SYSTEM AND METHOD FOR GENERATING INDEXED SPECIALTY PROPERTY DATA INFLUENCED BY GEOGRAPHIC, ECONOMETRIC AND DEMOGRAPHIC DATA

Information

  • Patent Application
  • 20180341960
  • Publication Number
    20180341960
  • Date Filed
    May 22, 2018
    6 years ago
  • Date Published
    November 29, 2018
    6 years ago
  • Inventors
    • Hanowell; Benjamin Dalton Oliver (Seattle, WA, US)
  • Original Assignees
Abstract
Systems, apparatuses, and methods for enabling a user to collect, assemble, manipulate, and utilize data regarding cost in one or more specific markets about specialty properties, such as assisted living, long-term care facilities, and the like. Several factors affect a specific market and the ebb and flow regional cost and demand, regional demographics, and regional econometrics. Collecting this data and assigning relative values to the data based on follow-on activities, such as actual inquiries into property, lead generation for specific properties and move-in data for specific properties leads to an ever-changing index that is continuously updated through a machine-learning algorithm by which index data may be gleaned for any specific region. Once an index of data is assembled, a user may glean specific and targeted estimates to future costs or future demand for specialty property based on geographic information, demographic information, and econometric information.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is cross-related to the following U.S. patent applications: (Attorney Docket No 126129.1003) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Specialty Property Demand Index,” filed May ______, 2018; (Attorney Docket No 126129.1103) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Specialty Property Cost Index,” filed May ______, 2018; (Attorney Docket No 126129.1303) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Cost Estimates for Specialty Property,” filed May ______, 2018; (Attorney Docket No 126129.1603) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Same Property Cost Growth Estimate in Changing Inventory of Specialty Property,” filed May ______, 2018; (Attorney Docket No 126129.1703) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Variable Importance Factors in Specialty Property Data,” filed May ______, 2018; (Attorney Docket No 126129.1903) U.S. patent application Ser. No. ______, entitled “System and Method for Identifying Outlier Data in Indexed Specialty Property Data,” filed May ______, 2018; (Attorney Docket No 126129.2003) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Indexed Specialty Property Data From Transactional Move-In Data,” filed May ______, 2018. Each of these are incorporated by reference in their entireties herein for all purposes.


BACKGROUND

Specialty property, such as senior living and assisted care facilities, are growing in demand in the United States and other countries due to a rapidly aging population. As modern medical breakthroughs allow for longer and more actives lives, the demand for senior living facilities continues to rise. Predicting the consumer cost and demand for specialty property can be a difficult task with disparate information available across disparate social, geographic, econometric and demographic strata.


Further, existing methods for predicting cost and demand of senior living and similar specialty properties are based on surveys of property managers rather than consumer transactions. Properties may respond to surveys with list prices that do not reflect actual costs because they do not account for one-off move-in concessions or consumer-level variation in the cost of senior care. Furthermore, surveying at the property level prevents detailed inference about the distribution of costs in addition to point estimates. This application presents an invention that overcomes the limitations of existing methods by estimating specialty property costs based on consumer-level transaction data from a specialty property referral service.





BRIEF DESCRIPTION OF DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.



FIG. 1 is a block diagram of a networked computing environment for facilitating data collection, analysis and consumption in a specialty property analytics and machine system according to an embodiment of the present disclosure;



FIG. 2 is an exemplary computing environment that is a suitable representation of any computing device that is part of the system of FIG. 1 according to an embodiment of the present disclosure;



FIG. 3 is a block diagram of the server of FIG. 1 according to an embodiment of the subject matter disclosed herein;



FIG. 4 is a method flow chart for cost index data generation using the system of FIG. 1 according to an embodiment of the subject matter disclosed herein; and



FIG. 5 is a method flow chart for determining cost estimate data for specialty property according to an embodiment of the subject matter disclosed herein; and



FIG. 6 is a method flow chart for generating estimates from indexed data based on grouping similarly-situated data corresponding to one or more attributes including geographic attributes, demographic attributes and econometric attributes according to an embodiment of the subject matter disclosed herein.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

The subject matter of embodiments disclosed herein is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described. Embodiments will be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, exemplary embodiments by which the systems and methods described herein may be practiced. The systems and methods may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy the statutory requirements and convey the scope of the subject matter to those skilled in the art.


Among other things, the present subject matter may be embodied in whole or in part as a system, as one or more methods, or as one or more devices. Embodiments may take the form of a hardware-implemented embodiment, a software implemented embodiment, or an embodiment combining software and hardware aspects. For example, in some embodiments, one or more of the operations, functions, processes, or methods described herein may be implemented by one or more suitable processing elements (such as a processor, microprocessor, CPU, controller, or the like) that is part of a client device, server, network element, or other form of computing device/platform and that is programmed with a set of executable instructions (e.g., software instructions), where the instructions may be stored in a suitable data storage element. In some embodiments, one or more of the operations, functions, processes, or methods described herein may be implemented by a specialized form of hardware, such as a programmable gate array, application specific integrated circuit (ASIC), or the like. The following detailed description is, therefore, not to be taken in a limiting sense.


Prior to discussing specific details of the embodiments described herein, a brief overview of the subject matter is presented. Generally, one or more embodiments are directed to systems, apparatuses, and methods for enabling a user to collect, assemble, manipulate, and utilize data regarding cost in one or more specific markets about specialty properties, such as assisted living, long-term care facilities, and the like. Several factors will affect a specific market and the ebb and flow of regional cost, regional demographics, and regional econometrics. Further, intra-regional and extra-regional data may also reflect the behavior of individuals in a market based on additional factors. Collecting this data and assigning relative values to the data based on follow-on activities, such as actual inquiries into property, lead generation for specific properties and move-in data for specific properties leads to an ever-changing index that is continuously updated through a machine-learning algorithm by which index data may be gleaned at any given moment in time for any specific region.


Once an index of data is assembled, a user may glean specific and targeted estimates to future costs or future demand for specialty property. These estimates may be further tailored toward specific delineations of the assembled data according to one or more attributes. Such attributes may be directed to geographic information, demographic information or econometric information. Based on these delineations of attribute data, one may generate estimates of desired predictive data (such as costs or demand) by culling data outside of one or more desired attribute classifications Thus, once may predict costs for properties within a zip code or demand for properties based on an age distribution of the local population. These and other aspects of the specific embodiments are discussed below with respect to FIGS. 1-6.



FIG. 1 is a block diagram of a networked computing environment 100 for facilitating data collection, analysis, and consumption in a specialty property analytics and machine system according to an embodiment of the present disclosure. The environment 100 includes a number of different computing devices that may each be coupled to a computer network 115. The computer network 115 may be the internet, and internal LAN or WAN or any combination of known computer network architectures. The environment 100 may include a server computer 105 having several internal computing modules and components configured with computer-executable instructions for facilitating the collection, analysis, assembly, manipulation, storing, and reporting of data about specialty property costs and demand. The server 105 may store the data and executable instructions in a database or memory 106. The server 105 may also be behind a security firewall 108 that may require username and password credentials for access to the data and computer-executable instructions in the memory 106.


The environment 100 may further include several additional computing entities for data collection, provision, and consumption. These entities include internal data collectors 110, such as employee computing devices and contractor computing devices. Internal data collectors 110 may typically be associated with a company or business entity that administers the server computer 105. As such, internal data collectors 110 may also be located behind the firewall 108 with direct access to the server computer (without using any external network 115). Internal data collectors may collect and assimilate data from various sources of data regarding specialty properties. Such data collected may include data from potential resident inquiries, leads data from advisors working with/for the business entity, and move-in data from property owners and operators. Many other examples of collected data exist but are discussed further below with respect to additional embodiments. The aspects of the specific data collected by internal data collectors 110 is described below with respect to FIG. 3A-B.


The environment 100 may further include external data collectors 117, such as partners, operators and property owners. Internal data collectors 110 may typically be third party businesses that have a business relationship with the company or business entity that administers the server computer 105. External data collectors 110 may typically be located outside of the firewall 108 without direct access to the server computer such that credentials are used through the external network 115. Such data collected may include data from potential resident inquiries, leads data from advisors working with/for the business entity, and move-in data from property owners and operators. Many other examples of collected data exist but are discussed further below with respect to additional embodiments. The aspects of the specific data collected by external data collectors 117 is also described below with respect to FIG. 3.


The environment 100 may further include data from third-party data providers 119, that includes private entities such as WalkScore, Redfin, or Zillow data about walkability and living costs. In addition, the environment may include public data sources such as the American Community Survey (ACS) and US Department of Housing and Urban Development (HUD). These third-party data providers may provide geographic, econometric, and demographic data to further lend insights into the collected data about potential resident inquiries, leads, and move-in data. Many other examples of third-party data exist but are discussed further below with respect to additional embodiments.


The environment 100 may further include primary data consumers 112, such as existing and potential residents as well as service providers. The environment 100 may further include, and third-party data consumers 114, such as Real-Estate Investment Trusts (REITs), financiers, third-party operators, and third-party property owners. These primary data consumers 112 and third-party data consumers 114 may use the assimilated data in the database collected from data collectors and third parties to glean information about one or more specialty property markets. Such data consumed may include the very data from potential resident inquiries, leads data and move-in data. Many other examples of consumed data exist but are discussed further below with respect to additional embodiments as well as discussed in related patent applications.


Collectively, the data collected and consumed may be stored in the database 106 and manipulated in various ways described below by the server computer 105. Prior to discussing aspects of the operation and data collection and consumption as well as the cultivation of the database, a brief description of any one of the computing devices discussed above is provided with respect to FIG. 2.



FIG. 2 is a diagram illustrating elements or components that may be present in a computer device or system configured to implement a method, process, function, or operation in accordance with an embodiment. In accordance with one or more embodiments, the system, apparatus, methods, processes, functions, and/or operations for enabling efficient configuration and presentation of a user interface to a user may be wholly or partially implemented in the form of a set of instructions executed by one or more programmed computer processors such as a master control unit (MCU), central processing unit (CPU), or microprocessor. Such processors may be incorporated in an apparatus, server, client or other computing or data processing device operated by, or in communication with, other components of the system. Such computing devices may further be one or more of the group including: a desktop computer, as server computer, a laptop computer, a handheld computer, a tablet computer, a smart phone, a personal data assistant, and a rack computing device.


As an example, FIG. 2 is a diagram illustrating elements or components that may be present in a computer device or system 200 configured to implement a method, process, function, or operation in accordance with an embodiment. The subsystems shown in FIG. 2 are interconnected via a system bus 202. Additional subsystems include a printer 204, a keyboard 206, a fixed disk 208, and a monitor 210, which is coupled to a display adapter 212. Peripherals and input/output (I/O) devices, which couple to an I/O controller 214, can be connected to the computer system by any number of means known in the art, such as a serial port 216. For example, the serial port 216 or an external interface 218 can be utilized to connect the computer device 200 to further devices and/or systems not shown in FIG. 2 including a wide area network such as the Internet, a mouse input device, and/or a scanner. The interconnection via the system bus 202 allows one or more processors 220 to communicate with each subsystem and to control the execution of instructions that may be stored in a system memory 222 and/or the fixed disk 208, as well as the exchange of information between subsystems. The system memory 222 and/or the fixed disk 208 may embody a tangible computer-readable medium.


It should be understood that the present disclosure as described above can be implemented in the form of control logic using computer software in a modular or integrated manner. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will know and appreciate other ways and/or methods to implement the present disclosure using hardware and a combination of hardware and software.


Any of the software components, processes or functions described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, R, Java, JavaScript, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions, or commands on a computer readable medium, such as a random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM. Any such computer readable medium may reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.



FIG. 3 is a block diagram of a machine-learning module 350 of the server 105 of FIG. 1 according to an embodiment of the subject matter disclosed herein. The machine-learning module 350 may include various programmatic modules and execution blocks for accomplishing various tasks and computations with the context of the system and methods discussed herein. As discussed above, this may be accomplished through the execution of computer-executable instructions stored on a non-transitory computer readable medium. To this end, the various modules and execution blocks are described next.


The machine-learning module 350 may include lists of data delineated by various identifications that are indicative of the type and nature of the information stored in the ordered lists. At the outset, these lists, in this embodiment, include a first list of lead data called DIM_LEAD 325. A lead includes data about an individual who is interested in acquiring rights and services at a specialty property and each record in DIM_LEAD 325 may be identified by a LEAD_ID. In this embodiment, the rights and services may include rents and personal care services at a senior living facility. In other embodiments, the specialty property is not necessarily a senior care facility or senior housing. The LEAD_ID may also include specific geographic data about a preferred location of a specialty property. The data that populates this list may be received at the machine-learning module 350 via a data collection module 321 that facilitates communications from various data collectors and third-party data providers as discussed with respect to FIG. 1. The information in DIM_LEAD 325 as described here may be collected chiefly by Senior Living Advisors, but could also be collected by third-party contractors (see data collectors 110 of FIG. 1).


Another list of data includes data about various properties in the pool of available or used specialty properties and this list is called DIM_PROPERTY 326. The records in this list may include data about services provided at each property as well as cost data, availability, and specific location. DIM_PROPERTY records may also include a history of property attributes over time for each PROPERTY ID, so that leads can be matched to the property with each respective leads attributes. Records in DIM_PROPERTY 326 are identified by a unique identifier called PROPERTY ID. The data that populates this list may be received at the machine-learning module 350 via a data collection module 321 that facilitates communications from various data collectors and third-party data providers as discussed with respect to FIG. 1. DIM_PROPERTY 326 may be typically obtained from partners, operators, and property owners (117 of FIG. 1), but additional information about the property (such as its age, number of units of a given unit type, recent renovation, etc.) may come from 3rd party private or public sources (119 of FIG. 1).


Another list of data includes data about various geographic locations in the pool of available or used specialty properties and this list is called DIM_GEOGRAPHY 327. The records in DIM_GEOGRAPHY 327 may include data about the geographic locations of all properties such as ZIP code, county, city, metropolitan area, state, and region. The records here may also include data about weather associated with various geographic location along with time and season factors. For example, one could collect data about time-stamped weather event to examine the impact of weather on the cost index. Records in this list are identified by a unique identifier called GEOGRAPHY_ID. The data that populates this list may be received at the machine-learning module 350 via a data collection module 321 that facilitates communications from various data collectors and third-party data providers as discussed with respect to FIG. 1. DIM_GEOGRAPHY 327 is collected from addresses of the properties, which are provided by partners, property owners, and operators (117 of FIG. 1), and addresses may be geotagged using public and private 3rd party sources (119 of FIG. 1) to acquire ZIP, county, city, metro, state, and region data.


All data from these various lists of data may be updated from time-to-time as various events occur or new data is collected or provided by various data collectors and third-party data providers via data collection module 321. As events takes place, a new conglomerate list, FACT_LEAD_ACTIVITY 330, may be initiated and populated with various events that occur along with associated relevant data from the lists. Records in FACT_LEAD_ACTIVITY 330 include data with regard to lead events and move-in events. A lead event is defined as the event in which an advisor refers a specific property to a potential user of services. A move-in event is defined as an event in which a user of services moves into a recommended property from a lead. As such, the records will also include specific data about the dates of the activity underlying the event as well as specific data about the recommended property (e.g., cost, location, region, demographics of the area) and the user (or potential user) of services (e.g., demographics, budget, services desired).


As mentioned, all data from these various lists of data may be updated from time-to-time as various events occur or new data is collected or provided by various data collectors and third-party data providers via data collection module 321. When an action takes place, such as a referral of a property to a lead or a lead moving in to a referred property, an activity record may be created in the list FACT_LEAD_ACTIVITY 330. This information may include data drawn from the initial three lists discussed above when a specific action takes place. Thus, each record will include a LEAD_ID, a PROPERTY ID, and a GEOGRAPHY_ID that may be indexed with additional data such as activity type (e.g., referral or move-in) and activity date. For example, a new inquiry may be made, a new lead may be generated, a new property may become part of the property pool, geographic data may be updated as ZIP codes or city/county lines shift, and the like. Further, collected data could be used to update or populate DIM_PROPERTY 326, DIM_LEAD 325, DIM_GEOGRAPHY 327 and FACT_LEAD_ACTIVITY 330 in that collected data about economics, demography, and geography (including weather) may be assimilated in any of the lists discussed above.


All data in FACT_LEAD_ACTIVITY 330 may be used by an analytics module 320 to generate several manners of data for use in the system. An operator may enter various analytical constraints and parameters using the operator input 322. The analytics module 320 may be manipulated such operator input to yield a desired analysis of the records stored in FACT_LEAD_ACTIVITY 330. Generally speaking, the data that may be assembled from the FACT_LEAD_ACTIVITY list 330 includes indexed referrals data 334 and indexed move-ins data 336. Such assembled data may be used to generate various cost and demand indexes and probabilities for a specialty property market across the several geographic, economic, and demographic categories. This useful indexed data across the operator desired constraints and parameters may then be communicated to other computing devices via communications module 340. One such index that may be generated is a cost index for specialty property as generally described in the related patent entitled “System and Method for Generating Specialty Property Cost Index” (U.S. patent application Ser. No. ______), the entirety of which is incorporated herein by reference. From the cost index generated, various cost estimates may be generated as described next with respect to FIGS. 4 and 5.



FIG. 4 is a method flow chart for cost index data generation using the system of FIG. 1 according to an embodiment of the subject matter disclosed herein. The method may begin when a prospective consumer initially conducts research and chooses to engage with a service provider for specialty properties that may be available at step 440. Such engagement may occur at step 442 through use of a user computer in sending a communication to an organization facilitating services for specialty properties. Once contact is made, a “lead” is generated wherein an advisor may become involved to facilitate a data collection process at step 444. The advisor may be an employee of the service-facilitation company or may be a third-party entity conducting data collection and lead follow-up on behalf of the facilitation company.


Regardless of the entity conducting the data collection, the event of the inquiry is converted into an indexed record at step 446 that includes various attributes about the inquiry, such as the inquirer's desired budget, desired service level or care needs, desired location, age, time-horizon and the like. Based on the provided data, the advisor may recommend a series of potential properties to the lead at step 447. Some of this initially collected data, such as budget data, may be sent to a machine-learning algorithm 150 at the time the data is collected. This data may be used to populate and/or update DIM_LEAD 325 as discussed above with respect to FIG. 3.


As various properties are recommended at step 448, each recommendation generates a “Lead Referral” (which is a tracked activity in FACT_LEAD_ACTIVITY 330) that includes sending lead data to the machine-learning algorithm 150. Further yet, as various leads actually move in to a recommended property at step 450, each move-in generates a “Move-In” event (which is also a tracked activity FACT_LEAD_ACTIVITY 330) that includes sending move-in data to the machine-learning algorithm 150. With all this indexed data being input to the machine-learning algorithm 150, analytics can be used to determine future cost for various property types in the form of projected cost growth probability at step 462. Put another way, a specialty property cost index may be generated based on all past and current data collected through the method of FIG. 4. As this cost index data is in an indexed form, various probabilities may be drawn out for subsets of the data as well. Such a subset cost probability may include a cost for properties in a specific geographic region, a cost for a specific type if property, a cost for properties within a specific budget, and the like. That is, the cost index, together with the analytical module of the machine-learning algorithm 350 may predict a vast number of probabilities based on current and historical data.



FIG. 5 is a method flow chart 500 for determining cost estimate data for specialty property according to an embodiment of the subject matter disclosed herein. Projecting future costs and growth of costs can be difficult in disparate markets across various geographies, economies, and demographics. Such estimation is further exacerbated by changing inventory within specialty property markets. Various methods are discussed herein for generating costs estimate data and the like from cost index data.


In an embodiment, the method may begin, at step 502, by assembling first-month rent and care charges across multiple care types, geographies, economies, and demographics as discussed above with respect to FIGS. 3 and 4. In order to provide meaningful estimation data, a threshold of past move-in data (e.g., actual transactions) may need to be satisfied at step 504. If such a threshold is met, past transaction data may also be adjusted for inflation prior to performing a logarithmic transform on the assembled cost index data at step 506. With inflation-adjusted data in a log-transform format (log-transform occurs at step 508), a machine-learning algorithm 350 may be invoked to draw statistical inferences from the assembled cost index data. Such a machine-learning algorithm 350 may be embodied in a computing module that is a generalized boosted additive model of location, scale and shape (GAMLSS) with a Gaussian family specification for the likelihood. The GAMLSS model estimates all of parameters of the distribution of costs conditional on the predictors (i.e., location, care type, etc.). In some embodiments, reiterative validation and tuning may be performed through training cycles and/or outlier data culling using the step loop function 510. In other embodiments, variable importance factors 512 may be gleaned from the assembled data.


The machine-learning algorithm 350 comprises multi-level, regression, and post-stratification aspects 514 (sometimes called MRP or “MisterP”) that will yield a number of different usable data sets that can then be part of a process for generating cost estimates and the like. The multi-level aspect of MRP refers to the fact that the model for cost estimates takes advantage of the hierarchical nesting of first-month rent and care charge data into ZIP codes, cities, counties, metropolitan areas, states, regions, and other nested groupings. The regression aspect of MRP refers to the fact that the cost estimates are modeled using a regression method (i.e., the GAMLSS described above). The post-stratification aspect of MRP refers to the fact that cost estimates from the GAMLSS are weighted by an estimate of the proportion of likely specialty property consumers who reside in a particular location (e.g., a county) that live in a more granular geographic unit (e.g., a ZIP code or more accurately a ZIP-code tabulation area) within that county. The overall assembled cost index data may be culled to produce interim data sets for use with generating any number of summary statistic as described below in step 530. Once such interim data set may be a distribution (e.g., share) of specialty property eligible tenants (e.g., an older population) is subset 520. Another interim data set 522 is a weighted average of mean and variance costs as distributed by location. Yet another interim data set includes zip-code level estimates at step 524 that may include both a mean of log charges and a variance of log charges.


Collectively, this subset data and the post-stratified estimates of the distributional parameters for a particular location and type(s) of care may be used to produce any summary statistic of interest for specialty property costs in that location and for that/those care type(s) at step 530. For example, one generated summary statistic may be a mean cost estimate for a specific location for a specific care-type. Another example may be generated summary statistic for median cost of a metropolitan area across all care-types. Yet another example is the 95 percent prediction interval for costs in a metropolitan area for a particular care type. Thus, a specific cost-growth estimate may be generated for any cross-section from the various input parameters available across any future time period.



FIG. 6 is a method flow chart for generating estimates from indexed data based on grouping similarly-situated data corresponding to one or more attributes including geographic attributes, demographic attributes and econometric attributes according to an embodiment of the subject matter disclosed herein. The method may use several aspects of FIGS. 3-5 as discussed above in various combinations and different orders. As such, the method of FIG. 6 is but one combination of steps that may result in estimates from assembled index data based on one or more data attributes.


In the embodiment of FIG. 6, the method may initially assemble an index of data at step 602. The assembled index may be a cost index that is derived from actual specialty property transaction data collected over a period of time. In other embodiments, the assembled index may be a demand index based on collected data about specialty properties. As the index is created, various attribute information may be delineated, determined, queried, received, or otherwise identified within the assembled index data at step 604. This attribute information may be classified into two or more groups. In this embodiment, there are three groups of attribute information: geographic information, demographic information, and econometric information. Geographic information is, generally, information about a physical location or description of the specialty property. For example, geographic information may be information about a region, a country, a state, a county, a city, a metropolitan area, and a zip code. Demographic information is, generally, information about a tenant of a specialty property or description of characteristics of a user of the specialty property. For example, demographic information may be information about an age range, a percentage of age group, a gender, an education level, and income level, an ethnicity, an origin, a religious affiliation; and a sexual preference. Econometric information is, generally, econometric information about a tenant of a specialty property or the specialty property itself. For example, econometric information may be information about a net worth, an income, an annuity, a pension, a subsidy, a budget, a price, a price history, a discount, a contract, contract terms, and a tax basis. As discussed previously, these attributes may be collected form third party data assemblers or from direct inquiries of specialty property patrons and operators.


Once assembled into an index, the underlying data may be prepared for additional data manipulation for ease of data manipulation at step 606 (also described in FIG. 5 at steps 504-508). Additional preparation of data here may be directed to log-transforming the data, or further delineating the assembled data for specific purposes such as adjusting a portion of the assembled index data for inflation prior to generating any estimate, adjusting a portion of the assembled index data for discounted data prior to generating any estimate, and limiting the index data to data within a specific date range prior to generating the estimate. Once prepared, the machine-learning algorithm (350 of FIG. 3) may be utilized to manipulate the assembled and prepared data to glean one or more data points from the indexed data at step 608.


In manipulating the indexed data, a number of differently delineated data points may be gleaned from the assembled and indexed data. In a first embodiment, a user may wish to generate an estimate for similarly-situated properties grouped according to geographic data at step 610. For example, one may wish to glean a cost estimate for future rent price for specialty properties within a specific zip code. In a second embodiment, a user may wish to generate an estimate for similarly-situated properties grouped according to demographic data at step 611. For example, one may wish to glean a cost estimate for future rent price for specialty properties that have been occupied by tenants within a specific age range. In a third embodiment, a user may wish to generate an estimate for similarly-situated properties grouped according to econometric data at step 612. For example, one may wish to glean a demand estimate for future need for specialty properties that have been or will be occupied by tenants having a fixed income within a specific range.


In each of these embodiments, the term similarly-situated means any user-defined attribute delineation of assembled data. Thus, a user may define similarly-situated to be all specialty properties within a metropolitan area (an example of a geographic attribute), or all specialty properties occupied by those over 65 but under 74 (an example of a demographic attribute), or all specialty properties within a region having a median income above $100,000 (an example of an econometric attribute). Any of these generated estimates may be communicated to a remote computer coupled through a computer network (e.g., the Internet) at step 620 before this method ends at 630.


All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and/or were set forth in its entirety herein.


The use of the terms “a” and “an” and “the” and similar referents in the specification and in the following claims are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “having,” “including,” “containing” and similar referents in the specification and in the following claims are to be construed as open-ended terms (e.g., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely indented to serve as a shorthand method of referring individually to each separate value inclusively falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments and does not pose a limitation to the scope of the disclosure unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to each embodiment of the present disclosure.


Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present subject matter is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications can be made without departing from the scope of the claims below.

Claims
  • 1. A computer-based method, comprising: establishing an index of data corresponding to a plurality of specialty properties at a server computer;receiving first attribute data corresponding to geographic information about each specialty property in the plurality of specialty properties;receiving second attribute data corresponding to demographic information about each specialty property in the plurality of specialty properties;receiving third attribute data corresponding to econometric information about each specialty property in the plurality of specialty properties;assimilating the geographic information, the demographic information and the econometric information into the index;generating, at the server computer, an estimate corresponding to specialty properties having at least one similarly-situated attribute; andcommunicating the estimate to a remote computer communicatively coupled to the server computer.
  • 2. The computer-based method of claim 1, wherein at least one of the specialty properties comprises an assisted living specialty property.
  • 3. The computer-based method of claim 1, wherein at least one of the specialty properties comprises a long-term care specialty property.
  • 4. The computer-based method of claim 1, wherein establishing the index further comprises establishing a demand index and generating the estimate further comprises generating a demand estimate.
  • 5. The computer-based method of claim 1, wherein establishing the index further comprises establishing a cost index and generating the estimate further comprises generating a cost estimate.
  • 6. The computer-based method of claim 1, wherein generating the estimate further comprises generating the estimate corresponding to specialty properties having similarly-situated geographic attributes.
  • 7. The computer-based method of claim 1, wherein generating the estimate further comprises generating the estimate corresponding to specialty properties having similarly-situated demographic attributes.
  • 8. The computer-based method of claim 1, wherein generating the estimate further comprises generating the estimate corresponding to specialty properties having similarly-situated econometric attributes.
  • 9. The computer-based method of claim 1, wherein geographic data corresponds to one or more of the group comprised of: a region, a state, a county, a city, a metropolitan area, and a zip code.
  • 10. The computer-based method of claim 1, wherein demographic data corresponds to one or more of the group comprised of: an age range, a percentage of age group, a gender, an education level, and income level, an ethnicity, an origin, a religious affiliation; and a sexual preference.
  • 11. The computer-based method of claim 1, wherein econometric data corresponds to one or more of the group comprised of: a net worth, an income, an annuity, a pension, a subsidy, and budget.
  • 12. The computer-based method of claim 1, further comprising adjusting a portion of the assembled index data for inflation prior to generating the estimate.
  • 13. The computer-based method of claim 1, further comprising adjusting a portion of the assembled index data for discounted data prior to generating the estimate.
  • 14. The computer-based method of claim 1, further comprising limiting the index data to data within a specific date range prior to generating the estimate.
  • 15. A computing system; comprising: a remote computer coupled to a computer network and configured to collect data having attributes about a plurality of specialty properties; anda server computer having a processor for controlling a plurality of modules and coupled the remote computer through the computer network, the server computer further including: a data collection module configured to establish an index of data corresponding to a plurality of specialty properties;an analysis module configured to delineate first attribute data corresponding to geographic information about each specialty property in the plurality of specialty properties, to delineate second attribute data corresponding to demographic information about each specialty property in the plurality of specialty properties, and to delineate third attribute data corresponding to econometric information about each specialty property in the plurality of specialty properties;an assimilation module configured to assimilate the geographic information, the demographic information and the econometric information into the index;a machine-learning module configured to generate an estimate corresponding to specialty properties having at least one similarly-situated attribute; anda memory configured to store the estimate.
  • 16. A computing device; comprising: a processor for controlling a plurality of modules;a data collection module configured to establish an index of data corresponding to a plurality of specialty properties;an analysis module configured to delineate first attribute data corresponding to geographic information about each specialty property in the plurality of specialty properties, to delineate second attribute data corresponding to demographic information about each specialty property in the plurality of specialty properties, and to delineate third attribute data corresponding to econometric information about each specialty property in the plurality of specialty properties;an assimilation module configured to assimilate the geographic information, the demographic information and the econometric information into the index;a machine-learning module configured to generate an estimate corresponding to specialty properties having at least one similarly-situated attribute; anda memory configured to store the estimate.
  • 17. The computing device of claim 16, further comprising a communication module configured to communicate the estimate to a remote computing device through a computer network.
  • 18. The computing device of claim 16, wherein the estimate further comprises an estimate corresponding to specialty properties having similarly-situated geographic attributes.
  • 19. The computer-based method of claim 1, wherein the estimate further comprises an estimate corresponding to specialty properties having similarly-situated demographic attributes.
  • 20. The computer-based method of claim 1, wherein the estimate further comprises an estimate corresponding to specialty properties having similarly-situated econometric attributes.
CLAIM TO PRIORITY APPLICATION

This application claims the benefit of U.S. Provisional Application No. 62/511,044 entitled “SYSTEM AND METHOD FOR GENERATING INDEXED SPECIALTY PROPERTY DATA INFLUENCED BY GEOGRAPHIC, ECONOMETRIC AND DEMOGRAPHIC DATA,” filed May 25, 2017, which is incorporated by reference in its entirety herein for all purposes.

Provisional Applications (1)
Number Date Country
62511044 May 2017 US