The invention lies in the field of interactive television programming. Specifically, the invention pertains to the generation and management of user preference information concerning scheduled and recorded programs. The invention relates to computer-based DTV technology with program storage and intelligent agents for automatically selecting programs for the viewer in devices such as DTVs, STBs, PDRs, and PVRs.
Determination of a television user's program viewing preferences is an important function in the context of digital TV (DTV) and digital set top boxes (STB, DSTB)—especially those with program storage capability—for a variety of applications. Specifically, viewing preferences are required to support applications that select for the user, for example:
For the purpose of personalizing current TV program availability and for determining which programs to record, it is necessary to learn the program preferences of the TV and PDR user. No suitable prior art systems exist that provide a process and software agents enabled to generate and maintain viewer preference information with the detail necessary to allow personalization at a sophisticated level.
It is accordingly an object of the invention to provide a system and method for the generation and the management of user preference information concerning scheduled and recorded programming, which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which provides for easily manageable data structures and manageable algorithms for user preference generation modeling and storage.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method of personalizing television program availability, which comprises:
In accordance with an added feature of the invention, the method steps are effected with software agents such as a viewing record module agent (VRM) and a program information viewing history agent (CDM).
In accordance with an additional feature of the invention, the software agents operate with built-in algorithms operating on user activity and other events to produce the preference profile information in a special purpose relational database (CDB). Preferably, the software agents are programmed to operate on data items such as data representing user control events, external EPG information, click-stream data, viewing records, channel lineup lists, and a string table representing internal program lineup availability.
In accordance with another feature of the invention, a program history relational database (CDB) is defined for preference determination with index numbers representing external program information text strings.
In accordance with a further feature of the invention, maintenance operations are defined for the relational database including creating, changing, generalizing, enhancing, and expanding program information category data rows in the database.
The relational database is continually updated by accumulating time information, program information, and category data row items when a program is watched, i.e., with data-dependent input accumulating available time for viewing per each data program information category data row.
In a preferred embodiment, the database contains a number of forms of pre-processed information i.e. accumulations of time and already split category rows, enables speedy and simple database accesses to discover preference, that is, pre-processed preference ratings. The preprocessed information is then selected by database access commands and the selection completes the processing. The fact that preference rating is pre-processed in the database makes the database access (e.g. looking for the most preferred program) much simpler and faster because most of the acquisition and processing work is already done and does not have to be done at access time.
In accordance with a preferred and efficient feature of the invention, a user's preference is defined with a ratio of watched time over available time of a given program or category.
In accordance with again another feature of the invention, available time of a given program or category is capped for repeated live programs and stored programs. The value may be capped at one program time or one program time per session. This feature makes preference rating of repeated live programs and stored/recorded (S/R) programs work. A cap of (1) one program time for ever or a cap of (2) one program time per session allows S/R programs to have a realistic rating that either does not decay (1) or decays slowly (2) for just being present and available. The user likes a given show but simply does not want to watch it all the time.
In accordance with again an additional feature of the invention, available time is only accumulated after the program or category is first watched and/or watched time is only accumulated after the program or category is watched for a given minimum time.
The management system outlined above is particularly suitable in the context of a preference determination engine in a television broadcast system. In that case, the management system includes a database containing program information and viewing history of at least one user of the television system.
In further summary, a internal electronic program guide (EPG) manager (IEM), creates and maintains an internal EPG (IE) information database for the user program preference determination engine (PDE), which is resident in a STB, DTV or PVR. The term internal, as used herein, refers to the fact that the EPG data are for use by software agents of the PDE and are not used to make the main system graphical user interface EPG. The external EPG is used for that purpose. The IEM provides other software agents with various control interfaces to enable extraction of the program information from the IE database, for maintenance and to update changes, e.g. channel-line-up changes, that arise from changes to the external EPG.
In a preferred embodiment, the viewing record module (VRM) responds to filtered user events and program changes to save program information in an initial database, the viewing record database (VRDB). Many event trigger types, such as power off, skip, channel change and play, cause program information to be saved (e.g., time, channelID, channelType) as a record in the VRDB. Some event types, such as session-end are also saved using data bits inside channelType. The VRDB information database serves as the input for the CDM agent to process and build records in a program information viewing history database, here referred to as the category database (CDB).
The CDM agent further processes the pre-processed VRDB records to produce the CDB. The result of the processing is that actual Watched time and Available time (including Watched and not Watched) accumulations are made for programs and content categories (e.g., type, cast, genre) for each user so they can be used to indicate their relative preference relative, for example, program to program, content to content, etc.
VRDB records are processed by the CDM and then deleted from the VRDB. CDM processing for recorded program activity is slightly different to that for live program activity.
In a multi-user scenario, the items watched and available time are accumulated separately for each user and the time added is multiplied by the determined probability of being each user.
Program preference computation using program information history and accumulated times, specifically WatchedTime versus AvailableTime produces a reading of preference of one program relative to another program with program length, frequency of availability removed as factors and repeatedly available programs also included. This renders the system simple and implementable.
Corner-case AvailableTime Computation:
Available time may be capped for repeatedly available live programs or permanently available (recorded) programs where only one program length ever, or per viewing time period, e.g. session, is accumulated. This treatment allows their time to be included in the preference calculation for a better overall result.
The CDB database is managed and controlled with reference to each database data row. Over the lifetime of the database, the rows may be subject to:
In a further preferred system, there is provided a graphic user interface (GUI) for user control of CDB database management settings. The following settings may be influenced:
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a system and method for generating and managing user preference information for scheduled and recorded television programs, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of the specific embodiment when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
Reference is had to copending application Ser. No. 10/156,173 which deals primarily with the generation and maintenance of a channel lineup list to be utilized in the PDM 14 and which deals mainly with the system for the formation and for changing channel lineup lists. As noted above, the copending application is incorporated by reference.
The following description provides detailed information concerning the viewing record module agent and the database. Reference is first had to
User control actions or events from the click stream data originating at the input 10 are input to the VRM agent in order to make the VRDB database of information about the programs the viewer watched. Exemplary PDR and user event types will be listed below.
Some of the events are pre-filtered out as containing too little information to be worthwhile recording. For example, the following is a suitable filter list:
In the case of the first filter (viewing <7 min), the information is deleted and does not become a viewer record. Also some of the events, for instance Stop, Channel Change do not signify program viewing and so are noted but do not result in a separate viewer record, until the play event. The play event signifies viewing of something either a buffered live program or stored (virtual) program, and at this point a record is logged.
The probability columns, of a given user being active for each record row, are filled in later by a different agent called the PIM module. Numbers between 0 and 1 are used where 1 indicates certainty that this is the user. This is required for determining preferences for each user in the common multi-user household situation.
For the case, that a user stayed on one channel for a long time and the program changed without a user event then the VRM agent observes this situation and creates a VRDB record at every program change boundary. This ensures that the viewing duration pertains to one program only.
The following lists the types of user events or trigger types:
The following information is evident from the entries in the table of
This is now time-shift-viewing. The PDR software still sees this as LIVE viewing and only switches to VIRTUAL if Record is set, or the program rewound to the beginning by the user and Record then set (to record all the program).
Depending on the size limit of the time shift buffer and the length of the program then rewinding to the beginning might not be possible. The Actual Program EPG Time keeps track of the actual viewing position within the program. If the buffer limit is reached (wrap-around) then other agents (TSM and PTM modules) come in to play to adjust the Actual Program EPG Time as the initial program material is lost.
The category database module agent (CDM) runs every 4 minutes to process the viewing record database (VRDB) information with EPG information to make the final stage preference determination database the CDB. In essence, this is a custom database operation where information from two databases is used to create a third database. The ultimate goal is to make a final set of data that can be used to indicate which program or content type categories are liked relative to others, in a way that is efficient and speedy.
The operation effectively compresses the viewing history data as it is written to the CDB, by taking replicate program viewing instances initially in multiple VRDB rows, and instead accumulating the watched time and instance count in one CDB row. In another operation, there is some expansion of data rows. Here a third row is made for two rows with some matching column data (usually program content ie category, type or genre) where non-matching column data (eg title) is marked as ‘don't care’. The end requirement for the CDB is that the most preferred program or content-data, based on accumulated time, is easily observable. The database expansion enables that speedy discovery, as only the comparison of times of already prepared category rows is required.
A final CDM operation is to make another CDB time data column giving an Available Time for each distinct program or content category data row. This is an accumulation of program time available for viewing while the unit is powered on. Available Time is computed for EPG listed (Live) programs with some history of being viewed, or recorded programs, which could have been selected for viewing but were partially watched or not watched at all. The resultant Available Time accumulation enables a more accurate determination of preference by a relative measure of e.g. time ‘action-movie’ actually watched versus time ‘action-movie’ was available.
While accumulated time watched (Time Watched) alone can indicate a program or content category is liked (if a significantly large time is accrued) it can cause liked but infrequently available or short programs or categories to go unnoticed because their accumulated time is inherently less. The ratio of watched versus available time is therefore a superior measure of preference compared to watched time alone.
Computation of available time is complicated by the permanently available Recorded Programs and by any pseudo-permanent repeated Live programs, which would accumulate over-large amounts of available time. Therefore, a strict definition of ‘Available’ is not used; instead, a definition ‘Available-and-expected-to-be-viewed’ is adopted. Therefore, even though a program may be continually or permanently available only one expected full viewing per time period e.g. session, is counted for the available time accumulation.
There is no established industry definition of preference in the program viewing sense. The technology used here pertains to definitions for Metabyte Networks, Inc. by the computation details determined to produce an appropriate relative preference result i.e. an appropriate order when the programs are sorted in order based on the computed Metabybe Networks preference from highest to lowest.
As an alternative approach, the need for the CDB and CDM processing could be avoided if the VRDB and EPG information were kept for a long time. Use of more complex database search and select functions could replace the need for the CDB at the cost of retaining very large VRDB and EPG database storage.
However, this unwieldy approach would inhibit the long-term learning and retention of preferences. Discovery of preferences involving multiple searches while technically possible would be also unwieldy and unsuitable for limited performance consumer electronics.
The CDM agent operates primarily to create CDB rows and time-watched values. Viewing records are read from the VRDB by the CDM after one complete session (up to power off).
EPG program information in the form of a set of indices is fetched to match VRDB information, i.e., ChannelID, Actual Program Time, ChannelType, to make CDB database records. These indexes are created when EPG information parameter strings are entered in the String table and are a set of references to program and content information text from programs the user has viewed.
If the ChannelType is Live then the internal electronic program guide (IEPG) agent is queried for the set of indexes. If the ChannelType is marked as virtual (a recorded program) then the original ChannelID must be first obtained from the SDM (which maintains the recorded program EPG information) for the program content set of indexes.
In a first step, the retrieved set of indexes, for one VRDB row, is compared to indexes already in the CDB. If there is no existing CDB record with the same set of indexes then the CDM creates one such record and puts it into the CDB as a row in the database (this is also referred to as a Liking Record). The viewing duration value from the VRDB, multiplied by the VRDB probability of being each user, is used as the Watched-Time-for-User column values in this new row. If there is an existing CDB row with the same set of indexes then the VRDB viewing duration value, multiplied by the VRDB probability of being each user, is added to the existing Watched-Time-for-User values thus accumulating time.
In addition to this type of automatically learned record, a user may interact directly to make entries describing desired programs or content eg actor names. Also, when a CDB row is created for a program, the ChannelType of the program is checked. If ChannelType is Pay Per View, then the ChannelType category in the CDB data is ignored and is set to DC (don't care).
The next step is to determine, for this one input, whether the creation, in the CDB, of one or more than one record, is appropriate. The CDM searches the CDB for existing records where some of the EPG parameter values (indexes) are the same. For each such matching column or number of columns, a new row record is created which consists of only the matched columns and a DC (don't care) symbol is inserted in the columns that did not match. This has the effect of making more records, ones that match more easily and which correspond to more broad program information. In later stages of CDM processing, time is added to those records that match and the ones that have more time added will stand out and show preference. The broader the program information of the CDB database row the more likely it is to accrue time and stand out.
For example, ‘News’ (represented by an index number) alone on a row is broad and will match more often than the narrower ‘News’ AND ‘FoxChannel’ AND ‘LateNewsPgm’ together on a row. The broader types will normally accrue more total watched time and therefore indicate a preference for this type of program content parameter.
Consider the following example: Let the EPG parameters be Channel Parameter, Program Type & Title. Let one of the existing CDB rows comprise of the parameter values of
Here DC refers to a predefined value (to signify a Don 't Care condition) which would be considered a match with all parameter values that it is compared with. For example liking records comprising
The CDB, Time-Available-per-User columns are filled or updated when a Session End record is encountered in the VRDB. All VRDB records up to this point relate to the current session because they are deleted at the end of the current session CDM processing.
For every live program available in this session period, obtained from the EPG data, the matching CDB program and related category data rows (from the expansion) have their Available-Time-per-User updated. The value used is the whole program duration (falling within the session duration) multiplied by the probability of being the user. For recorded Programs, the EPG data is obtained from the SDM instead of the live program guide.
For all programs repeatedly available in one session, i.e., live programs repeated in one session or recorded programs, which are permanently available, a different treatment is in order as follows. The available time is accumulated for the session but capped at the maximum of one program length quantity of available time falling within the one session to prevent an over-large value being accumulated. This is justified by saying that however much a program is liked only one viewing per session could normally be expected. The actual time value used is multiplied by the probability of being the user** and added to matching CDB rows accumulated available time per session regardless of whether it was watched or not. New records are not made for available time accumulation unless there is also watched time in the session.
For a CDB category (e.g. genre) type row with specific DC (Don 't cares, e.g. instead of Title) derived from or to be contributed-to from two other rows (without the DC's) which represent programs of different lengths then the Available-Time cap value is the average of the two contributing rows program lengths.
For example for an ‘action-movie’ of 120 minutes length, (120*0.9) minutes are added to the ‘action-movie’ category row, ‘Time-available-user-1’ column where 0.9 is the probability of being ‘User-1’.
It is possible for a repeated program to be watched a number of times per session even though the available time is only accumulated one program time per session. This can result in a Watched/Available Time Ratio value greater than one, which is permitted.
Available Time is defined as follows: available time is the maximum expected Watch Time of category type (e.g. Program Title) per time period e.g. session for programs live or recorded, and is one full program length of time. The Watched/Available Preference Ratio produced is effectively normalized to one program length i.e. Wa/Av =1. Repeat watching is not expected though is noted and the ratio value can rise above 1.
The following table illustrates an exemplary embodiment of the program information viewing history database CDB The following table keys are used:
The example in this table shows some CDB rows and values. In actuality the text strings are converted to Index number of the String-Table structure or array prior to use here. This is sufficient for the database matching operations and if the original text is required then this can be obtained by look-up in the string table.
The table shows two users are noted and watched and available times are accumulated individually to enable determination of individual user preference.
The term Preference is an unscientific, human-oriented term, perception of which can vary somewhat from person to person. This text provides a definition of preference for use in the Metabyte Networks Inc. system and an implementation in a formula that enables its computation.
Preference in this case is the user preference for programs calculated by accumulating the time each program or program type is actually Watched. Thus, the more a program is watched the more time is accumulated and the more it stands out as preferred, however, watched time alone can give a false reading of preference, as it doesn't take into account the availability or length of the program.
Therefore, the MNI definition of preference is the ratio of Watched Time versus ‘Available’ Time. Programs watched in their entirety every time they occur incur a maximum value of 1 while programs that are partially watched incur values less than 1. Also, program length is not now a factor and short programs can incur the highest preference value of 1.
However, while the definition of Watched is clear the definition of ‘Available’ needs clarity as some programs have Scheduled Availability (from EPG), and some programs have Permanent Availability by virtue of being in non-time varying storage i.e. recorded programs (virtual), or are pseudo-permanent by Scheduled Repetition. ‘Available’ is thus a key definition an over-simple form of which produces an apparent false (low) reading of preference by accumulating too much available time for the highly-available programs i.e. recorded and repeated scheduled programs.
AvailableTime is modified to One-Available-Program-Duration-per-session (OAPDPS). This is justified on the basis that repeat viewing of the material cannot be expected in one session.
This modification then caps the maximum available time added (accumulated) in one session to one full program duration time regardless of the actual availability. For permanent i.e. stored programs, only one program duration per session is added to AvailableTime.
For time added to categories, e.g. genre, rather than a specific program, where there are multiple contributing programs of differing durations, then the cap value ‘one program duration’ is unclear. In this case, the cap value used is the average of the durations of the contributing programs.
This capping permits the WatchedTime to be higher than AvailableTime and preference ratio to be above value ‘1’ for the case that programs are watched repeatedly in one session. Preference ratio values higher than ‘1’ denote a higher level of preference. Typically the preference ratio will decline over time as repeat viewing cannot be expected even over many sessions.
Examples in the drawing
An alternative definition of Available-Time is where it is modified to One-Available-Program-Duration-for many sessions (OAPD). This is justified on the basis that repeat viewing of the material is not expected at all.
This allows the original ratio values to remain, and to not decline with every session without repeat. Values of preference ratio are:
Where the available time is capped at one program for one session (as in
Typically this approach will produce preference ratios higher than 1 for many categories and programs and higher ratios overall than other methods.
A special GUI control page is provided to allow the user to select either of the above versions (AvailableTime cap for repeat programs, control GUI):
Paid-for programming is boosted in terms of WatchedTime, i.e., PPV programming is dealt with as other repeatedly available programs but where the whole program was watched it is given enhanced. In that case the WatchedTime category row is made to stand out as being ‘more’ preferred because it was paid-for, rather than being free.
A special GUI control page is provided to allow a user to select the preference boost of PPV programs or the WatchedTime enhancement level. User selection is from: 0×, 0.5×, 1×, 1.5×, 2×, 2.5× or 3× of program duration minutes added to WatchedTime, once only, after the entire program is viewed (where ×=times, multiple).
The STB system cannot go on accumulating CDB database category and program rows indefinitely, as there are always memory resource limitations and in any case, the database would become unnecessarily large and therefore slow to access. The novel system thus provides for CDB planned obsolescence and database row deletion management.
Rows can be selected for deletion if the preference ratio falls below a certain threshold close to zero. Assuming the row or category is not watched the preference falls at a rate is dependant on AvailableTime accumulation.
Planned obsolescence by forced decay of the preference ratio is introduced by adding AvailableTime periodically -even if there is no actual program (or content) availability. This is deemed necessary to avoid CDB row entries from becoming stale and the overall database from becoming over-large. Decay is increased by adding a block of time to the available time, obtained from the table as follows:
Deletion of a CDB database row category is activated when the preference ratio falls below the specified threshold, such as 0.1, for example.
A special GUI control page may be provided to allow user selection of the persistence or obsolescence rate of the CDB data rows. This ensures that program rows that the user does not wish to delete, yet their row preference ratio has declined for whatever reason, are not unnecessarily deleted. CDB data are collected in the database individually for each user (in practice might be group of people) and control via the GUI is to suit each user individually and offers choices such as a setting of:
User selection of decay is from: 0, 1 or 2 blocks of decay minutes added per 1, 2 to ‘n’ sessions or per day or week (see previous section). It is assumed that there is a session count value, day and date is available for this. Alternatively, the GUI shows present setting using a simple wedge shaped diagram or graph and allow the user to select increased or decreased persistence (of preference ratio level) and need not show the detailed values.
Another special control GUI page is provided to allow user selection of the preference ratio threshold level for category preference CDB database row deletion. User selection is of preference ratio minimum level (threshold) i.e. WatchedTime/AvailableTime=0, 0.01, 0.02 to 0.1 and 0.11, 0.12 to 0.2.
Reference will now be had to
The first example in
For the left-hand portion of the table, the preference ratio shows decay below the nominal 1 value where the category was not watched sufficiently overall in the period e.g. 4, 5, 6, 7, 9.
For the right-hand portion the ratio shows a predominance of super-1 values because the normal number of viewings per the total period, set with the available time accumulation cap, is only one and therefore no decay is exhibited.
The relative ratings are very important, i.e. the rank order of the programs/categories based on preference. One would expect the DC (Don't Care) types as they are derived from multiple programs to generally have higher ratings and the right-hand portion (OAPD) looks slightly more realistic with left-hand portion (OAPDPS) rank 5 in the 4th ranking on the right (OAPD). Also, rank 3 on the left, is 7th on the right (with OAPD) a better rank considering it was only one program watched once and now (at 7th) ranked below others which were watched more than once. However, the type of cap is selectable, for example by the user. The most preferable content preference ranking is selectable.
This application claims the benefit under 35 U.S.C. §119(e) of provisional application No. 60/293,763, filed May 25, 2001. This application is also a continuation-in-part under 35 U.S.C. §120 of commonly assigned U.S. patent application Ser. No. 09/096,592, filed Jun. 12, 1998, entitled “Television Program Recording with User Preference Determination,” now U.S. Pat. No. 6,614,987, which is herewith incorporated by reference. Further reference is had to our copending, commonly assigned U.S. patent application Ser. No. 10/156,173 entitled “Database Management System and Method for Electronic Program Guide and Television Channel Lineup Organization,” filed May 28, 2002, which is herewith incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5128752 | Von Kohorn | Jul 1992 | A |
5223924 | Strubbe | Jun 1993 | A |
5262875 | Mincer et al. | Nov 1993 | A |
5287181 | Holman | Feb 1994 | A |
5324338 | Holmstrom | Jun 1994 | A |
5355161 | Bird et al. | Oct 1994 | A |
5371551 | Logan et al. | Dec 1994 | A |
5410344 | Graves et al. | Apr 1995 | A |
5416508 | Sakuma et al. | May 1995 | A |
5446919 | Wilkins | Aug 1995 | A |
5463565 | Cookson et al. | Oct 1995 | A |
5483278 | Strubbe et al. | Jan 1996 | A |
5523794 | Mankovitz et al. | Jun 1996 | A |
5537157 | Washio et al. | Jul 1996 | A |
5559549 | Hendricks | Sep 1996 | A |
5565909 | Thibadeau | Oct 1996 | A |
5579055 | Hamilton et al. | Nov 1996 | A |
5585865 | Amano et al. | Dec 1996 | A |
5600364 | Hendricks et al. | Feb 1997 | A |
5635989 | Rothmuller | Jun 1997 | A |
5636346 | Saxe | Jun 1997 | A |
5652613 | Lazarus et al. | Jul 1997 | A |
5664046 | Abecassis | Sep 1997 | A |
5671411 | Watts et al. | Sep 1997 | A |
5699473 | Kim | Dec 1997 | A |
5701383 | Russo et al. | Dec 1997 | A |
5704017 | Heckerman et al. | Dec 1997 | A |
5717923 | Dedrick | Feb 1998 | A |
5724091 | Freeman et al. | Mar 1998 | A |
5724521 | Dedrick | Mar 1998 | A |
5754651 | Blatter et al. | May 1998 | A |
5758257 | Herz et al. | May 1998 | A |
5758259 | Lawler | May 1998 | A |
5761371 | Ohno et al. | Jun 1998 | A |
5768785 | Pessin | Jun 1998 | A |
5774170 | Hite | Jun 1998 | A |
5778135 | Ottesen et al. | Jul 1998 | A |
5781228 | Sposato | Jul 1998 | A |
5790935 | Payton | Aug 1998 | A |
5794210 | Goldhaber et al. | Aug 1998 | A |
5798785 | Hendricks et al. | Aug 1998 | A |
5801747 | Bedard | Sep 1998 | A |
5806045 | Biorge et al. | Sep 1998 | A |
5809471 | Brodsky | Sep 1998 | A |
5818441 | Throckmorton et al. | Oct 1998 | A |
5835087 | Herz et al. | Nov 1998 | A |
5848396 | Gerace | Dec 1998 | A |
5867226 | Wehmeyer et al. | Feb 1999 | A |
5878141 | Daly et al. | Mar 1999 | A |
5898456 | Wahl | Apr 1999 | A |
5907350 | Nemirofsky | May 1999 | A |
5945988 | Williams et al. | Aug 1999 | A |
5953073 | Kozina et al. | Sep 1999 | A |
5977964 | Williams et al. | Nov 1999 | A |
5990927 | Hendricks et al. | Nov 1999 | A |
6002393 | Hite | Dec 1999 | A |
6005561 | Hawkins et al. | Dec 1999 | A |
6005597 | Barrett et al. | Dec 1999 | A |
6018612 | Thomason et al. | Jan 2000 | A |
6020883 | Herz et al. | Feb 2000 | A |
6029045 | Picco et al. | Feb 2000 | A |
6029195 | Herz | Feb 2000 | A |
6038612 | Liow | Mar 2000 | A |
6057872 | Candelore | May 2000 | A |
6075971 | Williams | Jun 2000 | A |
6088722 | Herz et al. | Jul 2000 | A |
6091883 | Artigalas et al. | Jul 2000 | A |
6101529 | Chrabaszcz | Aug 2000 | A |
6105862 | Pailles et al. | Aug 2000 | A |
6128009 | Ohkura et al. | Oct 2000 | A |
6134532 | Lazarus et al. | Oct 2000 | A |
6141010 | Hoyle | Oct 2000 | A |
6157411 | Williams et al. | Dec 2000 | A |
6157772 | Kim | Dec 2000 | A |
6160570 | Sitnik | Dec 2000 | A |
6169842 | Pijnenburg et al. | Jan 2001 | B1 |
6177931 | Alexander et al. | Jan 2001 | B1 |
6185360 | Inoue et al. | Feb 2001 | B1 |
6209131 | Kim et al. | Mar 2001 | B1 |
6233389 | Barton et al. | May 2001 | B1 |
6236395 | Sezan et al. | May 2001 | B1 |
6237145 | Narasimhan et al. | May 2001 | B1 |
6260194 | Shiels et al. | Jul 2001 | B1 |
6304714 | Krause et al. | Oct 2001 | B1 |
6317881 | Shah-Nazaroff et al. | Nov 2001 | B1 |
6324334 | Morioka et al. | Nov 2001 | B1 |
6324338 | Wood | Nov 2001 | B1 |
6396500 | Qureshi et al. | May 2002 | B1 |
6401242 | Eyer et al. | Jun 2002 | B1 |
6446261 | Rosser | Sep 2002 | B1 |
6450407 | Freeman et al. | Sep 2002 | B1 |
6457010 | Eldering et al. | Sep 2002 | B1 |
6463585 | Hendricks et al. | Oct 2002 | B1 |
6466241 | Schindler | Oct 2002 | B1 |
6480667 | O'Connor | Nov 2002 | B1 |
6505773 | Palmer et al. | Jan 2003 | B1 |
6507950 | Tsukidate et al. | Jan 2003 | B1 |
6530082 | Del Sesto et al. | Mar 2003 | B1 |
6536041 | Knudson et al. | Mar 2003 | B1 |
6553178 | Abecassis | Apr 2003 | B2 |
6583825 | Yuen et al. | Jun 2003 | B1 |
6587561 | Sered et al. | Jul 2003 | B1 |
6599473 | Egger et al. | Jul 2003 | B1 |
6601237 | Ten Kate et al. | Jul 2003 | B1 |
6607136 | Atsmon et al. | Aug 2003 | B1 |
6614987 | Ismail et al. | Sep 2003 | B1 |
6637029 | Maissel et al. | Oct 2003 | B1 |
6675384 | Block et al. | Jan 2004 | B1 |
6681396 | Bates et al. | Jan 2004 | B1 |
6684240 | Goddard | Jan 2004 | B1 |
6698020 | Zigmond et al. | Feb 2004 | B1 |
6704930 | Eldering et al. | Mar 2004 | B1 |
6704931 | Schaffer et al. | Mar 2004 | B1 |
6738978 | Hendricks et al. | May 2004 | B1 |
6799326 | Boylan, III et al. | Sep 2004 | B2 |
6852031 | Rowe | Feb 2005 | B1 |
6898762 | Ellis et al. | May 2005 | B2 |
6915271 | Meyer et al. | Jul 2005 | B1 |
6918131 | Rautila et al. | Jul 2005 | B1 |
6928653 | Ellis et al. | Aug 2005 | B1 |
6950623 | Brown et al. | Sep 2005 | B2 |
6981040 | Konig et al. | Dec 2005 | B1 |
6990677 | Pietraszak et al. | Jan 2006 | B1 |
6993782 | Newberry et al. | Jan 2006 | B1 |
7003792 | Yuen | Feb 2006 | B1 |
7013286 | Aggarwal et al. | Mar 2006 | B1 |
7013478 | Hendricks et al. | Mar 2006 | B1 |
7035528 | Britton | Apr 2006 | B1 |
7039928 | Kamada et al. | May 2006 | B2 |
7051351 | Goldman et al. | May 2006 | B2 |
7051352 | Schaffer | May 2006 | B1 |
7054900 | Goldston | May 2006 | B1 |
7086076 | Park | Aug 2006 | B1 |
7096486 | Ukai et al. | Aug 2006 | B1 |
7103575 | Linehan | Sep 2006 | B1 |
7144627 | Halas et al. | Dec 2006 | B2 |
7146626 | Arsenault et al. | Dec 2006 | B1 |
7152236 | Wugofski et al. | Dec 2006 | B1 |
7194753 | Fries et al. | Mar 2007 | B1 |
7370342 | Ismail et al. | May 2008 | B2 |
7594247 | Arai et al. | Sep 2009 | B2 |
20010004733 | Eldering | Jun 2001 | A1 |
20010014870 | Saito et al. | Aug 2001 | A1 |
20010049826 | Wilf | Dec 2001 | A1 |
20020023263 | Ahn et al. | Feb 2002 | A1 |
20020057893 | Wood et al. | May 2002 | A1 |
20020073426 | Bhatt | Jun 2002 | A1 |
20020111918 | Hoshino et al. | Aug 2002 | A1 |
20020118954 | Barton et al. | Aug 2002 | A1 |
20020120627 | Mankoff | Aug 2002 | A1 |
20020131768 | Gammenthaler | Sep 2002 | A1 |
20020186296 | Gogoi et al. | Dec 2002 | A1 |
20020199193 | Gogoi et al. | Dec 2002 | A1 |
20020199194 | Ali | Dec 2002 | A1 |
20030005432 | Ellis et al. | Jan 2003 | A1 |
20030023973 | Monson et al. | Jan 2003 | A1 |
20030028518 | Mankoff | Feb 2003 | A1 |
20030040962 | Lewis | Feb 2003 | A1 |
20030056216 | Wugofski et al. | Mar 2003 | A1 |
20030067554 | Klarfeld et al. | Apr 2003 | A1 |
20030088872 | Maissel et al. | May 2003 | A1 |
20030093792 | Labeeb et al. | May 2003 | A1 |
20030101451 | Bentolila et al. | May 2003 | A1 |
20030101457 | Tiemann | May 2003 | A1 |
20030118323 | Ismail et al. | Jun 2003 | A1 |
20030145323 | Hendricks et al. | Jul 2003 | A1 |
20030158818 | George et al. | Aug 2003 | A1 |
20040111742 | Hendricks et al. | Jun 2004 | A1 |
20040117831 | Ellis et al. | Jun 2004 | A1 |
20040128241 | Akama | Jul 2004 | A1 |
20050047752 | Wood et al. | Mar 2005 | A1 |
20050144066 | Cope et al. | Jun 2005 | A1 |
20050144641 | Lewis | Jun 2005 | A1 |
20050193410 | Eldering | Sep 2005 | A1 |
20050235318 | Grauch et al. | Oct 2005 | A1 |
20060206912 | Klarfeld et al. | Sep 2006 | A1 |
20060212904 | Klarfeld et al. | Sep 2006 | A1 |
20070203794 | Hajdukiewicz et al. | Aug 2007 | A1 |
20080040749 | Hoffberg et al. | Feb 2008 | A1 |
20080120186 | Jokinen et al. | May 2008 | A1 |
20080134234 | Deiss et al. | Jun 2008 | A1 |
20080134243 | Klosterman | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
0705036 | Apr 1996 | EP |
0 774 866 | May 1997 | EP |
0823815 | Feb 1998 | EP |
0838951 | Apr 1998 | EP |
0 854 645 | Jul 1998 | EP |
0851681 | Jul 1998 | EP |
0909095 | Apr 1999 | EP |
9802935 | Mar 2000 | EP |
1 045 582 | Oct 2000 | EP |
1 331 814 | Jul 2003 | EP |
09128276 | May 1997 | JP |
9222983 | Dec 1992 | WO |
WO 9222983 | Dec 1992 | WO |
9413107 | Jun 1994 | WO |
WO9413107 | Jun 1994 | WO |
9421081 | Sep 1994 | WO |
9501057 | Jan 1995 | WO |
WO9501057 | Jan 1995 | WO |
9609721 | Mar 1996 | WO |
9631980 | Oct 1996 | WO |
WO9631980 | Oct 1996 | WO |
9741673 | Nov 1997 | WO |
9748230 | Dec 1997 | WO |
9750251 | Dec 1997 | WO |
WO9748230 | Dec 1997 | WO |
9828906 | Jul 1998 | WO |
WO9828906 | Jul 1998 | WO |
9901984 | Jan 1999 | WO |
9955066 | Oct 1999 | WO |
0002380 | Jan 2000 | WO |
0004708 | Jan 2000 | WO |
0011869 | Mar 2000 | WO |
0033160 | Jun 2000 | WO |
0117250 | Mar 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20020199193 A1 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09096592 | Jun 1998 | US |
Child | 10156153 | US |