The present invention relates to cryptography technology in information security field, and more particularly, to a system and method for generating analog-digital mixed chaotic signals as well as an encryption communication method.
With the development of computer, communication and network technology, the progress of global informationization is speeding up. Up to now, network information system has become an infrastructure for countries, industries, groups and enterprises under development. The communication security of the network information system has therefore become an important issue associated with the continuous and stable development of economy and the safety of a country.
At present, chaos has been applied in the secure communication field. The so-called chaos refers to a complex external manifestation resulted from its internal randomicity. In other words, the chaos is a kind of non-random movements that appears to be random. The chaotic signals are characterized by ergodicity, wideband, noise like, sensitive to the initial conditions, rapidly attenuated self correlation and weak cross correlation, and the like. These characteristics provide numerous mechanisms and methods to achieve secure communication. The Chaotic Encryption System in the art includes digital chaotic system and continuous (or analog) chaotic system.
The digital chaotic system is less affected by noise interference and device parameters, and thereby it is easy to run stably for a long time and may be duplicated accurately. However, because digital chaotic sequences are all generated on computers or other equipment with limited precision, any digital chaotic sequence generator may be classified into a finite automation. In this case, the generated digital chaotic sequence presents degraded characteristics, such as short period, strong correlation and small linear complexity; in other words, the dynamics characteristics of a real digital chaotic system are much different from those of ideal real-value chaotic system.
Compared with the digital chaotic system, the continuous chaotic system (i.e. analog chaotic system) has a continuous state (for example, voltage, current etc.) space, which allows the generated chaotic sequences to have a good cryptology characteristic. However, due to the effects of the deviation of device parameters and the circuit noise, it is hard to achieve a stable synchronization between two continuous chaotic systems for a long time. This severely slows the progress of practical application of the chaotic synchronization based secure communication system.
Various embodiments of the invention provide a system and method for generating analog-digital mixed chaotic signal as well as an encryption communication method thereof, in which the problem of characteristic degradation is not tended to occur in the digital chaotic system, and the continuous chaotic system is capable of running stably and synchronously for a long time.
One embodiment of the invention provides an analog-digital mixed chaotic system, including:
a digital chaotic system adapted to generate a digital chaotic sequence;
a continuous chaotic system adapted to generate a continuous chaotic signal;
a synchronization coupling module adapted to generate a synchronizing impulse signal to the continuous chaotic system for controlling the continuous chaotic system, according to states of the digital chaotic system and the continuous chaotic system, and output the synchronizing impulse signal to the continuous chaotic system;
a disturbance coupling module adapted to disturb the digital chaotic system according to the state of the continuous chaotic system; and
a controlling module adapted to control the states of the digital chaotic system, the continuous chaotic system, the synchronization coupling module and the disturbance coupling module.
Another embodiment of the invention provides a method for generating an analog-digital mixed chaotic signal, including:
generating a digital chaotic sequence from a digital chaotic system;
generating a continuous chaotic signal from a continuous chaotic system;
generating a synchronizing impulse signal for controlling the continuous chaotic system according to states of the digital chaotic system and the continuous chaotic system, and outputting the synchronizing impulse signal to the continuous chaotic system; and disturbing the digital chaotic system according to the state of the continuous chaotic system.
Yet another embodiment of the invention provides an encryption communication system, comprising a transmitting party, and a receiving party configured to communicate with the transmitting party, wherein a first analog-digital mixed chaotic system included in the transmitting party is configured to encrypt a plaintext to be transmitted by using a chaotic signal generated by itself, and outputting a resultant cipher text; and a second analog-digital mixed chaotic system included in the receiving party is configured to decrypt a received cipher text by using a chaotic signal generated by itself, and outputting a resultant plaintext; and the system is wherein: initial conditions and system parameters of the digital chaotic systems in the first and the second analog-digital mixed chaotic systems are substantially the same, and the first and the second analog-digital mixed chaotic systems according to the one embodiment of present invention.
Embodiments of the invention utilize the complementarity, in terms of the cryptography characteristics and the implementation technology, between a digital chaotic system and a chaotic synchronization based secure communication system. In these embodiments, the digital chaotic systems, which are separated from each other in location, control their own local continuous chaotic systems respectively, so that both of the separated continuous chaotic systems may run in a stable and synchronous state for a long time without transmitting synchronizing signals. This effectively enhances anti-attack ability of a chaotic system. Also in these embodiments, the continuous chaotic systems in turn disturb the respective local digital chaotic system to prevent the digital chaotic systems from characteristic degradation. Therefore, in the analog-digital mixed chaotic system, the shortcomings that the continuous chaotic systems cannot run in a stable and synchronous state for a long time and thereby the synchronizing signals need to be transmitted through a channel can be overcome, and meanwhile, the problem, i.e. the characteristic degradation of digital chaotic systems can be avoided.
The present invention will be further described in conjunction with the figures and embodiments as follows, in which:
The analog-digital mixed chaotic system 1 includes a digital chaotic system 11, a continuous chaotic system 12, a timing/counting module 13, a controlling module 14, a synchronization coupling module 15, a disturbance coupling module 16, an analog to digital (A/D) converting module 17, encoding modules 18 and 19, a multiplexing switch 110, data buffering modules 111 and 112, and a encrypting/decrypting module 113, and the like.
The analog-digital mixed chaotic system 2 includes a digital chaotic system 21, a continuous chaotic system 22, a timing/counting module 23, a controlling module 24, a synchronization coupling module 25, a disturbance coupling module 26, an A/D converting module 27, encoding modules 28 and 29, a multiplexing switch 210, data buffering modules 211 and 212, and a encrypting/decrypting module 213, and the like.
Here, the digital chaotic systems 11 and 21 may be represented by a difference equation of a continuous chaotic system with finite precision, or a discrete chaotic system with other finite precision. The dynamics characteristics of the digital chaotic systems 11 and 21 may be expressed as the following equation (1):
X
j(i+1)=G(Xj(i)) i=0, 1, 2, . . . ; j=1,2 (1)
where, j=1, 2 denotes the digital chaotic systems 11 and 21 respectively,
Xj(i) denotes a m-dimensional state variable of the digital chaotic system, in which X1(0) and X2(0) represent the initial conditions of the digital chaotic systems 11 and 21, respectively, and X1(0)=X2(0).
The digital chaotic systems 11 and 21 generate an output every time after Δ5′ times of iterations are completed. It is assumed that T1 and T2 are the respective time required for the digital chaotic systems 11 and 21 to execute one iteration. For simplicity, given that T1<T2 without losing universality, the transmitting and receiving parties may take T2 as the time required for each of digital chaotic systems 11 and 21 to execute one iteration.
Since the initial conditions and system parameters of the digital chaotic systems 11 and 21 are identical to each other, the digital chaotic systems 11 and 21 can be completely synchronized. Here, in order to ensure that the continuous chaotic systems 12 and 22 can be synchronized even in the case that a data transmission delay occurs and the respective time required for one iteration of the digital chaotic systems 11 and 21 is inconsistent, the operating states of the digital chaotic systems 11 and 21 may be classified into a running state (i.e. iterative computing state) and a holding state.
The dynamics characteristics of the continuous chaotic systems 12 and 22 may be expressed by the following equation (2):
where, j=1,2 denotes the continuous chaotic systems 12 and 22 respectively,
{tilde over (X)}j (t) is a n-dimensional state variable of the continuous chaotic system, in which {tilde over (X)}1(0) and X2(0) are initial conditions of the continuous chaotic systems 12 and 22, respectively,
A is a constant matrix of order n, and
Φ:Rn→Rn is a function for describing the nonlinear component of the continuous chaotic system.
Also, in order to ensure that the continuous chaotic systems 12 and 22 may be synchronized even in the case that a data transmission delay occurs and the respective time required for one iteration of the digital chaotic systems 11 and 21 is inconsistent, the operating states of the continuous chaotic systems 12 and 22 may be classified into a running state and a holding state as well.
The timing/counting modules 13 and 23 of
Firstly, the timing/counting modules 13 and 23 may record the times of iterations of the digital chaotic systems 11 and 21, respectively.
By reference to
Secondly, the timing/counting modules 13 and 23 may record the durations for which the continuous chaotic systems 12 and 22 stay in the continuous running state (i.e. running time of the continuous chaotic system) respectively.
By reference to
The controlling modules 14 and 24 of
Firstly, the controlling modules 14 and 24 may control respective local digital chaotic systems 11 and 21 to initiate each key generation process, and control respective local digital chaotic systems 11 and 21 to complete each key generation process, according to the states of the respective local data buffering modules 111, 112 or 211, 212 and the signals from the counters C11 and C21 in the timing/counting modules 13 and 23.
Secondly, the controlling modules 14 and 24 may control the output of the respective local digital chaotic systems 11 and 21 to the respective local synchronization coupling modules 15 and 25, according to the signals from the counters C12 and C22 in the respective local timing/counting modules 13 and 23.
Thirdly, the controlling modules 14 and 24 may control the time at which the synchronization coupling modules 15 and 25 output the synchronizing impulse signals, according to the signals from the timers T11 and T21 in the respective local timing/counting modules 13 and 23, so that the continuous chaotic systems 12 and 22 may realize stable chaotic synchronization, without transmitting the synchronizing impulse signals.
Fourthly, the controlling modules 14 and 24 may control the time at which the disturbance coupling modules 16 and 26 sample the respective local continuous chaotic systems 12 and 22, according to the signals from the timers T11 and T21 in the respective local timing/counting modules 13 and 23.
Fifthly, the controlling modules 14 and 24 may control the time at which the disturbance coupling modules 16 and 26 output the disturbing signals, according to the signals from the counters C13 and C23 in the respective local timing/counting modules 13 and 23, so that the digital chaotic systems 11 and 21 can overcome the problem of characteristic degradation.
It can be seen from the above, the controlling modules 14 and 24 may control the operating states of respective local digital chaotic systems 11 and 21 and the operating states of respective local continuous chaotic systems 12 and 22, according to the signals from all the counters and timers in the respective local timing/counting modules 13 and 23. Further, the controlling modules 14 and 24 may control data rate of the dataflow inputted into the data buffers, according to the states of respective local data buffers.
Under control of the controlling modules 14 and 24 of
The synchronization coupling modules 15 and 25 may be adapted to realize the synchronization between the separated continuous chaotic systems 12 and 22 according to the following mathematical model (3):
Δ{tilde over (X)}j|t=t
where, j=1,2 denotes the synchronization coupling modules 15 and 25 respectively;
B is a diagonal matrix of order n;
tk denotes the time at which the synchronization coupling modules 15 and 25 output the synchronizing impulse signal, and tk=k·Δ1;
{tilde over (X)}j(tk) denotes state values of the continuous chaotic systems 12 and 22 at the time t=tk;
nk denotes the times of iterations when the digital chaotic systems 11 and 21 output state values to the respective local synchronization coupling modules 15 and 25;
Xj (nk) denotes state values of the digital chaotic systems 11 and 21 at i=nk;
C(•) is a function for converting binary state values of the digital chaotic systems 11 and 21 into decimal state values (i.e. to realize digital to analog conversion), and
W(•) is function for mapping an independent variable from an m-dimension space to a n-dimension space.
At the transmitting and receiving parties, it is required to construct, according to a criterion for keeping stable synchronization between the continuous chaotic systems 12 and 22, a matrix B for adjusting the error magnitude between W(C(Xj(nk))) and {tilde over (X)}j(tk). Further, it is required to determine the time tk at which the synchronization coupling modules 15 and 25 output the synchronizing impulse signal, and to synchronously control the respective local continuous chaotic systems. In this way, a stable chaotic synchronization can be achieved between the separated continuous chaotic systems 12 and 22, without transmitting the synchronizing impulse signals therebetween.
Under control of the controlling modules 14 and 24 of
The disturbance coupling modules 16 and 26 may prevent characteristic degradation of the digital chaotic systems 11 and 12 according to the following mathematical model (4):
where, j=1,2 denotes the disturbance coupling modules 16 and 26 respectively;
{tilde over (X)}j (τk) (j=1,2) indicates state value of each the continuous chaotic systems 12 and 22 at the time of t=τk (i.e. the sample value obtained by sampling the individual local continuous chaotic systems 12 and 22 at the time of t=τk by each of the disturbance coupling modules 16 and 26, where τk=k·Δ2);
D(•) is a function for converting a decimal sample value into a binary sample value with finite precision,
K is a predetermined positive integer, and
Δ3′ indicates a predetermined number of times of iterations, and
H(•) is a disturbance coupling function, which disturbs the digital chaotic systems every time that Δ3′ times of iterations are completed in the digital chaotic systems 11 and 21.
At the transmitting and receiving parties, it is required to construct the disturbance coupling function H(•) according to the characteristics of the continuous chaotic systems 12 and 22 and the characteristic degradation property of the digital chaotic systems 11 and 21. Further, it is required to determine the time tk (i.e. sampling clock period Δ2) at which the continuous chaotic systems is to be sampled, and the times of iterations Δ3′ for disturbing the respective local digital chaotic systems, so that the statistical characteristic of the disturbance coupling function H(•) may approach to a probability distribution that truncation error of a digital chaotic system follows, with probability 1 in a certain precision. Therefore, the characteristic degradation caused by the finite precision effect may be overcome in the digital chaotic systems affected by the disturbed signal.
The A/D converting modules 17 and 27 of
The encoding modules 18, 19 and 28, 29 of
The multiplexing switches 110 and 210 of
The data buffering modules 111, 112 and 211, 212 of
The encrypting/decrypting modules 113 and 213 of
In the analog-digital mixed chaotic systems 1 and 2, the controlling modules 14 and 24 control the respective local digital chaotic systems, the continuous chaotic systems, the synchronization coupling modules, the disturbance coupling module and the data buffers, according to the various clock signals and control signals provided by the timing/counting modules 13 and 23.
Next, the main timing for running the analog-digital mixed chaotic system 1 will be illustrated by taking an example in which the system 1 encrypts a data signal.
In
(1) I1,1 indicates the input data stream, where each impulse indicates that one bit of data is inputted into the data buffering module 112 of the analog-digital mixed chaotic system 1.
(2) D1,1 and D1,2 indicate whether data in the two buffers B11 and B12 of the data buffering module 112 is ready, respectively. If data in a buffer is ready, a state flag of the buffer is set to “1”, otherwise, the state flag of the buffer is set to “0”. If a state flag of a buffer is “1”, new data is prohibited to be inputted into this buffer, and if the state flag is “0”, new data is allowed to be inputted into this buffer. Moreover, when data within the above buffer is encrypted/decrypted, the corresponding state flag will be set to “0”.
(3) C1,0 indicates the data of which buffers will be processed by the analog-digital mixed chaotic system 1. Data in the buffer B11 will be processed by the analog-digital mixed chaotic system 1 if C1,0 is “1”, and data in the buffer B12 will be processed if C1,0 is
(4) C1,1 indicates that the digital chaotic system 11 starts a process of generating one element of a chaotic sequence.
(5) C1,2 indicates that the digital chaotic system 11 ends a process of generating one element of the chaotic sequence. If data in the buffer is not ready, the digital chaotic system 11 suspends the process of generating the next element of the chaotic sequence, and if data in the buffer is ready, the digital chaotic system 11 starts the process of generating the next element of the chaotic sequence automatically.
(6) C1,3 indicates that all of the data in the buffer has been processed.
(7) Each impulse of C1,4 corresponds to the completion of one iteration in the digital chaotic system 11.
(8) C1,5 indicates that the digital chaotic system 11 outputs a state value to the synchronization coupling module 15 every time after Δ4′ times of iterations are completed.
(9) C1,6 indicates the output of the synchronization coupling module 15. With respect to the definition of running time, the duration for which the synchronization coupling module 15 output the synchronizing impulse is Δ1.
(10) C1,7 indicates the output of the continuous chaotic system 12.
(11) C1,8 indicates the control to the digital chaotic system 11. The digital chaotic system 11 executes Δ′3 times of iterations within two adjacent impulses.
(12) C1,9 indicates that the disturbance coupling module 16 samples the continuous chaotic system 12. The period for the disturbance coupling module 16 to sample the continuous chaotic system 12 is Δ2, with respect to the definition of running time.
The running timing of the analog-digital mixed chaotic system 1 is shown as follows:
In
When signal C1,0 is “0”, the analog-digital mixed chaotic system 1 processes the data in buffer B12. If the state signal D2 (shown as D2 in
In
In actual situation, because of the effect of outer conditions such as running environment on the digital chaotic system 11, the time required for executing each iteration may be not T2. Therefore, when the counter C12 records that the digital chaotic system 11 has completed Δ4′ times of iterations, the running time Δ1 of the continuous chaotic system 12 may be less than T2·Δ4′ (shown as segment II in
When the running time Δ1 of the continuous chaotic system 12 arrives T2·Δ4′, the digital chaotic system 11 has not completed the Δ′ times of iterations (shown as segment III in
In
In actual situation, because of the effect of outer conditions such as running environment on the digital chaotic system 11, the time required for executing each iteration may be not T2. Therefore, when the running time Δ2 of the continuous chaotic system 12 arrives T2·Δ3′, the digital chaotic system 11 has not completed Δ3′ times of iterations (shown as segment II in
When the counter C13 records that the digital chaotic system 11 has completed Δ3′ times of iterations, the running time Δ2 of the continuous chaotic system 12 is less than T2·Δ3′ (shown as segment III in
A criterion for holding a stable synchronization between the continuous chaotic systems 12 and 22 is illustrated as below.
(1) Given that B is a diagonal matrix of order n, I is an identity matrix of order n, d is the largest Eigenvalue of matrix (I+B)T·(I+B), q is the largest Eigenvalue of (A+AT), and L is a local Lipschitz constant of the nonlinear mapping Φ in equation (2). The digital chaotic systems 11 and 21 output their state values to the respective local synchronization coupling modules 15 and 25 every time that Δ4′ times of iterations are completed. When the duration Δ1 for which the synchronization coupling modules 15 and 25 output the synchronizing impulse signal meets the criterion of:
Δ1=Δ4′·T2 (5)
and
(q+2L)·Δ1≦−1n(ξ·d) ξ>1,d<1 (6a),
a stable chaotic synchronization may be achieved between the continuous chaotic systems 12 and 22 without transmission of the synchronizing impulse.
(2) The disturbance coupling modules 16 and 26 disturbs the respective local digital chaotic systems 11 and 21 every time after Δ3′ times of iterations are completed in the digital chaotic systems 11 and 21. The sampling clock period Δ2 and the times of iterations Δ3′ should meet the following relation:
Δ2=Δ3′·T2 (6b)
(3) If the digital chaotic system is a difference equation of a continuous chaotic system with finite word length, which is identical to the equation (2), the digital chaotic system may be expressed as equation (7)
X
j(i+1)=(I+τ·A)·Xj(i)+τ·Φ(Xj(i)) (7)
where, τ is a positive real number.
λ1 is assumed to be the largest Eigenvalue of (I+τ·A)T(I+τ·A).
The duration Δ1 for which the synchronization coupling modules 15 and 25 output the synchronizing impulse signals should further satisfy the equation (8a), in addition to satisfying equation (5).
and Δ4′ should meet equation (8b), in addition to satisfying equation (6a).
At this time, a chaotic synchronization may be achieved between the continuous chaotic systems 12 and 22. On the other hand, the errors between the digital chaotic system and local continuous chaotic system may not approach to zero, that is, the continuous chaotic system and the local digital chaotic system may not be completely synchronized, so that the continuous chaotic system may provide a disturbance to overcome the characteristic degradation.
It should be noted that all the time in the above criterions is present by taking the running time of the continuous chaotic system as a reference time.
In this embodiment, the analog-digital mixed chaotic system is designed by using the Lorenz chaotic system. The operation precision of the digital chaotic system is 19 bits, which 7 bits are adapted to indicate the integer component of a variable in the digital chaotic system, 11 bits are adapted to indicate the decimal component of the variable in the digital chaotic system, and the remaining 1 bit is adapted to indicate the sign of the variable in the digital chaotic system.
It is assumed that the digital Lorenz chaotic systems 11 and 21 are
where, j=1,2 denotes the digital chaotic systems 11 and 21, respectively,
the parameters are σ=10, r=28, β=2.5, τ=5×10−4 s;
h(i,•) is the disturbance coupling function, and
where D() is an A/D conversion function, and In this embodiment, the output of the continuous chaotic system is converted into a digital value of 19 bits, the disturbance coupling intensities are η1=0.5, η2=0.5, η3=0.5.
It is assumed that the continuous Lorenz chaotic systems 12 and 22 are
where, j=1,2 denotes the continuous Lorenz chaotic systems 12 and 22, respectively;
the parameters are σ=10, r=28, β=2.66, b1=−0.2, b2=−0.6, b3=−0.6;
Lipschiz index L of the continuous Lorenz chaotic system is about 50.
The workflow of the analog-digital mixed chaotic cipher system is shown as follows.
(1) Two communication parties appoint the following parameters according to equation (9) for the digital chaotic system, equation (11) for the continuous chaotic system and equations (5), (6a), (6b), (8a) and (8b) for the synchronization conditions:
the time T2=0.35 ms for the digital chaotic systems 11 and 21 to execute one iteration;
the period Δ4′=10 for the digital chaotic systems 11 and 21 to output signals to the individual synchronization coupling modules 15 and 25;
the duration Δ1=3.5 ms for which the synchronization coupling modules 15 and 25 output synchronization impulses;
the period Δ3′=1000 for the disturbance coupling modules 16 and 26 to output disturbance signals to the individual digital chaotic systems 11 and 21;
the predetermined constant K=1000 for the disturbance coupling modules, and
the period Δ2=0.35 s for the disturbance coupling modules 16 and 26 to sample the respective continuous chaotic systems 12 and 22.
(2) The two communication parties further appoint that:
the initial conditions of the digital chaotic systems 11 and 21 are x1(0)=x2(0)=0.454, y1(0)=y2(0)=0.5236, z1(0)=z2(0)=0.55878;
the times of iterations when the digital chaotic systems output the encryption/decryption key is Δ1′=1, and
the output signal selected by the multiplexing switch is the digital chaotic sequence generated by the digital chaotic systems 11 and 21.
(3) The digital chaotic systems 11 and 21 are initialized by using the appointed initial conditions, and the initial states of the continuous chaotic systems 12 and 22 are randomly generated.
(4) Under control of the controlling modules 14 and 24, the synchronization coupling modules 15 and 25 output the synchronizing impulse signals for applying to the respective local continuous chaotic systems 12 and 22.
(5) The disturbance coupling modules 16 and 26 sample, quantize and convert the respective local continuous chaotic systems 12 and 22 under control of the controlling modules 14 and 24, and obtain the disturbance signal for disturbing the digital chaotic systems.
(6) After the digital chaotic system has completed 1000 times of initial iterations, the analog-digital mixed chaotic system begins to output a key. A digital chaotic sequence generated by the digital chaotic systems 11 and 21 is first amplitude converted in the encoding modules 19 and 29 to get vj(2·i)=500·(xj(i+1000)+25), vj(2·i+1)=500·(yj(i+1000)+35), i=0, 1, 2, . . . , j=1,2. The amplitude converted sequence is encoded with an encoding function of S(v)=v mod 256. Finally, a key stream of the analog-digital mixed systems 1, 2 is obtained after a nonlinear conversion on the encoded sequence. In this embodiment, the encoded sequences v1(i) and v2(i)(i=0, 1, 2, . . . ) are converted with the nonlinear conversion F(•) (shown as Table 1), and key sequences k1(i) and k2(i)(i=0, 1, 2, . . . ) are obtained.
In this embodiment, the analog-digital mixed chaotic system is designed by using the Chen chaotic system. The operation precision of the digital chaotic system is 19 bits, which 7 bits are adapted to indicate the integer component of a variable in the digital chaotic system, 11 bits are adapted to indicate the decimal component of the variable in the digital chaotic system, and the remaining 1 bit is adapted to indicate the sign of the variable value in the digital chaotic system.
It is assumed that the digital Chen chaotic systems 11 and 21 are
where, j=1,2 denotes the digital chaotic systems 11 and 21, respectively;
the parameters are a=35, b=3, c=28, τ=5×10−4 S;
h(i,•) is a disturbance coupling function, and
where D() is an A/D conversion function, and In this embodiment, the output of the continuous chaotic system is converted into a digital amount of 19 bits;
the disturbance coupling intensities are η1=0.01, η2=0.01, η3=0.01.
It is assumed that the continuous Chen chaotic systems 12 and 22 are
where, j=1,2 denotes the continuous Chen chaotic systems 12 and 22 respectively,
the parameters are a=35, b=3, c=28, b1=−0.8, b2=−0.8, b3=−0.8;
Lipschiz index L of the Chen system is about 85.
The workflow of the analog-digital mixed chaotic cipher system is as follows.
(1) Two communication parties appoint the following parameters according to equation (9) for the digital chaotic system, equation (11) for the continuous chaotic system and equations (5), (6a), (6b), (8a) and (8b) for the synchronization conditions:
the time T2=0.33 ms for the digital chaotic systems 11 and 21 to execute one iteration;
the period Δ4′=30 for the digital chaotic systems 11 and 21 to output signals to the respective synchronization coupling modules 15 and 25;
the duration Δ1=10 ms of the synchronization coupling modules 15 and 25 outputting synchronization impulses;
the period Δ3′=1000 for the disturbance coupling modules 16 and 26 to output disturbance signals to the respective digital chaotic systems 11 and 21;
the predetermined constant K=3000 for the disturbance coupling modules, and
the period Δ2=0.33 s for the disturbance coupling modules 16 and 26 to sample the respective continuous chaotic systems 12 and 22.
(2) The two communication parties appoint further that:
the initial conditions of the digital chaotic systems 11 and 21 are x1(0)=x2(0)=0.454, y1(0)=y2(0)=0.5236, z1(0)=z2(0)=0.55878,
the times of iterations when the digital chaotic systems to output the encryption/decryption key is Δ5′=1, and
the output signal selected by the multiplexing switch is the digital chaotic sequence generated by the digital chaotic systems 11 and 21.
(3) The two communication parties initiate the digital chaotic systems 11 and 21 by using the appointed initial conditions, and randomly generate the initial states of the continuous chaotic systems 12 and 22.
(4) Under control of the controlling modules 14 and 24, the synchronization coupling modules 15 and 25 output the synchronizing impulse signals to be applied to the respective local continuous chaotic systems 12 and 22.
(5) Also under control of the controlling modules 14 and 24, the disturbance coupling modules 16 and 26 sample, quantize and convert the respective local continuous chaotic systems 12 and 22, and obtain the disturbance signal for disturbing the digital chaotic systems.
(6) The digital chaotic sequence generated by the digital chaotic systems 11 and 21 is amplitude converted in the encoding modules 19 and 29 to get vj(3·i)=1000 (xj(i+3000)+30), vj(3·i+1)=1000·(yj(i+3000)+40), vj(3·i+2)=500·zj(i+3000), i=0, 1, 2, . . . , j=1,2. The amplitude converted sequence is encoded with the encoding function of S(v)=v mod 256. Finally, a key stream generated by the analog-digital mixed systems 1, 2 is obtained after a nonlinear conversion on the encoded sequence. In this embodiment, the chaotic sequences generated by the analog-digital mixed chaotic system are converted with three nonlinear conversions F(•)(j=0,1,2) (shown as Table 2(a), 2(b) and 2(c)), and the conversion rule is to convert the encoded sequences v1(i) and v2(i)(i=0, 1, 2, . . . ) with the nonlinear conversion Fi mod 3(•) so as to get the key sequences of k1(i) and k2(i)(i=0, 1, 2, . . . ). At last, a cipher text (or a plaintext) can be obtained by XOR of the key and a plaintext (or a cipher text).
In this embodiment, the analog-digital mixed chaotic system is designed by using a one-dimensional Logistic chaotic system and a Chen chaotic system as the digital chaotic system and the continuous chaotic system respectively. The operation precision of the digital chaotic system is 19 bits, which 18 bits are adapted to indicate the decimal component of a variable in the digital chaotic system, and the remaining 1 bit is adapted to indicate the sign of the variable in the digital chaotic system. Although the transmitting and receiving parties have appointed the time required for the digital chaotic systems 11 and 21 to perform one iteration, the actual time that the digital chaotic systems 11 and 21 take to execute each operation will be a bit different. Therefore, in this embodiment, the respective local digital chaotic system and continuous chaotic system are controlled by the controlling modules 14 and 24 in the analog-digital mixed chaotic systems 1 and 2, so that a stable synchronization between the continuous chaotic systems that are separated with each other in location can be achieved and thereby the characteristic degradation may be overcome in the digital chaotic system.
It is assumed that the digital Logistic chaotic systems 11 and 21 are
x
j(i+1)=4·xj(i)·(1−xj(i))+η·h(i,{tilde over (x)}j(t)) (15)
where, j=1,2 denotes the digital chaotic systems 11 and 21 respectively, h(i,•) is a disturbance coupling function, and
where D() is an analog to digital conversion function, and in this embodiment, the output of the continuous chaotic system is converted into a digital amount of 19 bits, and the disturbance coupling intensity is q=0.01.
It is assumed that the continuous Chen chaotic systems 12 and 22 are
where, j=1,2 denotes the continuous Chen chaotic systems 12 and 22 respectively;
the parameters are a=35, b=3, c=28, b2=−0.8;
Lipschiz index L of the Chen system is about 85.
The workflow of the analog-digital mixed chaotic cipher system is shown as follows.
(1) Two communication parties appoint the following parameters according to equation (9) for the digital chaotic system, equation (11) for the continuous chaotic system and equations (5), (6a), (6b), (8a) and (8b) for the synchronization conditions:
the time T2=1 ms for the digital chaotic systems 11 and 21 to execute one iterative;
the period Δ4′=10 for the digital chaotic systems 11 and 21 to output signals to the respective synchronization coupling modules 15 and 25;
the duration Δ1=10 ms for which the synchronization coupling modules 15 and 25 output synchronizing impulses;
the period Δ3′=10 for the disturbance coupling modules 16 and 26 to output disturbance signals to the respective digital chaotic systems 11 and 21;
the predetermined constant K=5000 for the disturbance coupling modules; and
the period Δ2=10 ms for the disturbance coupling modules 16 and 26 to sample the respective continuous Chen chaotic systems 12 and 22.
(2) The two communication parties further appoint that:
the initial conditions of the digital chaotic systems 11 and 21 are x1(0)=x2(0)=0.333;
the times of iterations when the digital chaotic systems to output the encryption/decryption key is Δ5′=1, and
the output signal selected by the multiplexing switch is the digital chaotic sequence generated by the digital chaotic systems 11 and 21.
(3) The digital chaotic systems 11 and 21 are initialized by using the appointed initial conditions, and the initial states of the continuous chaotic systems 12 and 22 are randomly generated.
(4) Under control of the controlling modules 14 and 24, the synchronization coupling modules 15 and 25 output the synchronizing impulse signals to be applied to the respective local continuous chaotic systems 12 and 22.
(5) Under control of the controlling modules 14 and 24, the disturbance coupling modules 16 and 26 sample, quantize and convert the respective local continuous chaotic systems 12 and 22, and obtain the disturbance signal for disturbing the digital chaotic systems.
(6) After the digital chaotic system has completed 5000 times of initial iterations, the analog-digital mixed chaotic system begins to output a key. The digital chaotic sequence generated by the digital chaotic systems 11 and 21 is amplitude converted in the encoding modules 19 and 29 to get vj(i)=xj(i+5000)(i=0, 1, 2, . . . j=1,2). The amplitude converted sequence is encoded with the encoding function of S(v)=[256(1−ar cos v/π)], and finally a key stream of the analog-digital mixed systems 1, 2 is obtained after a nonlinear conversion. In this embodiment, the encoded sequences v1(i) and v2(i)(i=0, 1, 2, . . . ) are converted with the nonlinear conversion F(•) (shown as Table 3), and key sequences k1(i) and k2(i)(i=0, 1, 2, . . . ) are obtained. At last a cipher text (or a plaintext) can be obtained by XOR of the key and a plaintext (or a cipher text).
Number | Date | Country | Kind |
---|---|---|---|
200510121497.3 | Dec 2005 | CN | national |
This application is a continuation of International Patent Application No. PCT/CN2006/003724, filed Dec. 30, 2006, which claims priority to Chinese Patent Application No. 200510121497.3, entitled “System and Method for Generating Analog-digital Mixed Chaotic Signals”, filed Dec. 31, 2005, both of which are hereby incorporated by reference for their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2006/003724 | Dec 2006 | US |
Child | 12163744 | US |