The invention relates generally to a system and method for generating images of a microscope slide, and more particularly, to a system and method for obtaining focus information to be used in scanning a microscope slide.
A virtual microscope slide typically comprises digital data representing a magnified image of a microscope slide. Because the virtual slide is in digital form, it can be stored on a medium, e.g., in a computer memory, and can be transmitted over a communication network, such as the Internet, an intranet, etc., to a viewer at a remote location.
Virtual slides offer advantages over traditional microscope slides. In some cases, a virtual slide can enable a physician to render a diagnosis more quickly, conveniently and economically than is possible using traditional microscope slides. For example, a virtual slide may be made available to a remote user, e.g., a specialist in a remote location, over a communication link, enabling the physician to consult with the specialist and provide a diagnosis without delay. Alternatively, the virtual slide can be stored in digital form indefinitely, for later viewing at the convenience of the physician or specialist.
Typically, a virtual slide is generated by positioning a microscope slide (which contains a sample for which a magnified image is desired) under a microscope objective, capturing one or more images covering all, or a portion, of the slide, and then combining the images to create a single, integrated, digital image of the slide. It is often desirable to divide a slide into multiple regions, and generate a separate image for each region, because in many cases the entire slide is larger than the field of view of a high-power (e.g., 20×) objective. Additionally, the surfaces of many tissues are uneven and contain local variations that make it difficult to capture an in-focus image of an entire slide using a fixed z-position. As used herein, the term z-position refers the coordinate value of the z-axis of a Cartesian coordinate system. Accordingly, existing techniques typically obtain multiple images representing various regions on a slide, and combine the images into an integrated image of the entire slide.
One current technique for capturing digital images of a slide is known as the start/stop acquisition method. According to this technique, multiple target points on a slide are designated for examination. A high-power objective (e.g., 20×) is positioned over the slide. At each target point, the z-position is varied and images are captured from multiple z-positions. The images are then examined to determine a desired-focus position. If one of the images obtained during the focusing operation is determined to be sufficiently in-focus, it is selected as the desired-focus image for the respective target point on the slide. If none of the images is in-focus, the images are analyzed to determine a desired-focus position, the objective is moved to the desired-focus position, and a new image is captured. In some cases, a first sequence of images does not provide sufficient information to determine a desired-focus position. In such event, it may be necessary to capture a second sequence of images within a narrowed range of z-positions before a desired-focus image is acquired. The multiple desired-focus images (one for each target point) obtained in this manner may be combined to create a virtual slide.
Another approach used to generate in-focus images for developing a virtual slide includes examining the microscope slide to generate a focal map, which is an estimated focus surface created by focusing a (high-power) scanning objective on a limited number of points on the slide. Then, a scanning operation is performed based on the focal map. Current techniques construct focal maps by determining desired-focus information for a limited number of points on a slide. For example, such systems may select from 10 to 20 target points on a slide and use a high-power objective to perform a focus operation at each target point to determine a desired-focus position. The information obtained for those target points is then used to estimate desired-focus information for any unexamined points on the slide.
Start/stop acquisition systems, as described above, are relatively slow, because the microscope objective is often required to perform multiple focus-capture operations for each designated target point on the slide. In addition, a high-power objective's field-of-view is limited; therefore, the number of points for which desired-focus information is directly obtained may be a relatively small portion of the entire slide.
Existing techniques for constructing focal maps also have several disadvantages. First, as described above, the use of a high-power objective to obtain desired-focus data for a given target point is relatively slow. Second, generating a focal map from a limited number of points on the slide can create inaccuracies in the resulting focal map. Tissue on a slide often does not have a uniform, smooth surface. Many tissue surfaces contain variations that vary across small distances. If a point on the surface of the tissue that has a defect or a significant local variation is selected as a target point for obtaining focus information, the deviation can affect estimated values for desired-focus positions throughout the entire focal map.
The invention provides an improved system and method for obtaining images of selected regions on a microscope slide. In an aspect of the invention, a focus camera captures a plurality of images of a target region. Each image covers a respective area that includes at least a portion of the target region. Additionally, each image contains information associated with multiple focal planes. In one embodiment, the sensor of the focus camera is positioned so that its focal plane is tilted (positioned at a non-zero angle) relative to the focal plane of a main, scanning camera. In one example, the sensor in the focus camera is tilted (positioned non-orthogonally) relative to the optical axis of the optics between the microscope slide and the sensor, and with respect to the slide itself, while the sensor of the main camera is parallel to the slide. The focus camera itself may be tilted to tilt the sensor, or the sensor within the camera may be tilted, or both. The focus camera performs a scan of the target region, and multiple overlapping images of the target region are captured from a plurality of locations, or x-y positions. Focus information is obtained from the images, and a desired-focus position for the scanning camera is determined for the target region based on the focus information. The scanning camera then captures an image of the target region from the desired-focus position. This procedure may be repeated for selected regions on the microscope slide, and the resulting images of the respective regions are merged to create a virtual slide.
Accordingly, in one embodiment, one or more images of an area comprising at least a portion of a target region on a microscope slide are captured, each image containing information corresponding to a plurality of focal planes, and a position of a microscope slide for imaging the area is determined, based, at least in part, on the one or more images. The one or more images may include at least two overlapping images of the target region. An additional image of the target region may be captured based on the position. The one or more images may be captured by a first sensor having a first image plane, and the additional image may be captured by a second sensor having a second image plane, the first sensor being tilted relative to the second image plane. A virtual slide representing the microscope slide may be generated based, at least in part, on the additional image. One or more image characteristics at one or more of the focal planes may be analyzed, and the position determined based, at least in part, on the one or more image characteristics. The image characteristics may include, for example, texture energy, entropy, contrast, and/or sharpness.
The desired-focus position may be determined by identifying multiple sub-regions within the target region, dividing each of the one or more images into sub-images corresponding to respective sub-regions, examining one or more of the corresponding sub-images for at least one sub-region to determine a focus value for that respective sub-region, and determining the position based, at least in part, on one or more focus values of that respective sub-region. For each sub-region, one or more image characteristics relating to the one or more corresponding sub-ima ges may be analyzed, and a focus value for the sub-region may be determined based, at least in part, on the one or more image characteristics. The focus values may be determined using interpolation techniques or curve-fitting techniques, for example.
In a related embodiment, a system for generating images of a target region on a microscope slide is provided, comprising a microscope stage to hold a microscope slide. The system further comprises an objective comprising an objective lens to receive light interacting with the surface of the microscope slide. A first camera is provided comprising a first image sensor to collect a first portion of the light. The first image sensor is positioned at a first angle relative to the optical path of the first portion of the light. A second camera is provided comprising a second image sensor to collect a second portion of the light. The second image sensor is positioned at a second angle relative to the optical path of the second portion of the light. The first angle is different from the second angle. The system may also include a beam splitter disposed in the path of the light between the objective and the first and second cameras to distribute the first portion of the light to the first camera and the second portion of the light to the second camera.
In another embodiment, a system for generating images of a target region on a microscope slide is provided, comprising a microscope stage to hold a microscope slide, an objective comprising an objective lens to receive light interacting with the surface of the microscope slide, and a camera comprising an image sensor to collect the light. The image sensor is positioned at an oblique angle relative to the optical path of the light.
In still another embodiment, a system for processing images of a target region on a microscope slide is provided, comprising a sensor to capture one or more images of an area comprising at least a portion of a target region on a microscope slide Each image contains information corresponding to a plurality of focal planes. A processor is coupled to the sensor. The processor is programmed to determine a position of a microscope slide for imaging the area, based, at least in part, on the one or more images.
These and other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred embodiments, taken together with the accompanying drawings, in which:
A virtual microscope slide typically comprises digital data representing a magnified image of all, or a portion of, a microscope slide. Because the virtual slide is in digital form, it can be stored on a medium, e.g., in a computer memory, and can be transmitted over a communication network, such as the Internet, an intranet, etc., to a viewer at a remote location.
An improved system and method are provided for obtaining magnified images of a microscope slide for use in constructing a virtual slide. In an aspect of the invention, a focus camera captures a plurality of images of a target region. Each image covers a respective area that includes at least a portion of the target region. Additionally, each image contains information associated with multiple focal planes. In one embodiment, the sensor of the focus camera is positioned so that its focal plane is tilted relative to the focal plane of a main, scanning camera. In one example, the sensor in the focus camera is tilted (positioned non-orthogonally) relative to the optical axis of the optics between the microscope slide and the sensor, and with respect to the slide itself, while the sensor of the main camera is parallel to the slide. The focus camera itself may be tilted to tilt the sensor, or the sensor within the camera may be tilted, or both. The focus camera performs a scan of the target region, and multiple overlapping images of the target region are captured from a plurality of locations, or x-y positions. Focus information is obtained from the images, and a desired-focus position for the scanning camera is determined for the target region based on the focus information. The scanning camera then captures an image of the target region from the desired-focus position. This procedure may be repeated for selected regions on the microscope slide, and the resulting images of the respective regions are merged to create a virtual slide.
In one embodiment, stage movement control system 16 comprises motors for controlling stage 14 in the x, y, and z directions, along with appropriate motor driver circuitry for actuating the motors. As used herein, the x and y directions refer to vectors in the plane in which stage 14 resides. The mechanical apparatus and electronic control circuitry for effecting stage movement are preferably implemented to include some form of open or closed-loop motor positioning servoing such that stage 14 can be either positioned with great precision, or its translational movement can be determined very accurately in the x, y, and z directions.
When stage movement control system 16 is configured to operate in a closed-loop, position feedback information can be recovered from the motor itself, or from optical position encoders or laser interferometer position encoders, if enhanced precision is desired. Closed-loop servo control of stage motion allows the stage position to, be determined with great accuracy and insures that translation commands are responded to with high precision, as is known in the art. Thus, a command to translate the stage 50 microns in the positive x direction will result in the stage moving precisely 50 microns in +x direction, at least to the mechanical resolution limits of the motor system.
If the system is configured to operate semi-closed-loop or open-loop, stage control is not dependent on feedback per se, but it is at least necessary to precisely define where the motors controlling the stage were told to go.
Position encoders (not shown) may be provided to transmit signals indicating the position of stage 14 to focus camera 22 and/or to main camera 32. This arrangement enables the camera(s) to capture images at desired positions even while stage 14 is in continuous motion. For example, the position encoders may monitor the distance traversed by stage 14 and transmit a predetermined signal every 5 microns. Focus camera 22 and/or main camera 32 may be configured to capture an image in response to a set or a subset of electrical signals received from the positioning feedback devices, e.g., rotary or linear scale encoders, thereby producing images of a microscope slide at regular intervals. In one example, a linear encoder mounted along the scan axis of the slide provides absolute positioning feedback to the control system to generate accurate periodic signals for image capture. These periodic signals act as external triggers to the camera for high speed consistent sectional image capture This technique overcomes many positioning error issues such as following errors (following errors are defined as the difference of position from the electrically commanded position to the actual mechanical response of the positioning system to the commanded position) associated with the true transformation of electrical control signals to the actual mechanical position of the slide relative to the image plane of the camera. This technique may also safeguard against the periodic degradation of the mechanical hardware caused by the repeated use of lead screws, loose couplings, friction, environmental issues, etc.
Alternatively, the camera(s) may be configured to capture images at regular time intervals, or based on pulses transmitted to the motors. For example, control pulses sent to a stepper or a linear motor may be used. These could be raw transistor-transistor logic (TTL) signal pulses or amplified control pulses fed through an electronic counter circuitry generating an absolute or relative output pulse to trigger the camera for image capture, for example. A TTL step and direct signal generated through a stepper controller pulse generator may be fed back through the encoder feedback channel to the controller. In this arrangement, the integrated real-time ‘pulse counter’ counts pulses to generate a periodic pulsed output for the camera. This technique may be used in conjunction with motor directional signal output as an input to the controller for bidirectional or unidirectional output trigger pulse control to capture images based on the direction of motion. Alternatively, clockwise and counter-clockwise operating modes may be used for motor control and to feed the directional pulses back to the controller for periodic camera triggering synchronized with motion.
Microscope system 100 comprises at least one objective lens 18 that can be moved into the microscope optical path such that a magnified image of the specimen is generated. Examples of robotically controlled microscopy systems suitable for use in connection with the present invention include the Olympus BX microscope system equipped with a Prior H101 remotely controllable stage. The Olympus BX microscope system is manufactured and sold by Olympus America Inc., located in Melville, N.Y. The Prior H101 stage is manufactured and sold by Prior Scientific Inc., located in Rockland, Mass. Other similar computerized stages may be used, such as those manufactured and sold by Ludl Electronics Products Ltd. of Hawthorne, N.Y.
In one embodiment, piezo 15 performs a focusing operation by causing small excursions of objective 18 in the z direction in response to signals received from piezo amplifier 32. Piezo amplifier 32 receives control signals from focus computer 20 via piezo D/A card 32, and in response, controls the movement of piezo 15.
Microscope system 100 includes a beam splitter 9 that distributes light received through objective 18 to focus camera 22 and to main camera 32. In one embodiment, the field-of-view of objective 18 is partitioned into at least two sub-fields, or windows. The beam splitter directs a first portion of the light to focus camera 22, and a second portion of the light to main camera 32.
Focus camera 22 is optically coupled to microscope system 100 (e.g., optically coupled to a microscope tube 21) to capture diagnostic-quality images of microscopic tissue samples disposed on sample stage 14. In one embodiment, focus camera 22 may include an area sensor; alternatively, focus camera 22 may include a line sensor.
Focus camera 22 is preferably a high resolution, high-speed, black and white digital camera. Images generated by focus camera 22 are transmitted via a cameralink card 37 to focus computer 20, which applies image processing techniques to analyze the images. Cameralink card 37 functions as an interface between focus camera 22 and focus computer 20. Optionally, focus computer 20 generates and transmits focus information to main computer 30.
In accordance with an embodiment of the invention, focus camera 22 is positioned such that its optical sensor is tilted relative to the focal plane at which main camera 32 captures images. In one example, this may be accomplished by tilting focus camera 22 itself, as shown in
By way of illustration,
Both the resolution and depth-of-field of focus camera 22 may be determined in part by the wavelength of received light. At shorter wavelengths, the camera's resolution may increase, and its depth-of-field may decrease, thereby improving the results of any focus operation performed. Accordingly, a blue filter may be introduced in the optical path of focus camera 22 to retrieve the blue components of the incoming light and improve the camera's performance. This filtering may be accomplished in other ways as well, such as by using a three-chip camera or another device capable of retrieving the blue components of the incoming light, for example. A blue filter may also reduce the effects of chromatic aberrations, because the color range is reduced.
Referring again to
A main, scanning, camera 32 is optically coupled to microscope system 100 (e.g., to microscope tube 21) to capture diagnostic-quality images of microscopic tissue samples disposed on the sample stage 14. In one embodiment, main camera 32 may include an area sensor; alternatively, main camera 32 may include a line sensor. Referring to
Main camera 32 is preferably a high resolution, color, digital camera operating at a high-resolution and a high data rate. In one embodiment, for example, a JAI CV-M7CL+camera may be used; however, other cameras of comparable quality and resolution may also be used. Images captured by main camera 32 are directed via cameralink card 47 to main computer 30.
Main computer 30 provides data processing and platform capabilities for hosting an application software program suitable for developing the necessary command and control signals for operating selected components of system 100, including stage 14 and main camera 32. In one embodiment, main computer 30 may be implemented by a computer system similar to that used for focus computer 20. Adlink card 48 controls the motion of stage 14 in response to control signals received from main computer 30. Cameralink card 47 functions as an interface between main computer 30 and main camera 32. Main computer 30 may be coupled to one or more components of microscope system 100 through an interface (not shown), such as a serial interface, a proprietary interface or any one of a number of alternative coupling interfaces. Main computer 30 also comprises software or circuitry capable of performing a variety of image processing functions including, e.g., software registration of images. In an alternative embodiment, main camera 32 (or focus camera 22) may be implemented by a camera having an internal computational engine (referred to as a “smart camera”), as is known in the art, which provides the functionality of main computer 30 (or of focus computer 20). Such smart cameras are also commercially available, such as the DVT Legend 544, manufactured and sold by DVT Sensors, Inc. of Duluth, Ga.
As mentioned above, light received through objective 18 is selectively distributed by beam splitter 9 to focus camera 22 and to main camera 32.
Focus camera 22 contains a sensor capable of generating an image of a region on the microscope slide captured via focus window 13. One or more images of a respective region received via focus window 13 are utilized to generate focus information for the region before main camera 32 captures an image of the region via scanning window 19. Main camera 32 contains a sensor capable of generating an image of a region via scanning window 19. In the embodiment illustrated in
As discussed above, existing methods for obtaining images of a microscope slide, including the start-stop acquisition method and various focal map techniques, are relatively slow. In accordance with one aspect of the invention, an improved system and method for obtaining images of a microscope slide are provided.
As discussed above, because the optical sensor within focus camera 22 is tilted relative to the focal plane of main camera 32 (see FIGS. 2A-B), each image generated by focus camera 22 contains information associated with multiple focal planes of main camera 32, each at a different z-position. Focus computer 20 analyzes the images to obtain focus information associated with the target region and determines a desired-focus position for the region, based on image characteristics such as, for example, texture energy, entropy, contrast, sharpness, etc. A number of techniques for analyzing images based on such image characteristics are well-known in the art and are discussed further below.
After a desired-focus position is determined, the x-y position of stage 14 is subsequently adjusted to place the target region within scanning window 19, the stage is moved to the desired-focus position, and main camera 32 captures an image of the target region.
It should be noted that although in this embodiment adjustments to x-, y-, and z-positions are achieved by moving stage 14, in alternative embodiments x-, y-, and z-position adjustments may be achieved by moving objective 18, or by other methods.
In one embodiment, main computer 30 defines a section of a microscope slide for scanning. The section may be defined manually to include an area of interest (such as a malignancy) on the surface of a sample. Alternatively, the section may be defined automatically by, e.g., software residing in main computer 30. For example,
Microscope system 100 scans section 305 row-by-row. In this embodiment, stage 14 moves continuously during the scan; however, in alternative embodiments, stage 14 may stop at selected points, e.g., at selected imaging positions. By capturing images while stage 14 is in motion, focus information can be generated at a faster rate than by existing techniques. Main computer 30 causes stage 14 to move such that focus window 13 progresses steadily across row 984 in the +x direction, beginning at region 382. Alternatively, scanning may be performed using other patterns, such as, e.g., scanning in the −x direction. For example, in the configuration shown in
While stage 14 is in motion, focus camera 22 generates multiple, overlapping images of the regions in row 984 by capturing images at intervals smaller than the width of the regions. In this example, focus camera 22 captures an image every 50 microns. The distance representing the interval between images is a function of several considerations, including the number of z-positions for which focus information is desired and the angle θ present in focus camera 22. As discussed above, these factors are affected by the desired focal range, the size of the sensor, and the magnification of the optical train of the focus system, for example. An additional factor influencing the interval between images is the depth-of-field of focus camera 22. As the camera's depth-of-field decreases, more images at different z-positions may be necessary to capture a sufficient amount of focus information. It should be noted that while row 984 is being scanned via focus window 13, scanning window 19 does not receive images of any regions in section 305; however, when a subsequent row (e.g., row 985) is scanned via focus window 13, scanning window 19 receives images of the immediately preceding row (e.g., row 984).
The scan may begin when region 382 first enters focus window 13 and continues until the last region in row 984 (i.e., region 903) is no longer in focus window 13. During the scan, focus camera 22 generates multiple overlapping images of the regions in row 984.
Preferably, the x-y position of stage 14 is adjusted continuously during the scan, and images are captured while stage 14 is in motion. In one embodiment, stage 14 may move at a constant speed; however, in an alternative embodiment, the speed of stage 14 may be varied.
After focus window 13 progresses an additional interval (e.g., 50 microns) in the +x direction, focus camera 22 captures a second image.
The second slide position corresponds to
The scan continues across row 984 until the last region in the row (i.e., region 391) is no longer in focus window 13. As a result, multiple overlapping images of the regions in row 984 are produced, each representing a portion of row 984 that partly overlaps that of the previous image but which is shifted by +50 microns. The overlapping images of row 984 are transmitted to focus computer 20.
Focus computer 20 defines within each region in row 984 a plurality of micro-regions. The identification of micro-regions may be performed by, e.g., software residing in focus computer 20. In the illustrative example, each 400-by-300 micron region in row 984, e.g., region 382, is divided into eight micro-regions each 50 microns wide in the x-direction.
Focus computer 20 identifies a set of images that contain information pertaining to region 382. Then focus computer 20 defines within each image in the set one or more micro-images corresponding to micro-regions 391-398. Accordingly, in the illustrative example, up to eight micro-images corresponding to micro-regions 391-398 are defined within each image.
For each respective micro-region within region 382, focus computer 20 groups the associated micro-images of the same micro-region into a “stack.” For example, in the illustrative embodiment, each stack may contain up to eight micro-images (each micro-image representing a different focal plane). For example, a stack associated with micro-region 391 may contain eight micro-images associated with eight different focal planes ρ1, ρ2, . . . ρ8 of main camera 32, respectively. Focus computer 20 performs a similar stacking operation for each region in row 984, and other rows.
Focus computer 20 examines the stack of micro-images associated with each micro-region to determine a desired-focus value for the micro-region based on image characteristics such as, for example, texture energy, entropy, contrast, sharpness, etc. A desired-focus value represents a z-position at which the analysis of the image characteristics indicates that an image having a desired focus may be obtained. Thus, for example, focus computer 20 examines the stack of micro-images associated with micro-region 391 and determines a desired-focus value for micro-region 391; focus computer does the same for each micro-region in each region of row 984.
Desired-focus values may be obtained using a variety of techniques known in the art. In one embodiment, one or more image processing techniques may be applied to the micro-images to obtain, from each micro-image, one or more measurements of focus quality. By way of example, a measure of overall entropy may be obtained for each micro-image and used as a measure of focus quality. A measure of overall entropy for a micro-image may be obtained by, e.g., compressing a micro-image and measuring the volume of data in the compressed image. In another example, a measure of texture energy may be obtained for each respective micro-image to obtain a value representing the focus quality of the micro-image. In yet another example, a contrast measurement may be obtained for each respective micro-image. Alternatively, edge detection techniques may be applied to a micro-image to obtain a value for sharpness. Other values relating to focus quality may also be measured. The measurements of focus quality thus obtained are analyzed to determine a desired-focus value for each micro-region. For example, in one embodiment, the stack of micro-images associated with a micro-region is examined, a micro-image having a maximum texture energy measurement is selected as the desired image, and a z-position associated with the desired image is selected as the desired-focus value. Alternatively, a curve-fitting algorithm may be applied to the various measurements of focus quality pertaining to a respective micro-region, and a desired-focus value for the micro-region may be interpolated. Other estimation techniques may also be used.
Focus computer 20 determines a desired-focus position for each respective region in row 984 based on the desired-focus values associated with the micro-regions within the region. For example, focus computer 20 determines a desired-focus position for region 382 based on the desired-focus values associated with micro-regions 391-398. In one embodiment, the desired-focus values associated with micro-regions 391-398 are averaged to determine a single desired-focus position for region 382.
After row 984 has been scanned by focus camera 22 (and desired-focus positions have been determined for each region in row 984), focus camera 22 repeats the procedure for the next row, e.g., row 985 in the instant case. Accordingly, main computer 30 adjusts the position of stage 14 to cause focus window 13 to scan across the regions in row 985, beginning with region 860.
As focus window 13 scans across row 985, scanning window 19 captures images of row 984, and main camera 32 sequentially generates images of each region in row 984 based on the desired-focus positions determined previously for each respective region. In one embodiment, main camera 32 captures images of each region in its entirety; main camera 32 thus captures images at a slower rate than focus camera 22. The desired-focus position determined previously for each respective region in row 984 is utilized to adjust the z-position of objective 18 when the region enters scanning window 19. Thus, for example, when region 382 enters scanning window 19, focus computer 20 causes objective 18 to move to the appropriate desired-focus position calculated for region 382, and scanning camera 32 captures an image at the desired-focus position. The procedure described herein may be repeated multiple times in order to obtain images of each region in section 305. After images are captured by scanning camera 32 for each region, the images are merged to create a virtual slide.
In the alternative example shown in
Construction of a Virtual Slide
In one embodiment, a virtual slide may be generated based on the images obtained during the scanning process. Any one of a number of known techniques may be utilized to combine the images obtained from scanning to produce a virtual slide. In one embodiment, this procedure may be performed using, e.g., specialized software.
Speed Improvement Technique
In one embodiment, the scanning technique described above is performed using constant speed scanning, i.e., the x-y position of stage 14 is adjusted at a constant speed between exposures. Accordingly, stage 14 continues to move without changing speed even during exposures. When constant speed scanning is used, the system may be limited to operating at relatively low speeds to avoid blur in the images produced. Often the top speed allowable under such a limitation is significantly lower than the maximum speed attainable by the system.
In an aspect of the invention, the speed of stage 14 is controlled according to a speed curve that allows higher scanning speeds to be achieved than may be possible using constant-speed scanning. In one embodiment, x-, y-, and z-positions are adjusted according to a speed curve that increases the stage's motion between exposures and slows the motion as the stage approaches a desired imaging position. This technique has the additional benefit of reducing the risk of blur in the images captured during the exposures.
In one embodiment, the stage's motion may be controlled according to a sinusoidal speed curve.
Compensating for Possible Inaccuracies in Focus Position
In some cases, scanning a target region from a desired-focus position determined in the manner described herein does not produce an optimal image. This may occur for any number of reasons. Intra-field variations on the surface of the sample can cause focus information to be inaccurate. Even when the focus information is accurate, the mechanical nature of the microscope apparatus can cause a scan to produce an out-of-focus image due to mechanical problems, e.g., small motions or vibrations of the apparatus, incorrect calibration, etc.
Accordingly, in an aspect of the invention, uncertainties associated with a desired-focus position are mitigated by generating multiple candidate images of a target region from a plurality of z-positions in the vicinity of the desired-focus position, and selecting from among the candidate images an image of the region having a desired-focus quality. In one embodiment, focus camera 22 scans selected area of a microscope slide in the manner discussed above, multiple overlapping images of a target region are captured, focus information is obtained from the images and a desired-focus position for the region is determined based on the focus information. The desired-focus position is used to determine multiple z-positions, and the region is scanned from each z-position to produce a stack of candidate images of the region. The stack of candidate images is examined, and an image having a desired-focus quality is selected. This procedure may be repeated for designated regions on the microscope slide, and the selected images for the designated regions may be combined to generate a virtual slide.
The desired-focus position is used to generate images of region 382. At step 440, multiple z-positions are determined based on the desired-focus position and region 382 is scanned from each of the z-positions, producing at least one candidate image of region 382 from each z-position (step 450). Thus, for example, when region 382 enters scanning window 19, main camera may capture images of region 382 from multiple z-positions. In one embodiment, three z-positions may be determined, including a first z-position equal to the desired-focus position, a second z-position equal to the desired-focus position plus a predetermined offset, and a third z-position equal to the desired-focus position minus the offset. The candidate images are examined, and at step 460 an image of region 382 having a desired-focus quality is selected. This procedure may be repeated for multiple regions on the microscope slide, and the selected images associated with the various regions may be combined to create a virtual slide (step 470).
The foregoing merely illustrates the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise numerous other arrangements which embody the principles of the invention and are thus within its spirit and scope, which is defined by the claims, below.
This application claims the benefit of U.S. Application No. 60/489,769, filed on Jul. 22, 2003, assigned to the assignee of the present invention and incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60489769 | Jul 2003 | US |