Nields et al. | Oct 2002 | B1 |
6463181 | Duarte | Oct 2002 | B2 |
6501819 | Unger et al. | Dec 2002 | B2 |
6556655 | Chichereau | Apr 2003 | B1 |
6574304 | Hsieh | Jun 2003 | B1 |
6597762 | Ferrant | Jul 2003 | B1 |
6611575 | Alyassin et al. | Aug 2003 | B1 |
6620111 | Stephens et al. | Sep 2003 | B2 |
6626849 | Huitema et al. | Sep 2003 | B2 |
6633674 | Barnes | Oct 2003 | B1 |
6638235 | Miller et al. | Oct 2003 | B2 |
6647092 | Eberhard | Nov 2003 | B2 |
6744848 | Stanton | Jun 2004 | B2 |
6748044 | Sabol et al. | Jun 2004 | B2 |
6751285 | Eberhard | Jun 2004 | B2 |
6758824 | Miller et al. | Jul 2004 | B1 |
6813334 | Koppe | Nov 2004 | B2 |
6882700 | Wang | Apr 2005 | B2 |
6885724 | Li | Apr 2005 | B2 |
6912319 | Barnes | May 2005 | B1 |
6940943 | Claus | Sep 2005 | B2 |
6978040 | Berestov | Dec 2005 | B2 |
6999554 | Mertelmeier | Feb 2006 | B2 |
7025725 | Dione et al. | Apr 2006 | B2 |
7110490 | Eberhard | Sep 2006 | B2 |
7110502 | Tsuji | Sep 2006 | B2 |
7123684 | Jing et al. | Oct 2006 | B2 |
7127091 | OpDeBeek | Oct 2006 | B2 |
7142633 | Eberhard | Nov 2006 | B2 |
7245694 | Jing et al. | Jul 2007 | B2 |
7315607 | Ramsauer | Jan 2008 | B2 |
7319735 | Defreitas et al. | Jan 2008 | B2 |
7323692 | Rowlands | Jan 2008 | B2 |
7346381 | Okerlund et al. | Mar 2008 | B2 |
7430272 | Jing et al. | Sep 2008 | B2 |
7443949 | Defreitas et al. | Oct 2008 | B2 |
7577282 | Gkanatsios et al. | Aug 2009 | B2 |
7606801 | Faitelson et al. | Oct 2009 | B2 |
7616801 | Gkanatsios et al. | Nov 2009 | B2 |
7630533 | Ruth et al. | Dec 2009 | B2 |
7702142 | Ren et al. | Apr 2010 | B2 |
7760924 | Ruth et al. | Jul 2010 | B2 |
7831296 | DeFreitas et al. | Nov 2010 | B2 |
8044972 | Hall et al. | Oct 2011 | B2 |
8051386 | Rosander et al. | Nov 2011 | B2 |
8126226 | Bernard et al. | Feb 2012 | B2 |
8155421 | Ren et al. | Apr 2012 | B2 |
8165365 | Bernard et al. | Apr 2012 | B2 |
8571289 | Ruth | Oct 2013 | B2 |
8712127 | Ren et al. | Apr 2014 | B2 |
8897535 | Ruth et al. | Nov 2014 | B2 |
8983156 | Periaswamy et al. | Mar 2015 | B2 |
9084579 | Ren et al. | Jul 2015 | B2 |
9456797 | Ruth et al. | Oct 2016 | B2 |
9808215 | Ruth et al. | Nov 2017 | B2 |
9811758 | Ren et al. | Nov 2017 | B2 |
10008184 | Kreeger et al. | Jun 2018 | B2 |
10010302 | Ruth et al. | Jul 2018 | B2 |
10410417 | Chen et al. | Sep 2019 | B2 |
10413263 | Ruth et al. | Sep 2019 | B2 |
10573276 | Kreeger | Feb 2020 | B2 |
20010038861 | Hsu et al. | Nov 2001 | A1 |
20020012450 | Tsujii | Jan 2002 | A1 |
20020050986 | Inoue | May 2002 | A1 |
20020075997 | Unger et al. | Jun 2002 | A1 |
20030007598 | Wang | Jan 2003 | A1 |
20030018272 | Treado et al. | Jan 2003 | A1 |
20030026386 | Tang | Feb 2003 | A1 |
20030073895 | Nields et al. | Apr 2003 | A1 |
20030095624 | Eberhard et al. | May 2003 | A1 |
20030128893 | Castorina | Jul 2003 | A1 |
20030169847 | Karellas | Sep 2003 | A1 |
20030194050 | Eberhard | Oct 2003 | A1 |
20030194121 | Eberhard et al. | Oct 2003 | A1 |
20030210254 | Doan | Nov 2003 | A1 |
20030212327 | Wang | Nov 2003 | A1 |
20030215120 | Uppaluri | Nov 2003 | A1 |
20040008809 | Webber | Jan 2004 | A1 |
20040008901 | Avinash | Jan 2004 | A1 |
20040047518 | Tiana | Mar 2004 | A1 |
20040052328 | Sabol et al. | Mar 2004 | A1 |
20040066884 | Hermann Claus et al. | Apr 2004 | A1 |
20040066904 | Eberhard et al. | Apr 2004 | A1 |
20040070582 | Smith et al. | Apr 2004 | A1 |
20040094167 | Brady | May 2004 | A1 |
20040101095 | Jing et al. | May 2004 | A1 |
20040109529 | Eberhard et al. | Jun 2004 | A1 |
20040171986 | Tremaglio, Jr. et al. | Sep 2004 | A1 |
20040267157 | Miller et al. | Dec 2004 | A1 |
20050049521 | Miller et al. | Mar 2005 | A1 |
20050063509 | Defreitas et al. | Mar 2005 | A1 |
20050078797 | Danielsson et al. | Apr 2005 | A1 |
20050105679 | Wu et al. | May 2005 | A1 |
20050113681 | DeFreitas | May 2005 | A1 |
20050113715 | Schwindt et al. | May 2005 | A1 |
20050135555 | Claus | Jun 2005 | A1 |
20050135664 | Kaufhold | Jun 2005 | A1 |
20050226375 | Eberhard | Oct 2005 | A1 |
20060018526 | Avinash | Jan 2006 | A1 |
20060030784 | Miller et al. | Feb 2006 | A1 |
20060074288 | Kelly et al. | Apr 2006 | A1 |
20060098855 | Gkanatsios | May 2006 | A1 |
20060129062 | Nicoson et al. | Jun 2006 | A1 |
20060155209 | Miller et al. | Jul 2006 | A1 |
20060291618 | Eberhard et al. | Dec 2006 | A1 |
20070030949 | Jing et al. | Feb 2007 | A1 |
20070036265 | Jing et al. | Feb 2007 | A1 |
20070052700 | Wheeler et al. | Mar 2007 | A1 |
20070076844 | Defreitas et al. | Apr 2007 | A1 |
20070223651 | Wagenaar et al. | Sep 2007 | A1 |
20070225600 | Weibrecht et al. | Sep 2007 | A1 |
20070242800 | Jing et al. | Oct 2007 | A1 |
20080045833 | Defreitas et al. | Feb 2008 | A1 |
20080130979 | Ren | Jun 2008 | A1 |
20080187095 | Boone et al. | Aug 2008 | A1 |
20090003519 | Defreitas et al. | Jan 2009 | A1 |
20090005668 | West et al. | Jan 2009 | A1 |
20090010384 | Jing et al. | Jan 2009 | A1 |
20090034684 | Bernard et al. | Feb 2009 | A1 |
20090080594 | Brooks et al. | Mar 2009 | A1 |
20090080602 | Brooks et al. | Mar 2009 | A1 |
20090080765 | Bernard et al. | Mar 2009 | A1 |
20090123052 | Ruth | May 2009 | A1 |
20090135997 | Defreitas et al. | May 2009 | A1 |
20090238424 | Arakita et al. | Sep 2009 | A1 |
20090268865 | Ren et al. | Oct 2009 | A1 |
20090296882 | Gkanatsios et al. | Dec 2009 | A1 |
20090304147 | Jing et al. | Dec 2009 | A1 |
20100054400 | Ren et al. | Mar 2010 | A1 |
20100086188 | Ruth et al. | Apr 2010 | A1 |
20100135558 | Ruth et al. | Jun 2010 | A1 |
20100195882 | Ren et al. | Aug 2010 | A1 |
20100259645 | Kaplan | Oct 2010 | A1 |
20110069906 | Park | Mar 2011 | A1 |
20110109650 | Kreeger et al. | May 2011 | A1 |
20110110576 | Kreeger et al. | May 2011 | A1 |
20110178389 | Kumar et al. | Jul 2011 | A1 |
20110234630 | Batman et al. | Sep 2011 | A1 |
20110242092 | Kashiwagi | Oct 2011 | A1 |
20120293511 | Mertelmeier | Nov 2012 | A1 |
20140327702 | Kreeger et al. | Nov 2014 | A1 |
20150317538 | Ren et al. | Nov 2015 | A1 |
20180047211 | Chen et al. | Feb 2018 | A1 |
20180137385 | Ren | May 2018 | A1 |
Number | Date | Country |
---|---|---|
102010009295 | Aug 2011 | DE |
775467 | May 1997 | EP |
982001 | Mar 2000 | EP |
1428473 | Jun 2004 | EP |
2215600 | Aug 2010 | EP |
2301432 | Mar 2011 | EP |
2003-189179 | Jul 2003 | JP |
2007-536968 | Dec 2007 | JP |
2009-207545 | Sep 2009 | JP |
WO 9005485 | May 1990 | WO |
WO 9816903 | Apr 1998 | WO |
WO 0051484 | Sep 2000 | WO |
WO 03020114 | Mar 2003 | WO |
WO 2005051197 | Jun 2005 | WO |
WO 2005110230 | Nov 2005 | WO |
WO 2005112767 | Dec 2005 | WO |
WO 2006055830 | May 2006 | WO |
WO 2006058160 | Jun 2006 | WO |
WO 2008047270 | Apr 2008 | WO |
WO 2010059920 | May 2010 | WO |
WO 2011008239 | Jan 2011 | WO |
WO 2011065950 | Jun 2011 | WO |
WO 2011073864 | Jun 2011 | WO |
WO 2011091300 | Jul 2011 | WO |
WO 2012063653 | May 2012 | WO |
Entry |
---|
Mikko Lilja, “Fast and accurate voxel projection technique in free-form cone-beam geometry with application to algebraic reconstruction,” Applies Sciences on Biomedical and Communication Technologies, 2008, Isabel '08, first international symposium on, IEEE, Piscataway NJ, Oct. 25, 2008. |
Pediconi, “Color-coded automated signal intensity-curve for detection and characterization of breast lesions: Preliminary evaluation of new software for MR-based breast imaging,” International Congress Series 1281 (2005) 1081-1086. |
Heang-Ping, Roc “Study of the effect of stereoscopic imaging on assessment of breast lesions,” Medical Physics, vol. 32, No. 4, Apr. 2005. |
Amendment Response to Final Office Action for U.S. Appl. No. 12/276,006 dated Mar. 24, 2010 (6 pages). |
Amendment Response to Non-Final Office Action for U.S. Appl. No. 12/276,006 dated Sep. 28, 2009 (8 pages). |
Final Office Action dated Jan. 20, 2010 for U.S. Appl. No. 12/276,006. |
Non-Final Office Action dated Jun. 25, 2009 for U.S. Appl. No. 12/276,006. |
Amendment Resonse after Final Office Action for U.S. Appl. No. 12/471,981 dated Apr. 3, 2013 (6 pages). |
Amendment Response to Non-Final Office Action for U.S. Appl. No. 12/471,981 dated Dec. 10, 2012 (6 pages). |
Non-Final Office Action dated Feb. 13, 2013 for U.S. Appl. No. 12/471,981. |
Non-Final Office Action dated Aug. 10, 2012 for U.S. Appl. No. 12/471,981. |
Amendment Response to Non-Final Office Action for U.S. Appl. No. 14/044,959 dated May 13, 2014 (8 pages). |
Non-Final Office Action dated Feb. 13, 2014 for U.S. Appl. No. 14/044,959. |
Foreign Office Action for CN Application No. 200980101409.X dated Jun. 26, 2014. |
Foreign Office Action for EP Patent Application No. 09796173.4 dated Apr. 11, 2014. |
Foreign Office Action for JP Patent Application No. 2011-537644 dated Jul. 29, 2013. |
Foreign Office Action for JP Patent Application No. 2014-047021 dated Jan. 21, 2015. |
International Search Report for International Publication No. PCT/US2009/065288 dated Jan. 29, 2014. |
International Preliminary Report on Patentability for International Publication No. PCT/US2012/066526 dated May 27, 2014. |
PCT Notification of International Search Report and Written Opinion for PCT/US2012/066526, Applicant Hologic, Inc., dated Feb. 6, 2013 (7 pages). |
International Preliminary Report on Patentability for International Publication No. PCT/US2013/025993 dated Aug. 19, 2014. |
International Search Report and Written Opinion for International Publication No. PCT/US2013/025993 dated Apr. 26, 2013. |
Foreign office action from JP 2014-543604 dated Oct. 4, 2016. |
Extended EP Search Report for EP Application No. 13749870.5 dated Oct. 7, 2015, 7 pages. |
Extended EP Search Report for EP Application No. 12851085.6, dated Jan. 6, 2015, 6 pages. |
Giger et al. “Development of a smart workstation for use in mammography”, in Proceedings of SPIE, vol. 1445 (1991), pp. 101 103; 4 pages. |
Giger et al., “An Intelligent Workstation for Computer-aided Diagnosis”, in RadioGraphics, May 1993, 13:3 pp. 647 656; 10 pages. |
Non final office action dated Jan. 22, 2016 for U.S. Appl. No. 14/360,389. |
“Predicting tumour location by simulating large deformations of the breast using a 3D finite element model and nonlinear elasticity” by P. Pathmanathan et al., Medical Image Computing and Computer-Assisted Intervention, pp. 217-224, vol. 3217 (2004). |
“ImageParser: a tool for finite element generation from three-dimensional medical images” by H. M. Yin et al., BioMedical Engineering OnLine. 3:31, pp. 1-9, Oct. 1, 2004. |
“Biomechanical 3-D Finite Element Modeling of the Human Breast Using MRI Data” by A. Samani et al. IEEE Transactions on Medical Imaing, vol. 20, No. 4, pp. 271-279. 2001. |
“Mammogram synthesis using a 3D simulation. I. breast tissue model and image acquisition simulation” by Bakic et al., Medical Physics. 29, pp. 2131-2139 (2002). |
Non Final Office action dated Nov. 20, 2015 for U.S. Appl. No. 14/549,604. |
Response to Non Final Office action dated May 23, 2016 for U.S. Appl. No. 14/360,389. |
Final Office Action dated Jul. 5, 2016 for U.S. Appl. No. 14/360,389. |
Response to Final Office Action dated Aug. 15, 2016 for U.S. Appl. No. 14/360,389. |
Advisory Action dated Aug. 24, 2016 for U.S. Appl. No. 14/360,389. |
Pre-Appeal Brief Request for Review submitted Oct. 4, 2016 for U.S. Appl. No. 14/360,389. |
Appeal Brief submitted Dec. 4, 2016 for U.S. Appl. No. 14/360,389. |
Examiners Answer to Appeal Brief dated Jan. 31, 2017 for U.S. Appl. No. 14/360,389. |
Reply Brief submitted Mar. 6, 2017 for U.S. Appl. No. 14/360,389. |
Decision on Appeal mailed Nov. 8, 2017 for U.S. Appl. No. 14/360,389. |
Non-Final Office Action dated Mar. 9, 2017 for U.S. Appl. No. 15/088,844. |
Notice of Allowance for U.S. Appl. No. 15/088,844 dated Jun. 29, 2017. |
Notice of Allowance for U.S. Appl. No. 15/088,844 dated Mar. 28, 2017. |
Office Action dated Mar. 10, 2017 for Canadian Application No. 2,702,782, Owner Hologic, Inc., based on PCT/US2009/065288, 3 pages. |
Office Action dated Jan. 11, 2017 for Japanese Patent Application No. 2014-556824, Applicant Hologic, Inc., including English Translation provided by Japanese associate, 12 pages. |
Computer generated translation of Foreign Patent Reference JP 2003-189179 A, published Jul. 4, 2003,16 pages. |
International Preliminary Report on Patentability for International Publication No. PCT/US2009/065288 dated Feb. 18, 2014. |
Notice of Allowance dated Jan. 22, 2018 for U.S. Appl. No. 14/360,389. |
Office action dated Feb. 1, 2018 for U.S. Appl. No. 15/802,225. |
Office Action dated Feb. 19, 2018 for EP Application 12851085.6, Applicant Hologic, Inc. 5 pp. |
Extended EP Search Report for EP Application No. 17176956.5 dated Apr. 3, 2018, 7 pages. |
Notice of Allowance dated May 21, 2018 for U.S. Appl. No. 14/360,389. |
Amendment response to office action filed Nov. 14, 2018 for U.S. Appl. No. 15/794,635. |
Notice of Allowance dated Jan. 17, 2019 for U.S. Appl. No. 15/794,635. |
Non Final office Action dated Jan. 25, 2019 for U.S. Appl. No. 16/013,782. |
European search report in connection with corresponding European patent application No. EP 06255790, dated Aug. 17, 2007. |
European search report in connection with counterpart European Patent Application No. 05824734, dated May 11, 2011. |
PCT International Search Report and Written Opinion dated Sep. 25, 2008, for International Application No. PCT/US2005/041941, Applicant Hologic, Inc., 8 pages. |
Amendment After Non-Final Office Action filed Apr. 12, 2019 for U.S. Appl. No. 16/013,782. |
Non Final Office Action dated Sep. 21, 2016 for U.S. Appl. No. 14/744,930. |
Response to Non Final Office action filed Dec. 14, 2016 for U.S. Appl. No. 14/744,930. |
Final Office Action dated Mar. 31, 2017 for U.S. Appl. No. 14/744,930. |
Response to Final Office action filed Aug. 2, 2017 for U.S. Appl. No. 14/744,930. |
Non Final Office action dated May 18, 2018 for U.S. Appl. No. 15/804,915. |
Response to Non Final Office Action filed Aug. 20, 2018 for U.S. Appl. No. 15/804,915. |
Number | Date | Country | |
---|---|---|---|
20200258479 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
61563785 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16013701 | Jun 2018 | US |
Child | 16792182 | US | |
Parent | 14360389 | US | |
Child | 16013701 | US |