System and method for generating a tagged column-oriented data structure

Information

  • Patent Grant
  • 12353419
  • Patent Number
    12,353,419
  • Date Filed
    Tuesday, July 23, 2019
    6 years ago
  • Date Issued
    Tuesday, July 8, 2025
    6 months ago
  • CPC
    • G06F16/24564
    • G06F16/221
    • G06F16/258
  • Field of Search
    • CPC
    • G06F16/24564
    • G06F16/221
    • G06F16/258
    • G06F16/211
  • International Classifications
    • G06F16/2455
    • G06F16/22
    • G06F16/25
    • Term Extension
      216
Abstract
A system and method for generating tagged column-oriented data structures, including: generating a column-oriented data structure that comprises a plurality of columns, wherein each column comprises a plurality of cells that are associated with a single data type, wherein at least one of the plurality of columns is a tag type column; and inserting at least one tag into a first cell of the tag type column, where the first cell further associated with a first row of cells.
Description
TECHNICAL FIELD

The present disclosure relates generally to column-oriented data structures analysis and more particularly, to a system and method thereof for generating tagged datasets in a column-oriented data structure.


BACKGROUND

In today's world, large enterprises, as well as small and medium-size enterprises, must deal with the challenge of managing their operations. The task of managing operations may be complicated and time consuming. In many cases, managing operations of a single project requires integration of several employees, departments, and the like of the entity.


In order to deal with this complicated and time-consuming task, many entities use different project management software applications. These software applications allow for the organizing, planning and managing of resources in order to optimize the time and resources spent on each project. Some of these software applications can manage estimation and planning, scheduling, cost control and budget management, communication, decision making, and so on.


One of the most valuable features of management applications is the ability to provide information regarding one or more projects in real time. Such information may include for example, overview on how long tasks will take to complete, early warning of any risks to the project, historical information on how projects have progressed, how actual and planned performance are related, cost maintenance, etc.


Although these software applications allow their users to overcome many challenges in managing their projects, the searching capabilities offered to allow a user to filter and aggregate desirable data elements associated with one or more projects could be improved, as they are often inefficient and fail to provide a quick method of showing only relevant data.


It would therefore be advantageous to provide a solution that would overcome the challenges noted above.


SUMMARY

A summary of several example embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor to delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term “certain embodiments” may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.


Certain embodiments disclosed herein include a method for generating tagged column-oriented data structures, comprising: generating a column-oriented data structure that comprises a plurality of columns, wherein each column comprises a plurality of cells that are associated with a single data type, wherein at least one of the plurality of columns is a tag type column; and inserting at least one tag into a first cell of the at least one tag type column, wherein the first cell is further associated with a first row of cells.


Certain embodiments disclosed herein also include a non-transitory computer readable medium having stored thereon instructions for causing a processing circuitry to perform a process, the process comprising: generating a column-oriented data structure that comprises a plurality of columns, wherein each column comprises a plurality of cells that are associated with a single data type, wherein at least one of the plurality of columns is a tag type column; and, inserting at least one tag into a first cell of the at least one tag type column, wherein the first cell is further associated with a first row of cells.


Certain embodiments disclosed herein also include a system for generating tagged column-oriented data structures, comprising: a processing circuitry; and a memory, the memory containing instructions that, when executed by the processing circuitry, configure the system to: generate a column-oriented data structure that comprises a plurality of columns, wherein each column comprises a plurality of cells that are associated with a single data type, wherein at least one of the plurality of columns is a tag type column; and, insert at least one tag into a first cell of the at least one tag type column, wherein the first cell is further associated with a first row of cells.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.



FIG. 1 is a block diagram of a computing device for generating a tagged column-oriented data structure according to an embodiment.



FIG. 2 is a network diagram of a computing architecture utilized to describe the various embodiments disclosed herein.



FIG. 3 is a flowchart illustrating a method for generating a column-oriented data structure with a tag type column according to an embodiment.



FIG. 4 is flowchart illustrating a method for inserting a new tag into a tag type column in column-oriented data structures according to an embodiment.



FIGS. 5A and 5B are example schematic diagrams that demonstrates filtering datasets in column-oriented data structures according to an embodiment.





DETAILED DESCRIPTION

It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed embodiments. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.


The various disclosed embodiments include a method and system for generating a tagged column-oriented data structure. The system is configured to generate a column-oriented data structure that includes columns, where the columns contain cells associated with a single data type, such as a numeric data type column, an alphanumeric data type column, a percentages data type column, and so on. At least one of the columns is a tag type column adapted to contain therein at least one cell that comprises one or more tags. The system inserts one or more tags into a first cell of the tag type column. The tags of the first cell are associated with data elements stored within a plurality of cells of a first row of cells. The disclosed embodiment includes the generation of single data type column-oriented data structures having at least one tag type column, allowing for rapidly locating data elements within the plurality of column-oriented data structures. The use of a single data type column-oriented data structure allows users to insert only the values that have been predetermined as valid, prevent typos, and the like.



FIG. 1 shows an exemplary and non-limiting block diagram of a computing device 100 for generating a tagged column-oriented data structure according to an embodiment. The computing device 100 includes at least one processing element 110, for example, a central processing unit (CPU) or similar processing circuitry. In an embodiment, the processing element 110 includes, or is a component of, a larger processing unit implemented with one or more processors. The one or more processors may be implemented with any combination of general-purpose microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate array (FPGAs), programmable logic devices (PLDs), controllers, state machines, gated logic, discrete hardware components, dedicated hardware finite state machines, or any other suitable entities that can perform calculations or other manipulations of information. The CPU 110 is coupled via a bus 105 to a memory 120.


The memory 120 further includes a memory portion 122 that contains instructions that, when executed by the processing element 110, performs the method described in more detail herein. The memory 120 may be further used as a working scratch pad for the processing element 110, a temporary storage, and others, as the case may be. The memory 120 may be a volatile memory such as, but not limited to, random access memory (RAM), or non-volatile memory (NVM), such as, but not limited to, flash memory.


The processing element 110 may be further connected to a network device 140, such as a network interface card, for providing connectivity between the computing device 100 and a network, such as a network 210 discussed in more detail with respect to FIG. 2. The processing element 110 may be further connected to a storage 130. The storage 130 may be used for the purpose of storing single data type column-oriented data structures, data elements associated with the single data type column-oriented data structures, and so on.


The processing element 110 or the memory 120 may also include machine-readable media for storing software. Software shall be construed broadly to mean any type of instructions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code). The instructions cause the processing element 110 to perform the various functions described in further detail herein.



FIG. 2 is a network diagram of a computing architecture 200 utilized to describe the various embodiments disclosed herein. The computing device 100 is connected to the network 210. The computing device 100 and its components are described in more detail with respect of FIG. 1. The network 210 enables communication between different elements that may be connected to the computing device 100, as further described herein below. The network 210 may be the Internet, the world-wide-web (WWW), a local area network (LAN), a wide area network (WAN), a metro area network (MAN), and other networks capable of enabling communication between the elements of the computing architecture 200. In an embodiment, the computing device 100 is a server deployed in a cloud computing environment.


One or more user devices 220-1 through user device 220-m, where m is an integer equal to or greater than 1, referred to individually as user device 220 and collectively as user devices 220, may be connected to the computing device 100 via the network 210. A user device 220 may be, for example, a smart phone, a mobile phone, a laptop, a tablet computer, a wearable computing device, a personal computer (PC), a smart television and the like.


A user device 220 may be configured to send to and receive from the computing device 100 data and/or metadata associated with a variety of elements associated with single data type column-oriented data structures, such as columns, rows, cells, schemas, and the like. One or more data repositories 230-1 through data repository 230-n, where n is an integer equal to or greater than 1, referred to individually as data repository 230 and collectively as data repositories 230, may be connected to the computing device 100 via the network 210, or embedded within the computing device 100.


The data repository 230 may be, for example, a storage device containing thereon a database, a data warehouse, and the like, that may be used for storing data structures, data items, metadata, and the like, as further described herein below. In some embodiments, one or more of the repositories may be distributed over several physical storage devices e.g., in a cloud-based computing environment. Any of the storage devices may be a network accessible storage device, or a component of the computing device 100.


According to an embodiment, the computing device 100 may be configured to generate a column-oriented data structure. The column-oriented data structure includes a plurality of columns. Each column includes a plurality of cells and each column is associated with a single data type. A single data type column is one where all cells are uniform in at least one aspect. The aspect may be that the column contain numeric values only, characters only, alphanumeric values only, graphic elements only, a closed list of elements, particular formatting, values within the range of 1-100 only, values within the range of “A” to “E” only, and so on.


At least one of the plurality of columns of the column-oriented data structure is a tag type column. A tag type column is a column having one or more cells that include therein one or more tags. The tags may be for example, a label, a numeric value, a title, a name, a combination thereof, and so on, used to easily identify a descriptive quality of data within the column-oriented data structure.


The computing device 100 is further configured to insert one or more tags, in response to receiving a request from one or more user devices 220, into a first cell of the tag type column using for example, a database management service (DBMS) 235. The tags may be received from a user device 220-1 that is associated with a first user account. The first cell may be further associated with a first row of cells. Thus, the one or more tags of the first cell of the tag type column may be indicative of data items stored in a row, i.e., a first row that intersects the first cell of the tag type column.


For example, a first tag entitled “Projects 2018” is stored in a cell that crosses the third row of the column-oriented data structure. According to the same example, other cells positioned in the same third row in different columns contain the name of the project manager, the design status, the research and development (R&D) status, etc. According to the same example, it may be desirable to add a tag titled “Projects 2018” to every project that has been initiated in 2018 such that it will be easy for a user to track these projects. It should be noted that this is only one example of many processes that can be tagged and tracked using the computing device 100. A system displaying a table of the column-oriented data structure may apply a filter to certain rows within the column-oriented data structure according to the tags. This allows for the displaying of information in a way which is more easily consumed and understood by users of the system. For example, all rows that do not contain a specific tag may be hidden from view such that only the rows having that specific tag are shown.


According to an embodiment, the generation of the column-oriented data structure is executed by the computing device 100 in response to receiving a request for generating the column-oriented data structure by the computing device 100. The request may be received by the computing device 100 from one or more of the user devices 220.


According to another embodiment, the computing device 100 may be configured to automatically generate the tags by identifying at least one data item stored in at least a second cell of the first row of cells that is associated with at least a column that a non-tag type column. Based on the identification, the computing device 100 may be configured to generate one or more tags associated with the identified at least one data item. The automated tag generation may be achieved using a predetermined set of rules. The predetermined set of rules may indicate, for example, that when a certain name of an employee, manager, supervisor, and so on, exists in a row, a tag associated with the name of the person is generated.


According to another embodiment, the one or more tags may be stored in the storage 130 or in the data repository 230 such that when a request for retrieving data associated with a specific tag is received by the computing device 100, the tag is searched in the storage 130 or the data repository 230 for identifying the location of the tag. Each tag may be positioned within multiple cells associated with tag type columns that may be located in one or more column-oriented data structures, in one or more schemas, cell arrays, and the like. For example, each row may be associated with an index number, and each tag associated with the index numbers of the rows in which the tag appears in a cell of a tag column.


According to yet another embodiment, the computing device 100 is configured to receive a query associated with a first tag for filtering a plurality of data elements stored in a certain column-oriented data structure. Upon receiving the query, the computing device 100 is configured to analyze the query for identifying at least one keyword associated with a predetermined first tag. After the first tag, i.e., a keyword, is identified, the computing device 100 aggregates a corresponding dataset, e.g. a table that includes rows that are associated with the tag, and displays the aggregated datasets. The aggregated datasets may be caused to be displayed on a user device 220. In an embodiment, the query may include one or more tags.



FIG. 3 is an example flowchart 300 illustrating a method for generating a column-oriented data structure with a tag type column according to an embodiment.


At S310, a request for generating a single data type column-oriented data structure (hereinafter: a table) having at least one tag type column is received, e.g., by the computing device 100 of FIG. 1. The request may be received from a user device 220.


At S320, the table is generated. The table includes a plurality of single data type columns as well as a plurality of rows. A single data type column is a column where all cells are uniform in at least one aspect. The aspect may be that the cells contain numeric values only, characters only, alphanumeric values, graphic elements only, a closed list of elements, specific formatting, values within the range of 1-100 only, values within the range of “A” to “E” only, and so on. Each single data type column includes a plurality of cells.


At least one of the plurality of columns of the table is a tag type column. A tag type column includes one or more cells that include therein one or more tags. The tags may be for example, a label, a numeric value, a title, a name, a combination thereof, and so on. In an embodiment, the tags may be used to easily identify a descriptive quality of data within the column-oriented data structure.


At S330, at least one tag is generated based on data items within a non-tag type column. The tag is generated by identifying at least one data item stored in at least a second cell of a row of cells that is associated with at least a non-tag type column. Based on the identification, one or more tags associated with the identified at least one data item is generated. The automated tag generation may be achieved using a predetermined set of rules. The predetermined set of rules may indicate, for example, that when a certain name of an employee, manager, supervisor, and so on, exists in a row, a tag associated with the name of that person is generated.


At S340, the generated table including the at least one tag type column and the generated at least one tag is stored, e.g., in a storage 130 for future reference. In an embodiment, the generated table may be stored in a data repository 230.



FIG. 4 is an example flowchart 400 illustrating a computerized method for inserting a new tag into a tag type column in column-oriented data structures according to an embodiment.


At S410, a request for performing a change with respect to at least a tag associated with a tag type column of a single data type column-oriented data structure (hereinafter: a table) is received, e.g., from a user device 220. The request may require adding a tag, deleting a tag, change a tag location, adding a tag type column to a table, and the like. For example, a first user account associated with a first user device, e.g., user device 220-1 of FIG. 2, may have all permissions available with respect to tag type columns. According to the same example, a second user account that is associated with a second user device, e.g., user device 220-2 of FIG. 2, may have only permission to perform a search using the tags, but not permission to add new tags, delete tags, change the tags' location, etc.


At S420, it is determined whether the requesting source, e.g., user device 220, has permission to make the change, and if so execution continues with S430, otherwise; execution continues with S440. The set of permissions of the specific data structure may be indicative of whether the user device has the permission to make the desired change or not. In an embodiment, S420 may further include identifying the required change, i.e., the change type. Thus, what kind of action the user device associated with a certain user account, is trying to perform is determined. According to one embodiment, S420 may further include searching for a set of permissions associated with the user account associated with the user device from which the request was received, with respect to the table that includes the at least one tag type column. Permissions are predetermined rights allowing a user account to make one or more actions such as, adding tags, deleting tags, changing tags' location, and so on. The permissions may be allocated to a user account that is associated with a user device, a plurality of user devices associated with a certain entity such as a department, and the like.


At S430, the requested change is performed in the data structure.


At S440, in response to determining that the user account that is associated with the requesting user device does not have permission to make the desired change, the request for the change is denied.


According to one embodiment, same tags may be used in different data structures associated with public boards, private boards, shareable boards, and so on. A public board is a data structure that is accessible to any user, a private board is a data structure that is accessible only to users having a certain permission, and sharable board is a data structure that includes a plurality of permissions where each permission is associated with a specific user or user device. The sharable board may be initiated by a first user that is associated with, for example, a company, and then the sharable board may be shared with a second user that is not part of the company.


According to another embodiment, in response to receiving a query, e.g., a request to search for specific data associated with the tag “Dan” in a first private board, data associated with the tag “Dan” may be retrieved only from the first private board. That is to say, where there are a plurality of tags entitled “Dan” in multiple private boards, a user associated with a certain private board can see only the “Dan” tag, and its associated data, associated with the private boards to which the user has access. According to another embodiment, when query is received to search for the tag “Dan”, in a first private board from a user device having permission to access the first private board, and the “Dan” tag exists in both the first private board and in a public board, the result of the search may include the tag “Dan” associated with the first private board and the public board.


According to another embodiment, each tag may have characteristics such as different colors, fonts, and the like, that may allow a user to easily distinguish between two tags. Thus, a received query searching for a certain tag may include different characteristics, such as the tag “Projects 2018” in a green highlight color.


According to another embodiment, when a request for renaming a certain tag associated with a public board is received, and the requesting user account is allowed to make the change and the tag is renamed with respect to the public board. However, when a request for renaming a certain tag associated with a private board is received, and the requesting user account is allowed to make the change, the tag is renamed with respect to the specific private board only.



FIGS. 5A and 5B are example schematic diagrams that demonstrates tagged column-oriented data structures according to an embodiment. In FIG. 5A, an example single data type data structure 500A includes four rows and seven columns. All seven columns contain cells, such that all cells of each column are associated with a single data type (i.e., all cells of the first column are of a first data type, all cells of the second column are of a second data type, etc.). In an embodiment, certain columns can be of the same data type. For example, cell 510 in which the name “Dan” is displayed, may comprise a different name. However, a numeric value cannot be inserted into that cell.


Column 520 is a tag type column. The column 520 comprises three cells that comprise datasets, i.e., content, and one header that comprises the word “Tags”. Cell 530 lies within both the “Tags” column 520 and row 540 which relates to “Project A.” Row 540 includes several non-tag type cells, a first such cell indicates that the manager of Project A is Dan, a second cell that indicates that Dan is the vice president of research and development (VP R&D) of the organization, a third cell that indicates that the reference number of the project is AAA-001, and fourth and fifth cells that indicate that the design process as well as the R&D process are done.


As further described herein above, cell 530 is included in row 540 and column 520, such that the tags exist within cell 530 are associated with and refer to the datasets included within the cells of row 540. The tags may be identical or similar to the dataset within the cells, e.g., the tags “Dan” and “VP R&D” may exist in cell 530. According to another embodiment the tags may not be similar or identical to the datasets such as the tag “High Priority” exists in cell 530. The tag “High Priority”, once inserted into the data structure, row, etc., allows a user to search the phrase “High Priority,” applying the specific tag to a large amount of data structures and efficiently display all results, i.e., data structures, that include this tag on the user device 130 by only accessing an displaying appropriately tagged rows. It should be noted that the rest of the cells displayed are shown only for better understanding the context of the disclosure.



FIG. 5B shows a filtered dataset in a column-oriented data structure according to an embodiment. Row 540 refers to “Project A” and includes the tag “High Priority” that is located within the tag type column associated with row 540. According to an embodiment, a query including the phrase “High Priority” may be received from a user device, such as the user device 220-1 of FIG. 1. In response to receiving the query, i.e., a request to search for specific data associated with the tag “High Priority”, data associated with the tag is extracted and a table is generated to display only the relevant data as stored in the data structure. It should be noted that in FIG. 5A above there are rows that do not include a “High Priority” tag and therefore, after a request to display only projects classified as “High Priority”, row 540 is displayed alone, as shown in FIG. 5B.


The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.


As used herein, the phrase “at least one of” followed by a listing of items means that any of the listed items can be utilized individually, or any combination of two or more of the listed items can be utilized. For example, if a system is described as including “at least one of A, B, and C,” the system can include A alone; B alone; C alone; A and B in combination; B and C in combination; A and C in combination; or A, B, and C in combination.


All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the disclosed embodiment and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosed embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.

Claims
  • 1. A method for generating tag type columns associated with a data structure, the method comprising: generating a sharable board for tracking at least one project and associated processes, the sharable board including a plurality of columns and a plurality of rows, wherein each column includes a plurality of cells that are associated with a single data type, and wherein at least one of the plurality of columns is a non-tag type column;generating at least one tag-type column for inclusion in the sharable board;including the at least one tag-type column in the sharable board;automatically generating at least one tag for inclusion in the at least one tag-type column, wherein the automatically generating includes: identifying at least one data item stored in at least one non-tag type cell of a first row of cells of the sharable board, the first row of cells corresponding to a first project and associated processes of the first project; andgenerating the at least one tag based on the identified at least one data item, wherein the at least one tag is indicative of data in the first row associated with the associated processes of the first project; andinserting the automatically generated at least one tag into a first cell of the at least one tag type column, wherein the first cell is associated with the first row of cells.
  • 2. The method of claim 1, wherein the at least one tag is generated based on the identified at least one data item using a predetermined set of rules.
  • 3. The method of claim 1, further including: receiving a request for performing a change with respect to the inserted at least one tag from a requesting source, andperforming the requested change only when the requesting source has permission for performing the requested change.
  • 4. The method of claim 3, wherein the permission for performing the requested change is based on a change type associated with the requested change.
  • 5. The method of claim 1, further comprising: receiving a query regarding the at least one tag; andgenerating a filtered sharable board only displaying rows related to the at least one tag.
  • 6. The method of claim 5, further comprising: causing the generated filtered sharable board to be displayed on a user device.
  • 7. The method of claim 1, wherein each of the plurality of columns is a column where all cells are uniform in at least one aspect.
  • 8. The method of claim 2, wherein the at least one tag is an indicator of a word when the at least one data item includes the word.
  • 9. The method of claim 1, wherein at least one non-tag type column of the plurality of columns includes status data.
  • 10. The method of claim 1, further comprising providing permissions associated with the sharable board to users, wherein: a first set of users receive a first permission to perform a search using the at least one tag, anda second set of users receive a second permission to edit the at least one tag.
  • 11. The method of claim 1, wherein the sharable board is associated with at least one of a public board, a private board, or an additional shareable board.
  • 12. The method of claim 1, wherein the at least one tag is displayed in a color or font that is different from a color or font of at least a second displayed generated tag.
  • 13. The method of claim 1, wherein the at least one tag is indicative of data associated with a plurality of cells of the first row of cells.
  • 14. The method of claim 1, wherein the at least one non-tag type column includes a status associated with the at least one project.
  • 15. The method of claim 1, wherein the at least one tag includes a first tag based on a first data item stored in a first non-tag type cell of the first row of cells of the sharable board and a second tag based on a second data item stored in a second non-tag type cell of the first row of cells of the sharable board.
  • 16. A non-transitory computer readable medium having stored thereon instructions for causing a processing circuitry to perform a process, the process comprising: generating a sharable board for tracking at least one project and associated processes, the sharable board including a plurality of columns and a plurality of rows, wherein each column includes a plurality of cells that are associated with a single data type, and wherein at least one of the plurality of columns is a non-tag type column;generating at least one tag type column for inclusion in the sharable board;including the at least one tag-type column in the sharable board;automatically generating at least one tag for inclusion in the at least one tag type column, wherein the automatically generating includes: identifying at least one data item stored in at least one non-tag type cell of a first row of cells of the sharable board, the first row of cells corresponding to a first project and associated processes of the first project; andgenerating the at least one tag based on the identified at least one data item, wherein the at least one tag is indicative of data in the first row associated with the associated processes of the first project; andinserting the automatically generated at least one tag into a first cell of the at least one tag type column, wherein the first cell is associated with the first row of cells.
  • 17. The non-transitory computer readable medium of claim 16, wherein the at least one tag is generated based on the identified at least one data item using a predetermined set of rules.
  • 18. The non-transitory computer readable medium of claim 17, wherein the at least one tag is an indicator of a word when the at least one data item includes the word.
  • 19. A system for generating tagged column-oriented data structures, comprising: a processing circuitry; anda memory, the memory containing instructions that, when executed by the processing circuitry, configure the system to: generate a sharable board for tracking at least one project and associated processes, the sharable board including a plurality of columns and a plurality of rows, wherein each column includes a plurality of cells that are associated with a single data type, and wherein at least one of the plurality of columns is a non-tag type column;generate at least one tag type column for inclusion in the sharable board;include the at least one tag-type column in the sharable board;automatically generate at least one tag for inclusion in the at least one tag type column by: identifying at least one data item stored in at least one non-tag type cell of a first row of cells of the sharable board, the first row of cells corresponding to a first project and associated processes of the first project; andgenerating the at least one tag based on the identified at least one data item, wherein the at least one tag is indicative of data in the first row associated with the associated processes of the first project; andinsert the automatically generated at least one tag into a first cell of the at least one tag type column, wherein the first cell is associated with the first row of cells.
  • 20. The system of claim 19, wherein the instructions further configure the system to: receive a request for performing a change with respect to the inserted at least one tag from a requesting source, andperform the requested change only when the requesting source has permission for performing the requested change.
  • 21. The system of claim 19, wherein the system is further configured to: receive a query regarding the at least one tag; andgenerate a filtered sharable board only displaying rows related to the at least one tag.
  • 22. The system of claim 21, wherein the system is further configured to: cause the generated filtered sharable board to be displayed on a user device.
  • 23. The system of claim 19, wherein each of the plurality of columns is a column where all cells are uniform in at least one aspect.
  • 24. The system of claim 19, wherein the at least one tag is an indicator of a word when the at least one data item includes the word.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/701,907 filed on Jul. 23, 2018, the contents of which are hereby incorporated by reference.

US Referenced Citations (966)
Number Name Date Kind
4972314 Getzinger et al. Nov 1990 A
5220657 Bly et al. Jun 1993 A
5479602 Baecker et al. Dec 1995 A
5517663 Kahn May 1996 A
5632009 Rao et al. May 1997 A
5657437 Bishop et al. Aug 1997 A
5682469 Linnett et al. Oct 1997 A
5696702 Skinner et al. Dec 1997 A
5726701 Needham Mar 1998 A
5787411 Groff et al. Jul 1998 A
5880742 Rao et al. Mar 1999 A
5933145 Meek Aug 1999 A
6016438 Wakayama Jan 2000 A
6016553 Schneider et al. Jan 2000 A
6023695 Osborn et al. Feb 2000 A
6034681 Miller et al. Mar 2000 A
6049622 Robb et al. Apr 2000 A
6088707 Bates et al. Jul 2000 A
6108573 Debbins et al. Aug 2000 A
6111573 McComb et al. Aug 2000 A
6157381 Bates et al. Dec 2000 A
6167405 Rosensteel, Jr. et al. Dec 2000 A
6169534 Raffel et al. Jan 2001 B1
6182127 Cronin, III et al. Jan 2001 B1
6185582 Zellweger et al. Feb 2001 B1
6195794 Buxton Feb 2001 B1
6252594 Xia et al. Jun 2001 B1
6266067 Owen et al. Jul 2001 B1
6275809 Tamaki et al. Aug 2001 B1
6330022 Seligmann Dec 2001 B1
6377965 Hachamovitch et al. Apr 2002 B1
6385617 Malik May 2002 B1
6460043 Tabbara et al. Oct 2002 B1
6496832 Chi et al. Dec 2002 B2
6509912 Moran et al. Jan 2003 B1
6510459 Cronin, III et al. Jan 2003 B2
6522347 Tsuji et al. Feb 2003 B1
6527556 Koskinen Mar 2003 B1
6567830 Madduri May 2003 B1
6606740 Lynn et al. Aug 2003 B1
6626959 Moise et al. Sep 2003 B1
6636242 Bowman-Amuah Oct 2003 B2
6647370 Fu et al. Nov 2003 B1
6661431 Stuart et al. Dec 2003 B1
6988248 Tang et al. Jan 2006 B1
7027997 Robinson et al. Apr 2006 B1
7034860 Lia et al. Apr 2006 B2
7043529 Simonoff May 2006 B1
7054891 Cole May 2006 B2
7228492 Graham Jun 2007 B1
7237188 Leung Jun 2007 B1
7249042 Doerr et al. Jul 2007 B1
7272637 Himmelstein Sep 2007 B1
7274375 David Sep 2007 B1
7379934 Forman et al. May 2008 B1
7380202 Lindhorst et al. May 2008 B1
7383320 Silberstein et al. Jun 2008 B1
7389473 Sawicki et al. Jun 2008 B1
7415664 Aureglia et al. Aug 2008 B2
7417644 Cooper et al. Aug 2008 B2
7461077 Greenwood Dec 2008 B1
7489976 Adra Feb 2009 B2
7565270 Bramwell et al. Jul 2009 B2
7617443 Mills et al. Nov 2009 B2
7685152 Chivukula et al. Mar 2010 B2
7707514 Forstall et al. Apr 2010 B2
7710290 Johnson May 2010 B2
7747782 Hunt et al. Jun 2010 B2
7770100 Chamberlain et al. Aug 2010 B2
7827476 Roberts et al. Nov 2010 B1
7827615 Allababidi et al. Nov 2010 B1
7836408 Ollmann et al. Nov 2010 B1
7916157 Kelley et al. Mar 2011 B1
7921360 Sundermeyer et al. Apr 2011 B1
7933952 Parker et al. Apr 2011 B2
7945622 Pegg May 2011 B1
7954043 Bera May 2011 B2
7954064 Forstall et al. May 2011 B2
8046703 Busch et al. Oct 2011 B2
8060518 Timmons Nov 2011 B2
8078955 Gupta Dec 2011 B1
8082274 Steinglass et al. Dec 2011 B2
8108241 Shukoor Jan 2012 B2
8136031 Massand Mar 2012 B2
8151213 Weitzman et al. Apr 2012 B2
8223172 Miller et al. Jul 2012 B1
8286072 Chamberlain et al. Oct 2012 B2
8365095 Bansal et al. Jan 2013 B2
8375327 Lorch et al. Feb 2013 B2
8386960 Eismann et al. Feb 2013 B1
8407217 Zhang Mar 2013 B1
8413261 Nemoy et al. Apr 2013 B2
8423909 Zabielski Apr 2013 B2
8543566 Weissman et al. Sep 2013 B2
8548997 Wu Oct 2013 B1
8560942 Fortes et al. Oct 2013 B2
8566732 Louch et al. Oct 2013 B2
8572173 Briere et al. Oct 2013 B2
8578399 Khen et al. Nov 2013 B2
8601383 Folting et al. Dec 2013 B2
8620703 Kapoor et al. Dec 2013 B1
8621652 Slater, Jr. Dec 2013 B2
8635520 Christiansen et al. Jan 2014 B2
8677448 Kauffman et al. Mar 2014 B1
8719071 MacIntyre et al. May 2014 B2
8738414 Nagar et al. May 2014 B1
8812471 Akita Aug 2014 B2
8819042 Samudrala et al. Aug 2014 B2
8825758 Bailor et al. Sep 2014 B2
8838533 Kwiatkowski et al. Sep 2014 B2
8862979 Hawking Oct 2014 B2
8863022 Rhodes et al. Oct 2014 B2
8869027 Louch et al. Oct 2014 B2
8937627 Otero et al. Jan 2015 B1
8938465 Messer Jan 2015 B2
8954871 Louch et al. Feb 2015 B2
9007405 Eldar et al. Apr 2015 B1
9015716 Fletcher et al. Apr 2015 B2
9021118 John Apr 2015 B2
9026897 Zarras May 2015 B2
9043362 Weissman et al. May 2015 B2
9063958 Müller et al. Jun 2015 B2
9129234 Campbell et al. Sep 2015 B2
9159246 Rodriguez et al. Oct 2015 B2
9172738 daCosta Oct 2015 B1
9177238 Windmueller et al. Nov 2015 B2
9183303 Goel et al. Nov 2015 B1
9223770 Ledet Dec 2015 B1
9239719 Feinstein et al. Jan 2016 B1
9244917 Sharma et al. Jan 2016 B1
9253130 Zaveri Feb 2016 B2
9268604 Herzberg et al. Feb 2016 B1
9286246 Saito et al. Mar 2016 B2
9286475 Li et al. Mar 2016 B2
9292587 Karn et al. Mar 2016 B2
9336502 Mohammad et al. May 2016 B2
9342579 Cao et al. May 2016 B2
9361287 Simon et al. Jun 2016 B1
9390059 Gur et al. Jul 2016 B1
9424287 Schroth Aug 2016 B2
9424333 Bisignani et al. Aug 2016 B1
9424545 Lee Aug 2016 B1
9430458 Rhee et al. Aug 2016 B2
9449031 Barrus et al. Sep 2016 B2
9495386 Tapley et al. Nov 2016 B2
9519699 Kulkarni et al. Dec 2016 B1
9558172 Rampson et al. Jan 2017 B2
9569511 Morin Feb 2017 B2
9613086 Sherman Apr 2017 B1
9635091 Laukkanen et al. Apr 2017 B1
9659284 Wilson et al. May 2017 B1
9679456 East Jun 2017 B2
9686086 Nguyen et al. Jun 2017 B1
9720602 Chen et al. Aug 2017 B1
9727376 Bills et al. Aug 2017 B1
9760271 Persaud Sep 2017 B2
9779150 Sherman et al. Oct 2017 B1
9794256 Kiang et al. Oct 2017 B2
9798829 Baisley Oct 2017 B1
9811676 Gauvin Nov 2017 B1
9866561 Psenka et al. Jan 2018 B2
9870136 Pourshahid Jan 2018 B2
10001908 Grieve et al. Jun 2018 B2
10043296 Li Aug 2018 B2
10067928 Krappe Sep 2018 B1
10078668 Woodrow et al. Sep 2018 B1
10169306 O'Shaughnessy et al. Jan 2019 B2
10176154 Ben-Aharon et al. Jan 2019 B2
10235441 Makhlin et al. Mar 2019 B1
10255609 Kinkead et al. Apr 2019 B2
10282405 Silk et al. May 2019 B1
10282406 Bissantz May 2019 B2
10311080 Folting et al. Jun 2019 B2
10318624 Rosner et al. Jun 2019 B1
10327712 Beymer et al. Jun 2019 B2
10347017 Ruble et al. Jul 2019 B2
10372706 Chavan et al. Aug 2019 B2
10380140 Sherman Aug 2019 B2
10423758 Kido et al. Sep 2019 B2
10445702 Hunt Oct 2019 B1
10452360 Burman et al. Oct 2019 B1
10453118 Smith et al. Oct 2019 B2
10474317 Ramanathan et al. Nov 2019 B2
10489391 Tomlin Nov 2019 B1
10489462 Rogynskyy et al. Nov 2019 B1
10496737 Sayre et al. Dec 2019 B1
10505825 Bettaiah et al. Dec 2019 B1
10528599 Pandis et al. Jan 2020 B1
10534507 Laukkanen et al. Jan 2020 B1
10540152 Krishnaswamy et al. Jan 2020 B1
10540434 Migeon et al. Jan 2020 B2
10546001 Nguyen et al. Jan 2020 B1
10564622 Dean et al. Feb 2020 B1
10573407 Ginsburg Feb 2020 B2
10579724 Campbell et al. Mar 2020 B2
10587714 Kulkarni et al. Mar 2020 B1
10628002 Kang et al. Apr 2020 B1
10698594 Sanches et al. Jun 2020 B2
10706061 Sherman et al. Jul 2020 B2
10719220 Ouellet et al. Jul 2020 B2
10733256 Fickenscher et al. Aug 2020 B2
10740117 Ording et al. Aug 2020 B2
10747764 Plenderleith Aug 2020 B1
10747950 Dang et al. Aug 2020 B2
10748312 Ruble et al. Aug 2020 B2
10754688 Powell Aug 2020 B2
10761691 Anzures et al. Sep 2020 B2
10795555 Burke et al. Oct 2020 B2
10809696 Principato Oct 2020 B1
10817660 Rampson et al. Oct 2020 B2
D910077 Naroshevitch et al. Feb 2021 S
10963578 More et al. Mar 2021 B2
11010371 Slomka et al. May 2021 B1
11030259 Mullins et al. Jun 2021 B2
11042363 Krishnaswamy et al. Jun 2021 B1
11042699 Sayre et al. Jun 2021 B1
11048714 Sherman et al. Jun 2021 B2
11086894 Srivastava et al. Aug 2021 B1
11144854 Mouawad Oct 2021 B1
11222167 Gehrmann et al. Jan 2022 B2
11243688 Remy et al. Feb 2022 B1
11341705 Isaacs et al. May 2022 B1
11429384 Navert et al. Aug 2022 B1
11443390 Caligaris et al. Sep 2022 B1
11620615 Jiang et al. Apr 2023 B2
11682091 Sukman et al. Jun 2023 B2
20010008998 Tamaki et al. Jul 2001 A1
20010032248 Krafchin Oct 2001 A1
20010039551 Saito et al. Nov 2001 A1
20020002459 Lewis et al. Jan 2002 A1
20020065848 Walker et al. May 2002 A1
20020065849 Ferguson et al. May 2002 A1
20020065880 Hasegawa et al. May 2002 A1
20020069207 Alexander et al. Jun 2002 A1
20020075309 Michelman et al. Jun 2002 A1
20020082892 Raffel et al. Jun 2002 A1
20020099777 Gupta et al. Jul 2002 A1
20020138528 Gong et al. Sep 2002 A1
20030033196 Tomlin Feb 2003 A1
20030041113 Larsen Feb 2003 A1
20030051377 Chirafesi, Jr. Mar 2003 A1
20030052912 Bowman, Jr. Mar 2003 A1
20030058277 Bowman-Amuah Mar 2003 A1
20030065662 Cosic Apr 2003 A1
20030093408 Brown et al. May 2003 A1
20030101416 McInnes et al. May 2003 A1
20030135558 Bellotti et al. Jul 2003 A1
20030137536 Hugh Jul 2003 A1
20030187864 McGoveran Oct 2003 A1
20030200215 Chen et al. Oct 2003 A1
20030204490 Kasriel Oct 2003 A1
20030233224 Marchisio Dec 2003 A1
20040032432 Baynger Feb 2004 A1
20040078373 Ghoneimy et al. Apr 2004 A1
20040098284 Petito et al. May 2004 A1
20040111666 Hollcraft Jun 2004 A1
20040133441 Brady et al. Jul 2004 A1
20040138939 Theiler Jul 2004 A1
20040139400 Allam et al. Jul 2004 A1
20040162833 Jones et al. Aug 2004 A1
20040172592 Collie et al. Sep 2004 A1
20040212615 Uthe Oct 2004 A1
20040215443 Hatton Oct 2004 A1
20040230940 Cooper et al. Nov 2004 A1
20040268227 Brid Dec 2004 A1
20050034058 Mills et al. Feb 2005 A1
20050034064 Meyers et al. Feb 2005 A1
20050039001 Hudis et al. Feb 2005 A1
20050039033 Meyers et al. Feb 2005 A1
20050044486 Kotler et al. Feb 2005 A1
20050060342 Farag Mar 2005 A1
20050063615 Siegel et al. Mar 2005 A1
20050066306 Diab Mar 2005 A1
20050086360 Mamou et al. Apr 2005 A1
20050091314 Blagsvedt et al. Apr 2005 A1
20050091596 Anthony et al. Apr 2005 A1
20050096973 Heyse et al. May 2005 A1
20050114305 Haynes et al. May 2005 A1
20050125395 Boettiger Jun 2005 A1
20050165600 Kasravi et al. Jul 2005 A1
20050171881 Ghassemieh et al. Aug 2005 A1
20050210371 Pollock Sep 2005 A1
20050216830 Turner et al. Sep 2005 A1
20050228250 Bitter et al. Oct 2005 A1
20050251021 Kaufman et al. Nov 2005 A1
20050257204 Bryant et al. Nov 2005 A1
20050278297 Nelson Dec 2005 A1
20050289170 Brown et al. Dec 2005 A1
20050289342 Needham et al. Dec 2005 A1
20050289453 Segal et al. Dec 2005 A1
20060009960 Valencot et al. Jan 2006 A1
20060013462 Sadikali Jan 2006 A1
20060015499 Clissold et al. Jan 2006 A1
20060015806 Wallace Jan 2006 A1
20060031148 O'Dell et al. Feb 2006 A1
20060031764 Keyser et al. Feb 2006 A1
20060036568 Moore et al. Feb 2006 A1
20060047553 Fuhrmann et al. Mar 2006 A1
20060047811 Lau et al. Mar 2006 A1
20060053096 Subramanian et al. Mar 2006 A1
20060053194 Schneider et al. Mar 2006 A1
20060069604 Leukart et al. Mar 2006 A1
20060069635 Ram et al. Mar 2006 A1
20060080594 Chavoustie et al. Apr 2006 A1
20060085744 Hays et al. Apr 2006 A1
20060090169 Daniels et al. Apr 2006 A1
20060101324 Goldberg et al. May 2006 A1
20060106642 Reicher et al. May 2006 A1
20060107196 Thanu et al. May 2006 A1
20060111953 Setya May 2006 A1
20060112123 Clark et al. May 2006 A1
20060129415 Thukral et al. Jun 2006 A1
20060129913 Vigesaa et al. Jun 2006 A1
20060136828 Asano Jun 2006 A1
20060150090 Swamidass Jul 2006 A1
20060173908 Browning et al. Aug 2006 A1
20060190313 Lu Aug 2006 A1
20060212299 Law Sep 2006 A1
20060224542 Yalamanchi Oct 2006 A1
20060224568 Debrito Oct 2006 A1
20060224946 Barrett et al. Oct 2006 A1
20060236246 Bono et al. Oct 2006 A1
20060250369 Keim Nov 2006 A1
20060253205 Gardiner Nov 2006 A1
20060271574 Villaron et al. Nov 2006 A1
20060287998 Folting et al. Dec 2006 A1
20060294451 Kelkar et al. Dec 2006 A1
20070027932 Thibeault Feb 2007 A1
20070032993 Yamaguchi et al. Feb 2007 A1
20070033531 Marsh Feb 2007 A1
20070050322 Vigesaa et al. Mar 2007 A1
20070050379 Day et al. Mar 2007 A1
20070073899 Judge et al. Mar 2007 A1
20070092048 Chelstrom et al. Apr 2007 A1
20070094607 Morgan et al. Apr 2007 A1
20070101291 Forstall et al. May 2007 A1
20070106754 Moore May 2007 A1
20070118527 Winje et al. May 2007 A1
20070118813 Forstall et al. May 2007 A1
20070143169 Grant et al. Jun 2007 A1
20070150389 Aamodt et al. Jun 2007 A1
20070168861 Bell et al. Jul 2007 A1
20070174228 Folting et al. Jul 2007 A1
20070174760 Chamberlain et al. Jul 2007 A1
20070186173 Both et al. Aug 2007 A1
20070220119 Himmelstein Sep 2007 A1
20070233647 Rawat Oct 2007 A1
20070239746 Masselle et al. Oct 2007 A1
20070256043 Peters et al. Nov 2007 A1
20070282522 Geelen Dec 2007 A1
20070282627 Greenstein et al. Dec 2007 A1
20070283259 Barry et al. Dec 2007 A1
20070294235 Millett Dec 2007 A1
20070299795 Macbeth et al. Dec 2007 A1
20070300174 Macbeth et al. Dec 2007 A1
20070300185 Macbeth et al. Dec 2007 A1
20080004929 Raffel et al. Jan 2008 A9
20080005235 Hegde et al. Jan 2008 A1
20080010615 Curtis Jan 2008 A1
20080033777 Shukoor Feb 2008 A1
20080034307 Cisler et al. Feb 2008 A1
20080034314 Louch et al. Feb 2008 A1
20080052291 Bender Feb 2008 A1
20080059312 Gem et al. Mar 2008 A1
20080059539 Chin et al. Mar 2008 A1
20080065460 Raynor Mar 2008 A1
20080077530 Banas et al. Mar 2008 A1
20080097748 Haley et al. Apr 2008 A1
20080104091 Chin May 2008 A1
20080126389 Mush et al. May 2008 A1
20080133736 Wensley et al. Jun 2008 A1
20080148140 Nakano Jun 2008 A1
20080155547 Weber et al. Jun 2008 A1
20080163075 Beck et al. Jul 2008 A1
20080183593 Dierks Jul 2008 A1
20080195948 Bauer Aug 2008 A1
20080209318 Allsop et al. Aug 2008 A1
20080216022 Lorch et al. Sep 2008 A1
20080222192 Hughes Sep 2008 A1
20080256014 Gould et al. Oct 2008 A1
20080256429 Penner et al. Oct 2008 A1
20080270597 Tenenti Oct 2008 A1
20080282189 Hofmann et al. Nov 2008 A1
20080295038 Helfman et al. Nov 2008 A1
20080301237 Parsons Dec 2008 A1
20090006171 Blatchley et al. Jan 2009 A1
20090006283 Labrie et al. Jan 2009 A1
20090007157 Ward et al. Jan 2009 A1
20090013244 Cudich et al. Jan 2009 A1
20090019383 Riley et al. Jan 2009 A1
20090024944 Louch et al. Jan 2009 A1
20090043814 Faris et al. Feb 2009 A1
20090044090 Gur et al. Feb 2009 A1
20090048896 Anandan Feb 2009 A1
20090049372 Goldberg Feb 2009 A1
20090075694 Kim et al. Mar 2009 A1
20090077164 Phillips et al. Mar 2009 A1
20090077217 McFarland et al. Mar 2009 A1
20090083140 Phan Mar 2009 A1
20090094514 Dargahi et al. Apr 2009 A1
20090113310 Appleyard et al. Apr 2009 A1
20090129596 Chavez et al. May 2009 A1
20090132331 Cartledge et al. May 2009 A1
20090132470 Vignet May 2009 A1
20090150813 Chang et al. Jun 2009 A1
20090174680 Anzures et al. Jul 2009 A1
20090192787 Roon Jul 2009 A1
20090198715 Barbarek Aug 2009 A1
20090222760 Halverson et al. Sep 2009 A1
20090234699 Steinglass et al. Sep 2009 A1
20090248710 McCormack et al. Oct 2009 A1
20090256972 Ramaswamy et al. Oct 2009 A1
20090262690 Breuer et al. Oct 2009 A1
20090271696 Bailor et al. Oct 2009 A1
20090276692 Rosner Nov 2009 A1
20090292690 Culbert Nov 2009 A1
20090313201 Huelsman et al. Dec 2009 A1
20090313537 Fu et al. Dec 2009 A1
20090313570 Po et al. Dec 2009 A1
20090319623 Srinivasan et al. Dec 2009 A1
20090319882 Morrison et al. Dec 2009 A1
20090327240 Meehan et al. Dec 2009 A1
20090327301 Lees et al. Dec 2009 A1
20090327851 Raposo Dec 2009 A1
20090327875 Kinkoh Dec 2009 A1
20100017699 Farrell et al. Jan 2010 A1
20100031135 Naghshin et al. Feb 2010 A1
20100070845 Facemire et al. Mar 2010 A1
20100070895 Messer Mar 2010 A1
20100082705 Ramesh et al. Apr 2010 A1
20100083164 Martin et al. Apr 2010 A1
20100088636 Yerkes et al. Apr 2010 A1
20100095219 Stachowiak et al. Apr 2010 A1
20100095298 Seshadrinathan et al. Apr 2010 A1
20100100427 McKeown et al. Apr 2010 A1
20100100463 Molotsi et al. Apr 2010 A1
20100114926 Agrawal et al. May 2010 A1
20100149005 Yoon et al. Jun 2010 A1
20100174678 Massand Jul 2010 A1
20100205521 Folting Aug 2010 A1
20100228752 Folting et al. Sep 2010 A1
20100241477 Nylander et al. Sep 2010 A1
20100241948 Andeen et al. Sep 2010 A1
20100241968 Tarara et al. Sep 2010 A1
20100241972 Spataro et al. Sep 2010 A1
20100241990 Gabriel et al. Sep 2010 A1
20100251090 Chamberlain et al. Sep 2010 A1
20100251386 Gilzean et al. Sep 2010 A1
20100257015 Molander Oct 2010 A1
20100262625 Pittenger Oct 2010 A1
20100268705 Douglas et al. Oct 2010 A1
20100268773 Hunt et al. Oct 2010 A1
20100287163 Sridhar et al. Nov 2010 A1
20100287221 Battepati et al. Nov 2010 A1
20100313119 Baldwin et al. Dec 2010 A1
20100324964 Callanan et al. Dec 2010 A1
20100332973 Kloiber et al. Dec 2010 A1
20110010340 Hung et al. Jan 2011 A1
20110016432 Helfman Jan 2011 A1
20110028138 Davies-Moore et al. Feb 2011 A1
20110047484 Mount et al. Feb 2011 A1
20110055177 Chakra et al. Mar 2011 A1
20110066933 Ludwig Mar 2011 A1
20110071869 O'Brien et al. Mar 2011 A1
20110106636 Spear et al. May 2011 A1
20110119352 Perov et al. May 2011 A1
20110154192 Yang et al. Jun 2011 A1
20110179371 Kopycinski et al. Jul 2011 A1
20110205231 Hartley et al. Aug 2011 A1
20110208324 Fukatsu Aug 2011 A1
20110208732 Melton et al. Aug 2011 A1
20110209150 Hammond et al. Aug 2011 A1
20110219321 Gonzalez Veron et al. Sep 2011 A1
20110225525 Chasman et al. Sep 2011 A1
20110231273 Buchheit Sep 2011 A1
20110238716 Amir et al. Sep 2011 A1
20110258040 Ghanasambandam Oct 2011 A1
20110269424 Multer Nov 2011 A1
20110288900 McQueen et al. Nov 2011 A1
20110289397 Eastmond et al. Nov 2011 A1
20110289439 Jugel Nov 2011 A1
20110298618 Stahl et al. Dec 2011 A1
20110302003 Shirish et al. Dec 2011 A1
20120029962 Podgumny et al. Feb 2012 A1
20120035974 Seybold Feb 2012 A1
20120036423 Haynes et al. Feb 2012 A1
20120036462 Schwartz et al. Feb 2012 A1
20120050802 Masuda Mar 2012 A1
20120066587 Zhou et al. Mar 2012 A1
20120072821 Bowling Mar 2012 A1
20120079408 Rohwer Mar 2012 A1
20120081762 Yamada Apr 2012 A1
20120084798 Reeves et al. Apr 2012 A1
20120086716 Reeves et al. Apr 2012 A1
20120086717 Liu Apr 2012 A1
20120089610 Agrawal et al. Apr 2012 A1
20120089914 Holt et al. Apr 2012 A1
20120089992 Reeves et al. Apr 2012 A1
20120096389 Flam et al. Apr 2012 A1
20120096392 Ording et al. Apr 2012 A1
20120102432 Breedvelt-Schouten et al. Apr 2012 A1
20120102543 Kohli et al. Apr 2012 A1
20120110515 Abramoff et al. May 2012 A1
20120116834 Pope et al. May 2012 A1
20120116835 Pope et al. May 2012 A1
20120124749 Lewman May 2012 A1
20120130907 Thompson et al. May 2012 A1
20120131445 Oyarzabal et al. May 2012 A1
20120151173 Shirley et al. Jun 2012 A1
20120158744 Tseng et al. Jun 2012 A1
20120192050 Campbell et al. Jul 2012 A1
20120198322 Gulwani et al. Aug 2012 A1
20120210252 Fedoseyeva et al. Aug 2012 A1
20120215574 Driessnack et al. Aug 2012 A1
20120215578 Swierz, III et al. Aug 2012 A1
20120229867 Takagi Sep 2012 A1
20120233150 Naim et al. Sep 2012 A1
20120233533 Yücel et al. Sep 2012 A1
20120234907 Clark et al. Sep 2012 A1
20120236368 Uchida et al. Sep 2012 A1
20120239454 Taix et al. Sep 2012 A1
20120244891 Appleton Sep 2012 A1
20120246170 Tantorno Sep 2012 A1
20120254252 Jin et al. Oct 2012 A1
20120254770 Ophir Oct 2012 A1
20120260190 Berger et al. Oct 2012 A1
20120278117 Nguyen et al. Nov 2012 A1
20120284197 Strick et al. Nov 2012 A1
20120284643 Sitrick et al. Nov 2012 A1
20120297307 Rider et al. Nov 2012 A1
20120300931 Ollikainen et al. Nov 2012 A1
20120303262 Alam et al. Nov 2012 A1
20120304098 Kuulusa Nov 2012 A1
20120311496 Cao et al. Dec 2012 A1
20120311672 Connor et al. Dec 2012 A1
20120324348 Rounthwaite Dec 2012 A1
20130015954 Thorne et al. Jan 2013 A1
20130018952 McConnell et al. Jan 2013 A1
20130018953 McConnell et al. Jan 2013 A1
20130018960 Knysz et al. Jan 2013 A1
20130024418 Strick et al. Jan 2013 A1
20130024760 Vogel et al. Jan 2013 A1
20130036369 Mitchell et al. Feb 2013 A1
20130041958 Post et al. Feb 2013 A1
20130054514 Barrett-Kahn et al. Feb 2013 A1
20130055113 Chazin et al. Feb 2013 A1
20130059598 Miyagi et al. Mar 2013 A1
20130063490 Zaman et al. Mar 2013 A1
20130086460 Folting et al. Apr 2013 A1
20130090969 Rivere Apr 2013 A1
20130097490 Kotler et al. Apr 2013 A1
20130103417 Seto et al. Apr 2013 A1
20130104035 Wagner et al. Apr 2013 A1
20130111320 Campbell et al. May 2013 A1
20130117268 Smith et al. May 2013 A1
20130159832 Ingargiola et al. Jun 2013 A1
20130159907 Brosche et al. Jun 2013 A1
20130179209 Milosevich Jul 2013 A1
20130211866 Gordon et al. Aug 2013 A1
20130212197 Karlson Aug 2013 A1
20130212234 Bartlett et al. Aug 2013 A1
20130215475 Noguchi Aug 2013 A1
20130238363 Ohta et al. Sep 2013 A1
20130238968 Barrus Sep 2013 A1
20130246384 Victor Sep 2013 A1
20130262527 Hunter Oct 2013 A1
20130268331 Bitz et al. Oct 2013 A1
20130297468 Hirsch et al. Nov 2013 A1
20130307997 O'Keefe et al. Nov 2013 A1
20130318424 Boyd Nov 2013 A1
20130339051 Dobrean Dec 2013 A1
20140002863 Hasegawa et al. Jan 2014 A1
20140006326 Bazanov Jan 2014 A1
20140012616 Moshenek Jan 2014 A1
20140019842 Montagna et al. Jan 2014 A1
20140033307 Schmidtler Jan 2014 A1
20140043331 Makinen et al. Feb 2014 A1
20140046638 Peloski Feb 2014 A1
20140052749 Rissanen Feb 2014 A1
20140058801 Deodhar et al. Feb 2014 A1
20140059017 Chaney Feb 2014 A1
20140068403 Bhargav et al. Mar 2014 A1
20140074545 Minder et al. Mar 2014 A1
20140075301 Mihara Mar 2014 A1
20140078557 Hasegawa et al. Mar 2014 A1
20140082525 Kass et al. Mar 2014 A1
20140095237 Ehrler et al. Apr 2014 A1
20140101527 Suciu Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140109012 Choudhary et al. Apr 2014 A1
20140111516 Hall et al. Apr 2014 A1
20140115515 Adams et al. Apr 2014 A1
20140115518 Abdukalykov et al. Apr 2014 A1
20140129960 Wang et al. May 2014 A1
20140136972 Rodgers et al. May 2014 A1
20140137003 Peters et al. May 2014 A1
20140137144 Järvenpää et al. May 2014 A1
20140172475 Oliphant et al. Jun 2014 A1
20140173401 Oshlag et al. Jun 2014 A1
20140181155 Homsany Jun 2014 A1
20140188748 Cavoue et al. Jul 2014 A1
20140195933 Rao DV Jul 2014 A1
20140214404 Kalla et al. Jul 2014 A1
20140215303 Grigorovitch et al. Jul 2014 A1
20140229816 Yakub Aug 2014 A1
20140240735 Salgado Aug 2014 A1
20140249877 Hull et al. Sep 2014 A1
20140257568 Czaja et al. Sep 2014 A1
20140278638 Kreuzkamp et al. Sep 2014 A1
20140278720 Taguchi Sep 2014 A1
20140280287 Ganti et al. Sep 2014 A1
20140280377 Frew Sep 2014 A1
20140281868 Vogel et al. Sep 2014 A1
20140281869 Yob Sep 2014 A1
20140289223 Colwell et al. Sep 2014 A1
20140304174 Scott et al. Oct 2014 A1
20140306837 Hauck, III Oct 2014 A1
20140310345 Megiddo et al. Oct 2014 A1
20140324497 Verma et al. Oct 2014 A1
20140324501 Davidow et al. Oct 2014 A1
20140325552 Evans et al. Oct 2014 A1
20140365938 Black et al. Dec 2014 A1
20140372856 Radakovitz et al. Dec 2014 A1
20140372932 Rutherford et al. Dec 2014 A1
20150032686 Kuchoor Jan 2015 A1
20150033131 Peev et al. Jan 2015 A1
20150033149 Kuchoor Jan 2015 A1
20150035918 Matsumoto et al. Feb 2015 A1
20150039387 Akahoshi Feb 2015 A1
20150046209 Choe Feb 2015 A1
20150067556 Tibrewal et al. Mar 2015 A1
20150074721 Fishman et al. Mar 2015 A1
20150074728 Chai et al. Mar 2015 A1
20150088822 Raja et al. Mar 2015 A1
20150095752 Studer et al. Apr 2015 A1
20150106736 Torman et al. Apr 2015 A1
20150125834 Mendoza May 2015 A1
20150142676 McGinnis et al. May 2015 A1
20150142829 Lee et al. May 2015 A1
20150153943 Wang Jun 2015 A1
20150154660 Weald et al. Jun 2015 A1
20150169514 Sah et al. Jun 2015 A1
20150169531 Campbell et al. Jun 2015 A1
20150178657 Kleehammer et al. Jun 2015 A1
20150188964 Sharma et al. Jul 2015 A1
20150205830 Bastide Jul 2015 A1
20150212717 Nair et al. Jul 2015 A1
20150213397 Arena Jul 2015 A1
20150220491 Cochrane et al. Aug 2015 A1
20150234887 Greene et al. Aug 2015 A1
20150242091 Lu et al. Aug 2015 A1
20150249864 Tang et al. Sep 2015 A1
20150261796 Gould et al. Sep 2015 A1
20150262121 Riel-Dalpe et al. Sep 2015 A1
20150278699 Danielsson Oct 2015 A1
20150281292 Murayama et al. Oct 2015 A1
20150295877 Roman Oct 2015 A1
20150310126 Steiner et al. Oct 2015 A1
20150317590 Karlson Nov 2015 A1
20150324453 Werner Nov 2015 A1
20150331846 Guggilla et al. Nov 2015 A1
20150363478 Haynes Dec 2015 A1
20150370540 Coslovi et al. Dec 2015 A1
20150370776 New Dec 2015 A1
20150370904 Joshi et al. Dec 2015 A1
20150378542 Saito et al. Dec 2015 A1
20150378711 Cameron et al. Dec 2015 A1
20150378979 Hirzel et al. Dec 2015 A1
20150379472 Gilmour et al. Dec 2015 A1
20160012111 Pattabhiraman et al. Jan 2016 A1
20160018962 Low et al. Jan 2016 A1
20160026939 Schiffer et al. Jan 2016 A1
20160027076 Jackson et al. Jan 2016 A1
20160035546 Platt et al. Feb 2016 A1
20160055134 Sathish et al. Feb 2016 A1
20160055374 Zhang et al. Feb 2016 A1
20160063435 Shah et al. Mar 2016 A1
20160068960 Jung et al. Mar 2016 A1
20160078368 Kakhandiki et al. Mar 2016 A1
20160088480 Chen et al. Mar 2016 A1
20160092557 Stojanovic et al. Mar 2016 A1
20160098574 Bargagni Apr 2016 A1
20160117308 Haider et al. Apr 2016 A1
20160170586 Gallo Jun 2016 A1
20160173122 Akitomi et al. Jun 2016 A1
20160196310 Dutta Jul 2016 A1
20160210572 Shaaban et al. Jul 2016 A1
20160224532 Miller et al. Aug 2016 A1
20160224676 Miller et al. Aug 2016 A1
20160224939 Chen et al. Aug 2016 A1
20160231915 Nhan et al. Aug 2016 A1
20160232489 Skaaksrud Aug 2016 A1
20160246490 Cabral Aug 2016 A1
20160253982 Cheung et al. Sep 2016 A1
20160259856 Ananthapur et al. Sep 2016 A1
20160275150 Bournonnais et al. Sep 2016 A1
20160292206 Ruiz Velazquez et al. Oct 2016 A1
20160299655 Migos et al. Oct 2016 A1
20160308963 Kung Oct 2016 A1
20160321235 He et al. Nov 2016 A1
20160321604 Imaeda et al. Nov 2016 A1
20160335302 Teodorescu et al. Nov 2016 A1
20160335303 Madhalam et al. Nov 2016 A1
20160335604 Reminick et al. Nov 2016 A1
20160335731 Hall Nov 2016 A1
20160335903 Mendoza Nov 2016 A1
20160344828 Häusler et al. Nov 2016 A1
20160350950 Ritchie et al. Dec 2016 A1
20160381099 Keslin et al. Dec 2016 A1
20170017779 Huang et al. Jan 2017 A1
20170031967 Chavan et al. Feb 2017 A1
20170041296 Ford et al. Feb 2017 A1
20170052937 Sirven et al. Feb 2017 A1
20170061342 Lore et al. Mar 2017 A1
20170061360 Rucker et al. Mar 2017 A1
20170061820 Firoozbakhsh Mar 2017 A1
20170063722 Cropper et al. Mar 2017 A1
20170075557 Noble et al. Mar 2017 A1
20170076101 Kochhar et al. Mar 2017 A1
20170090734 Fitzpatrick Mar 2017 A1
20170090736 King et al. Mar 2017 A1
20170091337 Patterson Mar 2017 A1
20170093876 Feng et al. Mar 2017 A1
20170109499 Doshi et al. Apr 2017 A1
20170111327 Wu Apr 2017 A1
20170116552 Deodhar et al. Apr 2017 A1
20170124042 Campbell et al. May 2017 A1
20170124048 Campbell et al. May 2017 A1
20170124055 Radakovitz et al. May 2017 A1
20170124740 Campbell et al. May 2017 A1
20170126772 Campbell et al. May 2017 A1
20170132296 Ding May 2017 A1
20170132652 Kedzlie et al. May 2017 A1
20170139874 Chin May 2017 A1
20170139884 Bendig et al. May 2017 A1
20170139891 Ah-Soon et al. May 2017 A1
20170139992 Morin May 2017 A1
20170140047 Bendig et al. May 2017 A1
20170140219 King et al. May 2017 A1
20170153771 Chu Jun 2017 A1
20170161246 Klima Jun 2017 A1
20170177556 Fay et al. Jun 2017 A1
20170177888 Arora et al. Jun 2017 A1
20170185575 Sood et al. Jun 2017 A1
20170185592 Frei et al. Jun 2017 A1
20170185668 Convertino et al. Jun 2017 A1
20170200122 Edson et al. Jul 2017 A1
20170206366 Fay et al. Jul 2017 A1
20170212924 Semlani et al. Jul 2017 A1
20170220813 Mullins et al. Aug 2017 A1
20170221072 AthuluruTIrumala et al. Aug 2017 A1
20170228421 Sharma et al. Aug 2017 A1
20170228445 Chiu et al. Aug 2017 A1
20170228460 Amel et al. Aug 2017 A1
20170229152 Loganathan et al. Aug 2017 A1
20170236081 Grady Smith et al. Aug 2017 A1
20170242921 Rota Aug 2017 A1
20170257517 Panda Sep 2017 A1
20170262786 Khasis Sep 2017 A1
20170270970 Ho et al. Sep 2017 A1
20170272316 Johnson et al. Sep 2017 A1
20170272331 Lissack Sep 2017 A1
20170277620 Kadioglu Sep 2017 A1
20170277669 Sekharan Sep 2017 A1
20170285879 Pilkington et al. Oct 2017 A1
20170285890 Dolman Oct 2017 A1
20170289619 Xu et al. Oct 2017 A1
20170301039 Dyer et al. Oct 2017 A1
20170315683 Boucher et al. Nov 2017 A1
20170315974 Kong et al. Nov 2017 A1
20170315979 Boucher et al. Nov 2017 A1
20170322963 Ramamurthi Nov 2017 A1
20170324692 Zhou Nov 2017 A1
20170329479 Rauschenbach et al. Nov 2017 A1
20170351252 Kleifges et al. Dec 2017 A1
20170372442 Mejias Dec 2017 A1
20170374205 Panda Dec 2017 A1
20180011827 Avery et al. Jan 2018 A1
20180025084 Conlan et al. Jan 2018 A1
20180026954 Toepke et al. Jan 2018 A1
20180032492 Altshuller et al. Feb 2018 A1
20180032570 Miller et al. Feb 2018 A1
20180039651 Tobin et al. Feb 2018 A1
20180055434 Cheung et al. Mar 2018 A1
20180075104 Oberbreckling et al. Mar 2018 A1
20180075115 Murray et al. Mar 2018 A1
20180075413 Culver et al. Mar 2018 A1
20180075560 Thukral et al. Mar 2018 A1
20180081505 Ron et al. Mar 2018 A1
20180081863 Bathla Mar 2018 A1
20180081868 Willcock et al. Mar 2018 A1
20180088753 Viégas et al. Mar 2018 A1
20180088989 Nield et al. Mar 2018 A1
20180089299 Collins et al. Mar 2018 A1
20180095938 Monte Apr 2018 A1
20180096417 Cook et al. Apr 2018 A1
20180109760 Metter et al. Apr 2018 A1
20180121028 Kuscher et al. May 2018 A1
20180121994 Matsunaga et al. May 2018 A1
20180128636 Zhou May 2018 A1
20180129651 Latvala et al. May 2018 A1
20180157455 Troy et al. Jun 2018 A1
20180157467 Stachura Jun 2018 A1
20180157468 Stachura Jun 2018 A1
20180157633 He et al. Jun 2018 A1
20180173715 Dunne Jun 2018 A1
20180181650 Komatsuda et al. Jun 2018 A1
20180181716 Mander et al. Jun 2018 A1
20180189734 Newhouse et al. Jul 2018 A1
20180210936 Reynolds et al. Jul 2018 A1
20180225270 Bhide et al. Aug 2018 A1
20180260371 Theodore et al. Sep 2018 A1
20180260435 Xu Sep 2018 A1
20180262705 Park et al. Sep 2018 A1
20180276417 Cerezo Sep 2018 A1
20180285918 Staggs Oct 2018 A1
20180293217 Callaghan Oct 2018 A1
20180293587 Oda Oct 2018 A1
20180293669 Jackson et al. Oct 2018 A1
20180329930 Eberlein et al. Nov 2018 A1
20180330320 Kohli Nov 2018 A1
20180357305 Kinast et al. Dec 2018 A1
20180365429 Segal Dec 2018 A1
20180367484 Rodriguez et al. Dec 2018 A1
20180373434 Switzer et al. Dec 2018 A1
20180373757 Schukovets et al. Dec 2018 A1
20190005094 Yi et al. Jan 2019 A1
20190011310 Turnbull et al. Jan 2019 A1
20190012306 Dvorak Jan 2019 A1
20190012342 Cohn Jan 2019 A1
20190034395 Curry et al. Jan 2019 A1
20190036989 Eirinberg et al. Jan 2019 A1
20190042628 Rajpara Feb 2019 A1
20190050445 Griffith et al. Feb 2019 A1
20190050466 Kim et al. Feb 2019 A1
20190050812 Boileau Feb 2019 A1
20190056856 Simmons et al. Feb 2019 A1
20190065545 Hazel et al. Feb 2019 A1
20190068703 Vora et al. Feb 2019 A1
20190073350 Shiotani Mar 2019 A1
20190095413 Davis et al. Mar 2019 A1
20190097909 Puri et al. Mar 2019 A1
20190102425 Obeidat Apr 2019 A1
20190108046 Spencer-Harper et al. Apr 2019 A1
20190113935 Kuo et al. Apr 2019 A1
20190114308 Hancock Apr 2019 A1
20190114589 Voss et al. Apr 2019 A1
20190123924 Embiricos et al. Apr 2019 A1
20190130611 Black et al. May 2019 A1
20190138583 Silk et al. May 2019 A1
20190138588 Silk et al. May 2019 A1
20190138653 Roller et al. May 2019 A1
20190147030 Stein et al. May 2019 A1
20190155821 Dirisala May 2019 A1
20190179501 Seeley et al. Jun 2019 A1
20190199823 Underwood et al. Jun 2019 A1
20190208058 Dvorkin et al. Jul 2019 A1
20190213557 Dotan-Cohen et al. Jul 2019 A1
20190220161 Loftus et al. Jul 2019 A1
20190236188 McKenna Aug 2019 A1
20190243879 Harley et al. Aug 2019 A1
20190251884 Burns et al. Aug 2019 A1
20190258461 Li et al. Aug 2019 A1
20190258706 Li et al. Aug 2019 A1
20190286839 Mutha et al. Sep 2019 A1
20190306009 Makovsky et al. Oct 2019 A1
20190324840 Malamut et al. Oct 2019 A1
20190325012 Delaney et al. Oct 2019 A1
20190327294 Subramani Nadar et al. Oct 2019 A1
20190340550 Denger et al. Nov 2019 A1
20190347077 Huebra Nov 2019 A1
20190361879 Rogynskyy et al. Nov 2019 A1
20190361971 Zenger et al. Nov 2019 A1
20190364009 Joseph et al. Nov 2019 A1
20190371442 Schoenberg Dec 2019 A1
20190377791 Mahmoud et al. Dec 2019 A1
20190391707 Ristow et al. Dec 2019 A1
20200005248 Gerzi et al. Jan 2020 A1
20200005295 Murphy Jan 2020 A1
20200012629 Lereya et al. Jan 2020 A1
20200019548 Agnew et al. Jan 2020 A1
20200019595 Azua Jan 2020 A1
20200026352 Wang et al. Jan 2020 A1
20200026397 Wohlstadter et al. Jan 2020 A1
20200042648 Rao Feb 2020 A1
20200050696 Mowatt et al. Feb 2020 A1
20200053176 Jimenez et al. Feb 2020 A1
20200125574 Ghoshal et al. Apr 2020 A1
20200134002 Tung et al. Apr 2020 A1
20200142546 Breedvelt-Schouten et al. May 2020 A1
20200151630 Shakhnovich May 2020 A1
20200159558 Bak et al. May 2020 A1
20200175094 Palmer Jun 2020 A1
20200176089 Jones et al. Jun 2020 A1
20200192785 Chen Jun 2020 A1
20200193388 Tran-Kiem et al. Jun 2020 A1
20200247661 Rao et al. Aug 2020 A1
20200265112 Fox et al. Aug 2020 A1
20200279315 Manggala Sep 2020 A1
20200293616 Nelson et al. Sep 2020 A1
20200301678 Burman et al. Sep 2020 A1
20200301902 Maloy et al. Sep 2020 A1
20200310835 Momchilov Oct 2020 A1
20200326824 Alonso et al. Oct 2020 A1
20200327244 Blass et al. Oct 2020 A1
20200334019 Bosworth et al. Oct 2020 A1
20200348809 Drescher Nov 2020 A1
20200349320 Owens Nov 2020 A1
20200356740 Principato Nov 2020 A1
20200356873 Nawrocke et al. Nov 2020 A1
20200374146 Chhabra et al. Nov 2020 A1
20200380212 Butler et al. Dec 2020 A1
20200380449 Choi Dec 2020 A1
20200387664 Kusumura et al. Dec 2020 A1
20200401581 Eubank et al. Dec 2020 A1
20200409949 Saxena et al. Dec 2020 A1
20200410395 Ray et al. Dec 2020 A1
20210014136 Rath Jan 2021 A1
20210019287 Prasad et al. Jan 2021 A1
20210021603 Gibbons Jan 2021 A1
20210034058 Subramanian et al. Feb 2021 A1
20210035069 Parikh Feb 2021 A1
20210042796 Khoury et al. Feb 2021 A1
20210049524 Nachum et al. Feb 2021 A1
20210049555 Shor Feb 2021 A1
20210055955 Yankelevich et al. Feb 2021 A1
20210056509 Lindy Feb 2021 A1
20210065203 Billigmeier et al. Mar 2021 A1
20210072883 Migunova et al. Mar 2021 A1
20210073526 Zeng et al. Mar 2021 A1
20210084120 Fisher et al. Mar 2021 A1
20210124749 Suzuki et al. Apr 2021 A1
20210124872 Lereya Apr 2021 A1
20210136027 Barbitta et al. May 2021 A1
20210149553 Lereya et al. May 2021 A1
20210149688 Newell et al. May 2021 A1
20210149925 Mann et al. May 2021 A1
20210150489 Haramati et al. May 2021 A1
20210165782 Deshpande et al. Jun 2021 A1
20210166196 Lereya et al. Jun 2021 A1
20210166339 Mann et al. Jun 2021 A1
20210173682 Chakraborti et al. Jun 2021 A1
20210174006 Stokes Jun 2021 A1
20210192126 Gehrmann et al. Jun 2021 A1
20210248311 Helft et al. Aug 2021 A1
20210257065 Mander et al. Aug 2021 A1
20210264220 Wei et al. Aug 2021 A1
20210273957 Boyer et al. Sep 2021 A1
20210326519 Lin et al. Oct 2021 A1
20210328888 Rath Oct 2021 A1
20210342785 Mann et al. Nov 2021 A1
20210365446 Srivastava et al. Nov 2021 A1
20210374197 Chauhan Dec 2021 A1
20210397585 Seward Dec 2021 A1
20220099454 Decrop et al. Mar 2022 A1
20220121325 Roberts et al. Apr 2022 A1
20220121478 Chivukula et al. Apr 2022 A1
20220221591 Smith et al. Jul 2022 A1
20220222427 Mann et al. Jul 2022 A1
20220291666 Cella et al. Sep 2022 A1
20220292180 Chauhan Sep 2022 A1
20230153651 Bi et al. May 2023 A1
20230316382 Faricy et al. Oct 2023 A1
20230419161 Dines Dec 2023 A1
20240046142 Marks et al. Feb 2024 A1
20240053727 Timisescu et al. Feb 2024 A1
Foreign Referenced Citations (25)
Number Date Country
2828011 Sep 2012 CA
103064833 Apr 2013 CN
107123424 Sep 2017 CN
107422666 Dec 2017 CN
107623596 Jan 2018 CN
107885656 Apr 2018 CN
108717428 Oct 2018 CN
112929172 Jun 2021 CN
3443466 Dec 2021 EP
20150100760 Sep 2015 KR
20220016276 Feb 2022 KR
2004100015 Nov 2004 WO
2006116580 Nov 2006 WO
2008109541 Sep 2008 WO
2014088393 Jun 2014 WO
2017202159 Nov 2017 WO
2018023798 Feb 2018 WO
2018042424 Mar 2018 WO
2020139865 Jul 2020 WO
2020187408 Sep 2020 WO
2021096944 May 2021 WO
2021144656 Jul 2021 WO
2021161104 Aug 2021 WO
2021220058 Nov 2021 WO
2022153122 Jul 2022 WO
Non-Patent Literature Citations (110)
Entry
Barai, S., Cardenas, A.F.: Image annotation system using visual and textual features. In: Proceedings of the 16th International Conference on Distributed Multi-media Systems, pp. 289-296 (2010) (Year: 2010).
Yamada et al. A Software Tag Generation System to Realize Software Traceability, 2010 Asia Pacific Software Engineering Conference 2010, pp. 423-432. (Year: 2010).
Barai, S., et al., “Image Annotation System Using Visual and Textual Features”, In: Proceedings of the 16th International Conference on Distributed Multi-media Systems, pp. 289-296 (2010).
U.S. Appl. No. 17/143,897, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,603, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,745, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,482, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,768, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,677, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,653, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,916, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,475, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,865, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,462, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,470, filed Jan. 7, 2021.
U.S. Appl. No. 17/243,722, filed Apr. 29, 2021.
U.S. Appl. No. 17/143,798, filed Jan. 7, 2021.
U.S. Appl. No. 17/143,892, filed Jan. 7, 2021.
U.S. Appl. No. 17/243,716, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,727, filed Apr. 29, 2021.
U.S. Appl. No. 17/232,978, filed Apr. 16, 2021.
U.S. Appl. No. 17/243,809, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,901, filed Apr. 29, 2021.
U.S. Appl. No. 17/232,354, filed Apr. 16, 2021.
U.S. Appl. No. 17/243,898, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,969, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,742, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,752, filed Apr. 29, 2021.
U.S. Appl. No. 17/232,754, filed Apr. 16, 2021.
U.S. Appl. No. 17/232,827, filed Apr. 16, 2021.
U.S. Appl. No. 17/243,763, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,848, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,934, filed Apr. 29, 2021.
U.S. Appl. No. 17/244,121, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,807, filed Apr. 29, 2021.
U.S. Appl. No. 17/244,027, filed Apr. 29, 2021.
U.S. Appl. No. 17/244,157, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,725, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,737, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,748, filed Apr. 29, 2021.
U.S. Appl. No. 16/453,065, filed Jun. 26, 2019.
U.S. Appl. No. 17/243,691, filed Apr. 29, 2021.
U.S. Appl. No. 17/565,534, filed Dec. 30, 2021.
U.S. Appl. No. 17/243,892, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,977, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,764, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,837, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,729, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,802, filed Apr. 29, 2021.
U.S. Appl. No. 17/242,452, filed Apr. 28, 2021.
U.S. Appl. No. 17/243,891, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,775, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,731, filed Apr. 29, 2021.
U.S. Appl. No. 17/243,768, filed Apr. 29, 2021.
U.S. Appl. No. 16/502,679, filed Jul. 3, 2019.
U.S. Appl. No. 17/565,652, filed Dec. 30, 2021.
U.S. Appl. No. 17/565,699, filed Dec. 30, 2021.
U.S. Appl. No. 17/565,853, filed Dec. 30, 2021.
U.S. Appl. No. 17/565,880, filed Dec. 30, 2021.
U.S. Appl. No. 17/564,745, filed Dec. 29, 2021.
U.S. Appl. No. 17/565,526, filed Dec. 30, 2021.
U.S. Appl. No. 17/565,614, filed Dec. 30, 2021.
U.S. Appl. No. 17/565,718, filed Dec. 30, 2021.
U.S. Appl. No. 17/565,843, filed Dec. 30, 2021.
U.S. Appl. No. 17/565,801, filed Dec. 30, 2021.
U.S. Appl. No. 17/565,821, filed Dec. 30, 2021.
U.S. Appl. No. 17/565,780, filed Dec. 30, 2021.
U.S. Appl. No. 17/143,905, filed Jan. 7, 2021.
B. Ionescu, C. Gadea, B. Solomon, M. Trifan, D. Ionescu and V. Stoicu-Tivadar, “Achat-centric collaborative environment for web-based real-time collaboration,” 2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2015, pp. 105-110 (Year: 2015).
Donath, “Interfaces Make Meaning” chapter from The Social Machine: Designs for Living Online, pp. 41-76, copyright 2014. ( Year: 2014).
Stancu, Florin-Alexandru, Mihai Chiroiu, and Razvan Rughinis. “SecCollab-Improving Confindentiality for Existing Cloud-Based Collaborative Editors.” In 2017 21st International Conferences on Control Systems and Computer Scient (CSCS), pp. 324-331. IEEE,2017. (Year: 2017).
Susanne Hupfer, Li-Te Cheng, Steven Ross, and John Patterson. 2004. Introducing collaboration into an application development environment. In Proceedings of the 2004 ACM conference on Computer supported cooperative work (CSCW '04). Association for Computing Machinery, New York, NY, USA, 21-24 (Year: 2004).
Using Filters in Overview, published Mar. 7, 2017. https://www.youtube.com/watch?v=hycANhz7gww (Year: 2017).
Abor Jr, C., “Low-Code and No-Code AI: New AI Development—What is code anymore ?!?! ” (as retrieved from https://www.linkedin.com/pulse/ low-code-no-code-ai-new-development-what-code-anymore-c-l-abor-jr); Jul. 15, 2023 (Year: 2023).
Aylward, Grant, “Drag-and-Drop AI Enables Digital Workforce Deployment at Scale Share” (as retrieved from https://www.blueprism.com/resources/ blog/drag-and-drop-ai-enables-digital-workforce-deployment-at-scale/); Mar. 19, 202 (Year: 2020).
Chen et al., “Artificial Intelligence in Education: A Review,” IEEEAccess vol. 8, pp. 75264-75278 (Year: 2020).
Dapulse.com, “High Level Overview”, Extracted from https://web.archive.org/web/20161104170936/https://dapulse.com (Year: 2016).
Dorn et al., “Efficient Full-Field Vibration Measurements and Operational Modal Analysis Using Neuromorphic Event-Based Imaging,” Journal of Engineering Mechanics, vol. 144, No. 7, Jul. 1, 2018 (Year: 2018).
Freund, K., “SiMa.ai Creates Drag-And-Drop Platform For Building Al Workflows” (as retrieved from https://www.forbes.com/sites/karlfreund/2023/09/12/simaai-creates-drag-and-drop-platform-for-building-ai-workflows/?sh=789de8466046); Sep. 12, 2023 (Year: 2023).
Monday.Com et al., “Basic Walkthrough”, https://www.youtube.com/watch?v=VpbgWyPf74g; Aug. 9, 2019. (Year: 2019).
Sreenath et al., “Agent-based service selection,” Journal of Web Semantics 1.3, pp. 261-279 (Year: 2004).
Wilson et al., “Beyond Social Graphs: User Interactions in Online Social Networks and their Implications,” ACM Transactions on the Web, vol. 6, No. 4, Article 17, Nov. 2012 (Year: 2012).
Zhang et al., “Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking,” Automation in Construction, vol. 73, 2017, pp. 45-57, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2016.08.027.
Zhenjiang et al., “Asynchronous Event-Based Visual Shape Tracking for Stable Haptic Feedback in Microrobotics,” IEEE Transactions on Robotics, IEEE Service Center, Piscataway, NJ, vol. 28, No. 5, Oct. 1, 2012, pp. 1081-1089 (Year: 2012).
Ziheng, G., “Advanced Cyberinfrastructure for Managing Hybrid Geoscientific AI Workflows” (Year: 2019).
International Search Report and Written Opinion in PCT/IB2023/061992, mailed Mar. 19, 2024, 7 pages.
International Search Report in PCT/1B2021/000090 dated Jul. 27, 2021.
ShowMyPC, “Switch Presenter While Using ShowMyPC”; web archive.org; Aug. 20, 2016.
International Search Report and Written Opinion of the International Search Authority in PCT/1B2020/000024, mailed May 3, 2021 (13 pages).
“Pivot table—Wikipedia”; URL: https://en.wikepedia .org/w/index.php?title=Pivot_table&oldid=857163289, originally retrieve on Oct. 23, 2019; retrieved on Jul. 16, 2021.
Vishal Singh, “A Theoretical Framework of a BIM-based Multi-Disciplinary Collaboration Platform”. Nov. 5, 2020, Automation in Construction, 20 (2011), pp. 134-144 (Year: 2011).
Edward A. Stohr, Workflow Automation: Overview and Research Issues, 2001, Information Systems Frontiers 3:3, pp. 281-296 (Year: 2001).
International Search Report and Written Opinion of the International Search Authority in PCT/1B2021/000297, mailed Oct. 12, 2021 (20 pages).
Dapulse.com “features”.extracted from web.archive.or/web/2014091818421/https://dapulse.com/features; Sep. 2014 (Year: 2014).
D'Alessio et al., Monday.com Walkthrough 2018\All Features, Platforms & Thoughts, Mar. 1, 2018, pp. 1-55, 2018.
Rodrigo et al., Project Management with Monday.com: a 101 Introduction; Jul. 22. 2019, pp. 1-21, 2019.
International Search Report and Written Opinion of the International Searching Authority in PCT/IB2020/000658, mailed Nov. 11, 2020 (12 pages).
International Search Report in PCT/IB2020/000974, mailed May 3, 2021 (19 pages).
Stephen Larson et al., Introducing Data Mining Concepts Using Microsoft Excel's Table Analysis Tools, Oct. 2015, [Retrieved on Nov. 19, 2021]. Retrieved from the internet: <URL: https://dl.acm.org/doi/pdf/10.5555/2831373.2831394> 3 Pages (127-129) (Year: 2015).
Isaiah Pinchas et al., Lexical Analysis Tool, May 2004, [Retrieved on Nov. 19, 2021], Retrieved from the internet: <URL: https:// dl.acm.org/doi/pdf/10.1145/997140.997147> 9 Pages (66-74) (Year: 2004).
Beate List, “An Evaluation of Conceptual Business Process Modelling Languages”, 2006, SAC'06, April 23-27, pp. 1532-1539 (Year: 2006).
“demonstracion en espanol de Monday.com”, published Feb. 20. 2019. https://www.youtube.com/watch?v=z0qydTgof1A (Year: 2019).
Desmedt, Yvo, and Arash Shaghaghi, “Function-Based Access Control (FBAC) From Access Control Matrix to Access Control Tensor.” In Proceedings of the 8th ACM CCS international Workshop on Managing Insider Security Threats, pp. 89-92. (2016).
Sajjad Bahrebar et al., “A Novel Type-2 Fuzzy Logic for Improved Risk Analysis of Proton Exchange Membrane Fuel Cells in Marine Power Systems Application”, Energies, 11, 721, pp. 1-16, Mar. 22, 2018.
Pedersen et al., “Tivoli: an electronic whiteboard for informal workgroup meetings”, Conference on Human Factors in Computing Systems: Proceedings of the INTERACT '93 and CHI '93 conference on Human factors in computing systems; Apr. 24-29, 1993:391-398. (Year 1993).
Kollmann, Franz, “Realizing Fine-Granular Read and Write Rights on Tree Structured Documents.” in The Second International Conference on Availability, Reliability and Security (ARES'07), pp. 517-523. IEEE, 2007. (Year: 2007).
Baarslag, “Negotiation as an Interaction Mechanism for Deciding App Permissions.” In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 2012-2019. 2016 (Year: 2016).
Peltier, “Clustered and Stacked Column and Bar Charts”, Aug. 2011, Peltier Technical Services, Inc., pp. 1-128; (Year: 2011).
Anupam, V., et al., “Personalizing the Web Using Site Descriptions”, Proceedings of the Tenth International Workshop on Database and Expert Systems Applications, ISBN: 0-7695-0281-4, DOI: 10.1109/DEXA.1999.795275, Jan. 1, 1999, pp. 732-738. (Year: 1999).
Gutwin, C. et al., “Supporting Informal Collaboration in Shared-Workspace Groupware”, J. Univers. Comput. Sci., 14(9), 1411-1434 (2008).
Related Publications (1)
Number Date Country
20200026706 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
62701907 Jul 2018 US