The disclosure relates to analysis of multimedia content, and more specifically to generation of signatures to enable matches of three-dimensional multimedia content.
With the abundance of multimedia data made available through various means in general and the Internet and world-wide web (WWW) in particular, there is a need for effective ways of searching for, and management of, such multimedia data. Searching, organizing, and management of multimedia data in general, and video data in particular, may be challenging at best due to the difficulty to represent and compare the information embedded in the video content and due to the scale of information that needs to be checked. Moreover, when it is necessary to find a content of video by means of a textual query, existing solutions revert to various metadata that textually describe the content of the multimedia data. However, such content may be abstract and complex by nature and not necessarily adequately defined by the existing and/or attached metadata.
The rapidly increasing number of multimedia databases, accessible, for example, through the Internet, calls for the application of new methods of representation of information embedded in video content. Searching for multimedia in general, and for video data in particular, is challenging due to the huge amount of information that has to be priory indexed, classified, and clustered. Moreover, prior art techniques revert to model-based methods to define and/or describe multimedia data. However, by its very nature, the structure of such multimedia data may be too abstract and/or complex to be adequately represented by means of metadata. The difficulty arises in cases where the target sought for multimedia data is not adequately defined in words, or by respective metadata of the multimedia data. For example, it may be desirable to locate a car of a particular model in a large database of video clips or segments. In some cases the model of the car would be part of the metadata but in many cases it would not. Moreover, the car may be at angles different from the angles of a specific photograph of the car that is available as a search item. Similarly, if a piece of music, as in a sequence of notes, is to be found, it is not necessarily the case that in all available content the notes are known in their metadata form, or for that matter, the search pattern may just be a brief audio clip.
A system implementing a computational architecture (hereinafter “the Architecture”) that is based on a PCT patent application publication number WO 2007/049282 and published on May 3, 2007, entitled “A Computing Device, a System and a Method for Parallel Processing of Data Streams”, assigned to common assignee, is hereby incorporated by reference for all the useful information it contains. Generally, the Architecture consists of a large ensemble of randomly, independently, generated, heterogeneous processing cores, mapping in parallel data-segments onto a high-dimensional space and generating compact signatures for classes of interest.
A vast amount of multimedia content exists today, whether available on the web or on private networks, having partial or full metadata that describes the content. When new content is added, it is a challenging to provide metadata that is accurate because of the plurality of metadata that may be potentially associated with a multimedia data element. Trying to do so manually is a tedious task and impractical for the amount of multimedia content being generated daily.
Even more challenging is the matching between different multimedia content that represents the same, similar, or related concepts and/or information from different perspectives. For example, an image of the Washington Memorial in Washington, DC, may be taken from different angles, from different distances, in different lighting conditions, and at different positions of the camera, so that while in one photograph the Memorial is diagonal to the picture, it is horizontal in another.
Yet even more challenging is the matching between three-dimensional multimedia content. The third dimension introduces additional variation in the orientation and display of a content item. For example, compared to a two dimensional image, a three-dimensional image may be taken from more angles and in more lighting conditions. Existing solutions which utilize metadata become even less accurate and efficient when processing three-dimensional multimedia content.
It would be therefore advantageous to provide a solution to overcome the limitations of the prior art described hereinabove to more effectively analyze three-dimensional multimedia elements.
A summary of several exemplary embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor delineate the scope of any or all embodiments. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term some embodiments may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.
Certain embodiments include a method for generating signatures for three-dimensional multimedia data elements. The method comprises receiving a three-dimensional multimedia data element; projecting the received three-dimensional multimedia data element on at least one two-dimensional plane, wherein the projection results in two-dimensional graphic representations of the received three-dimensional multimedia data element; generating at least one signature for each of the plurality of two-dimensional graphic representations; assembling the plurality of signatures generated for each of the plurality of two-dimensional graphic representations to generate a complex signature, wherein the complex signature is the signature representing the three-dimensional multimedia data element; and storing the signatures of each of the two-dimensional graphic representations of the at least one three-dimensional multimedia data element and the complex signature in association with the three-dimensional multimedia data element in a storage unit.
Certain embodiments include a method for comparing between a plurality of three-dimensional multimedia data elements. The method comprises generating a first complex signature for a first three-dimensional multimedia data element; comparing between the first complex signature and a second complex signature for a second three-dimensional multimedia data element; generating a match score respective of the comparison; and determining if a match is found by comparing the match score to a matching threshold.
Certain embodiments include a system for analyzing three-dimensional multimedia data elements. The system comprises a signature generator; an assembler unit; a storage unit; a processing unit; and a memory coupled to the processing unit, the memory contains instructions that when executed by the processing unit cause the system to: receive by the partitioning unit a three-dimensional multimedia data element; project the received three-dimensional multimedia data element on at least one two-dimensional plane, wherein the projection results in two-dimensional graphic representations of the received three-dimensional multimedia data element; generate at least one signature for each of the plurality of two-dimensional graphic representations; assemble by the assembler unit the plurality of signatures generated for each of the plurality of two-dimensional graphic representations to generate a complex signature, wherein the complex signature is the signature representing the three-dimensional multimedia data element; and store the signatures of each of the two-dimensional graphic representations of the at least one three-dimensional multimedia data element and the complex signature in association with the three-dimensional multimedia data element in a storage unit.
Certain embodiments include a system for comparing between a plurality of three-dimensional multimedia data elements. The system comprises a signature generator; a comparison unit; a processing unit; and a memory coupled to the processing unit, the memory contains instructions that when executed by the processing unit cause the system to: generate a first complex signature for a first three-dimensional multimedia data element; compare between the first complex signature and a second complex signature for a second three-dimensional multimedia data element; generate a match score respective of the comparison; and determine if a match is found by comparing the match score to a matching threshold.
The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
The embodiments disclosed herein are only examples of the many possible advantageous uses and implementations of the innovative teachings presented herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed embodiments. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.
The various disclosed embodiments for generating signatures and comparing signatures for three-dimensional multimedia data elements can utilize a framework, a method, a system, and their technological implementations for large-scale matching-based multimedia Deep Content Classification (DCC).” Such a system is based on the Architecture which is an implementation of a computational architecture described in patent application publication number WO 2007/049282. As mentioned above, the Architecture consists of a large ensemble of randomly and independently generated, heterogeneous processing computational cores, mapping in parallel data-segments onto a high-dimensional space and generating compact signatures for classes of interest.
In one non-limiting implementation, a realization of the Architecture embedded in large-scale video matching system (hereinafter “the Matching System”) for multimedia DCC is presented. The Architecture receives an input stream of multimedia content segments, injected in parallel to all computational cores. The computational cores generate compact signatures of a specific content segment, and/or of a certain class of equivalence and interest of content-segments. For large-scale volumes of data, the signatures are stored in a conventional way in a database of size N, allowing a match between the generated signatures of a certain content-segment and the signatures stored in the database, and accomplishing it in a low-cost manner in terms of complexity, i.e. ≤O(logN), and response time.
Characteristics and advantages of the Matching System include, but are not limited to, the Matching System is flat and generates signatures at an extremely high throughput rate; the Matching System generates robust natural signatures, invariant to various distortions of the signal; the Matching System is highly-scalable in high-volume signatures generation; the Matching System is highly scalable in matching against large volumes of signatures; the Matching System generates robust signatures for exact match with low cost, in terms of complexity and response time; the Matching System accuracy is scalable versus the number of computational cores, with no degradation effect on the throughput rate of processing; the throughput of the Matching System is scalable with the number of computational threads, and is scalable with the platform for computational cores implementation, such as FPGA, ASIC, etc.; and, the robust signatures produced by the Matching System are task-independent, thus the process of classification, recognition and clustering can be done independently from the process of signatures generation, in the superior space of the generated signatures.
The goal of the Matching System is to effectively find matches between members of a large scale Master Database (DB) of video content-segments and a large scale Target DB of video content-segments. The match between two video content segments should be invariant to a certain set of statistical distortions performed independently on two relevant content-segments. Moreover, the process of matching between a certain content-segment from the Master DB to the Target DB consisting of N segments cannot be done by matching directly the Master content-segment to all N Target content-segments, for large-scale N, since the corresponding complexity of O(N), will lead to non-practical response time. Thus, the representation of content-segments by both Robust Signatures and Signatures is crucial application-wise. The Matching System embodies a specific realization of the Architecture for large scale video matching purposes.
A high-level description of the process for large scale video matching performed by the Matching System is depicted in
To demonstrate an example of signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. The Matching System is extensible for signatures generation capturing the dynamics in-between the frames and the information of the frame's patches.
The signatures generation process will be described with reference to
In order to generate Robust Signatures, i.e., Signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) computational cores are utilized in the Matching System. A frame ‘i’ is injected into all the cores. The cores generate two binary response vectors: {right arrow over (S)} which is a Signature vector, and {right arrow over (RS)} which is a Robust Signature vector.
For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, etc., a core Ci={ni} (1≤i≤L) may consist of a single leaky integrate-to-threshold unit (LTU) node or more nodes. The node ni equations are:
ni=θ(Vi−Ths); θ is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j); kj is an image component j (for example, grayscale value of a certain pixel j); Thx is a constant Threshold value, where x is ‘S’ for Signature and ‘RS’ for Robust Signature; and Vi is a Coupling Node Value.
The Threshold values Thx are set differently for Signature generation and for Robust Signature generation. For example, for a certain distribution of Vi values (for the set of nodes), the thresholds for Signature (ThS) and Robust Signature (ThRS) are set apart, after optimization, according to at least one or more of the following criteria:
I:
For: Vi>ThRS
b 1−p(V>ThS)=1−(1−ϵ)l<<1
i.e., given that I nodes (cores) constitute a Robust Signature of a certain image I, the probability that not all of these I nodes will belong to the Signature of same, but noisy image, Ĩ is sufficiently low (according to a system's specified accuracy).
II:
p(Vi>ThRS)≈l/L
i.e., approximately I out of the total L nodes can be found to generate Robust Signature according to the above definition.
III: Both Robust Signature and Signature are generated for certain frame i.
It should be understood that the creation of a signature is a unidirectional compression where the characteristics of the compressed data are maintained but the compressed data cannot be reconstructed. Therefore, a signature can be used for the purpose of comparison to another signature without the need of comparison of the original data. A detailed description of the signature generation process can be found in the co-pending patent applications of which this patent application is a continuation-in-part of, and are hereby incorporated by reference.
Computational Core generation is a process of definition, selection, and tuning of the Architecture parameters for a certain realization in a specific system and application. The process is based on several design considerations, such as:
(a) The cores should be designed so as to obtain maximal independence, i.e. the projection from a signal space should generate a maximal pair-wise distance between any two cores' projections into a high-dimensional space.
(b) The cores should be optimally designed for the type of signals, i.e. the cores should be maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space. Thus, in some cases a core represents a dynamic system, such as in state space, phase space, edge of chaos, etc., which is uniquely used herein to exploit their maximal computational power.
(c) The Cores should be optimally designed with regard to invariance to set of signal distortions, of interest in relevant application.
A system and method for generating complex signatures for a multimedia data element (MMDE) based on signatures of minimum size multimedia data elements are now discussed. Accordingly partitions the multimedia data content to minimum size multimedia data elements and selects a reduced set of MMDEs based on generic low-level characteristics of MMDEs. A signature generator is configured to generate signatures for each of the selected minimum size multimedia data elements. An assembler unit is configured to assemble a complex signature for a higher level partition multimedia data element by assembling at least one respective complex signature of minimum size multimedia data elements of an immediately lower partition level. Multimedia data elements include, but are not limited to, images, graphics, video streams, video clips, audio streams, audio clips, video frames, photographs, images of signals, combinations thereof, and portions thereof. This process generates hologram-like relationship within the complex-signature set of signatures, i.e., each signature contains some information of the complete set of multimedia data elements). While the original signature represents some local information about relevant multimedia data elements, the complex signature structure enables distributed representation of the information of the entire set of multimedia data elements.
Complex signatures, for example, but without limitations, signatures as described hereinabove, are generated for the multimedia data elements.
A complex signature is a signature which is a combination of lower level signatures. In an embodiment, the signature of the multimedia element 310 is therefore the following combination: S310={S310-a, S310-b, . . . S310-i}. Each of the signatures S310-a through S310-i is also a complex signature of lower level signatures, for example, the signature S310-c is a complex signature that is a combination of: S310-c={S310-c-a, S310-c-b, . . . S310-c-i}. As explained above, this may continue such that a signature S310-c-b may be a complex signature of lower level signatures.
In one implementation, at least lowest level multimedia data elements have signatures respective of at least for angular permutations of the element, i.e., rotated by 0°, rotated by 90°, rotated by 180°, and rotated by 270°. While degrees of permutations where shown herein, other permutations may be used depending on the type of the multimedia data element. The rationale for having such image permutation is to enable a better matching between multimedia data elements. The matching process is explained in detail herein below.
In S420, a signature is generated for the minimum size multimedia data element of the received multimedia data element, and the portions thereof. The signature may be generated as explained hereinabove and/or by other signature generation means that provide a signature respective of the multimedia data element. In S430, it is checked whether additional multimedia data elements are present, and if so execution continues with S420; otherwise, execution continues with S440.
In S440, complex signatures are assembled for each multimedia data element of a particular partition level, each complex signature comprising a plurality of signatures of lower partition level signatures, as shown with respect to
In S530, the complex signature of the received multimedia data element is matched with complex signatures stored in storage, for example in the storage of The System. S530 comprises matching of all the signatures generated for the minimum size multimedia data elements. In S540, it is checked if a match score generated based on the complex signatures is over a predefined matching threshold, and if so execution continues with S550; otherwise, execution continues with S560. In S550, a report of a match found is generated. In S560, a report of no-match found is generated.
In S570, it is checked whether additional multimedia data elements are to be compared, and if so execution returns to S510; otherwise, execution terminates. It should be noted that the matching at the lowest level may include matching against a plurality of permutations of the minimum size multimedia data element, thereby increasing the chance for correct matching between two multimedia data elements. The method 500 may be employed using complex signatures, non-complex signatures, or a combination thereof.
A complex signature may be generated by an exemplary and non-limiting system 600 depicted in
In one embodiment, the signature is generated in accordance with signature generation principles explained in more detail herein above. The assembler unit 630, coupled to the signature generator 620 either directly or via the storage unit 640, is configured to generate complex signatures for each level of partitioning starting from one level above the level of the signatures of the minimum size multimedia data elements. At this level, the complex signature of a partitioned multimedia data element comprises a plurality of signatures generated for the minimum size multimedia data elements. At levels higher than that level, the signature of the partitioned multimedia data element, or for that effect, the multimedia data element received by the partitioning unit 610, comprises a plurality of complex signatures assembled from complex signature of the immediately lower partitioning level. The complex signature and the signatures of the minimum size multimedia elements may be stored in the storage unit 640.
In accordance with another embodiment, the system 600 can be utilized to compare input multimedia data elements to stored multimedia data elements. In this embodiment, a comparison unit 650, connected to the storage unit 640 and the assembler unit 630, is configured to compare the signatures comprising the complex signature of an input multimedia data element to the signatures of at least one stored multimedia data element. The comparison unit 650 further generates a match indication when a match between the input multimedia data element and the stored multimedia data element is found.
According to certain embodiments disclosed herein, the process for generating signatures and/or complex signatures can be utilized to produce signatures for three-dimensional multimedia elements (hereinafter “3D-MMDEs”). The generation of such signatures is based on the projection of a 3D-MMDE to a two-dimensional plane. An exemplary embodiment for such projection is illustrated in
As shown in
In an embodiment, the system 600 is configured to identify the 3D-MMDE 710 comprises 8 edges: A, B, C, D, M, N, O, and K. The 3D-MMDE 710 is then projected on a two-dimensional plane surface 720 having three axes: x, y, and z. A plurality of plane surfaces may be employed. Respective of the projection, each edge of the 3D-MMDE 710 illustrating a cube 710 A, B, C, D, M, N, O, and K receives a graphic representation on the plane (two-dimensional) surface 720: A′, B′, C′, D′, E′, M′, N′, O′, and K′ respectively.
The graphic representations projected on surface 720 are then analyzed by the system 600. Specifically, at least one signature is generated for each edge of the object presented in the 3D-MMDE 710. The signatures are then stored in the storage unit 640 for further use. According to one embodiment, the generated signatures are assembled to at least one complex signature. The complex signature can also be stored in the storage unit 640 for further use.
In S840, at least one complex signature is assembled using the signatures generated in S830. A complex signature is a signature which is a combination of lower level signatures. In an embodiment, the at least one complex signature is assembled according to the method as described in further detail hereinabove with respect to
In S850, the signatures of each of the two-dimensional graphic representations of the at least one three-dimensional MMDE and the at least one complex signature in association with the 3D-MMDE are stored in a storage unit. In S860, it is checked whether there are additional 3D-MMDEs to analyze and if so, execution continues with S810; otherwise, execution terminates.
In exemplary embodiments, the complex signatures generated by the method 800 may be utilized for matching between 3D-MMDEs. The matching of 3D-MMDEs using complex signatures may be performed using the method disclosed in detail above.
The disclosed embodiments may be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the disclosed embodiments and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosure, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
This application claims the benefit of U.S. Provisional Application 61/939,287 filed on Feb. 13, 2014. This application is also a continuation-in-part of: U.S. patent application Ser. No. 14/513,863 filed on Oct. 14, 2014, which is a continuation of U.S. patent application Ser. No. 13/668,557, filed on Nov. 5, 2012, now U.S. Pat. No. 8,880,539. The Ser. No. 13/668,557 Application is a continuation of U.S. patent application Ser. No. 12/538,495, filed on Aug. 10, 2009, now U.S. Pat. No. 8,312,031. The Ser. No. 12/538,495 Application is a continuation-in-part of: (1) U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, now U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235, filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005, and Israeli Application No. 173409 filed on Jan. 29, 2006; (2) U.S. patent application Ser. No. 12/195,863 filed on Aug. 21, 2008, now U.S. Pat. No. 8,326,775, which claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007, and which is also a continuation-in-part of the above-referenced U.S. patent application Ser. No. 12/084,150; and (3) U.S. patent application Ser. No. 12/348,888, filed Jan. 5, 2009. The Ser. No. 12/348,888 application is a continuation-in-part of the above-referenced U.S. patent application Ser. Nos. 12/084,150 and 12/195,863. All of the applications and patents referenced above are herein incorporated by reference
Number | Name | Date | Kind |
---|---|---|---|
4733353 | Jaswa | Mar 1988 | A |
4932645 | Schorey et al. | Jun 1990 | A |
4972363 | Nguyen et al. | Nov 1990 | A |
5214746 | Fogel et al. | May 1993 | A |
5307451 | Clark | Apr 1994 | A |
5412564 | Ecer | May 1995 | A |
5436653 | Ellis et al. | Jul 1995 | A |
5568181 | Greenwood et al. | Oct 1996 | A |
5638425 | Meador et al. | Jun 1997 | A |
5745678 | Herzberg et al. | Apr 1998 | A |
5763069 | Jordan | Jun 1998 | A |
5806061 | Chaudhuri et al. | Sep 1998 | A |
5835901 | Duvoisin et al. | Nov 1998 | A |
5852435 | Vigneaux et al. | Dec 1998 | A |
5870754 | Dimitrova et al. | Feb 1999 | A |
5873080 | Coden et al. | Feb 1999 | A |
5887193 | Takahashi et al. | Mar 1999 | A |
5940821 | Wical | Aug 1999 | A |
5978754 | Kumano | Nov 1999 | A |
5987454 | Hobbs | Nov 1999 | A |
5991306 | Burns et al. | Nov 1999 | A |
6038560 | Wical | Mar 2000 | A |
6052481 | Grajski et al. | Apr 2000 | A |
6070167 | Qian et al. | May 2000 | A |
6076088 | Paik et al. | Jun 2000 | A |
6122628 | Castelli et al. | Sep 2000 | A |
6128651 | Cezar | Oct 2000 | A |
6137911 | Zhilyaev | Oct 2000 | A |
6144767 | Bottou et al. | Nov 2000 | A |
6147636 | Gershenson | Nov 2000 | A |
6163510 | Lee et al. | Dec 2000 | A |
6240423 | Hirata | May 2001 | B1 |
6243375 | Speicher | Jun 2001 | B1 |
6243713 | Nelson et al. | Jun 2001 | B1 |
6269307 | Shinmura | Jul 2001 | B1 |
6275599 | Adler et al. | Aug 2001 | B1 |
6329986 | Cheng | Dec 2001 | B1 |
6363373 | Steinkraus | Mar 2002 | B1 |
6381656 | Shankman | Apr 2002 | B1 |
6411229 | Kobayashi | Jun 2002 | B2 |
6422617 | Fukumoto et al. | Jul 2002 | B1 |
6493692 | Kobayashi et al. | Dec 2002 | B1 |
6493705 | Kobayashi et al. | Dec 2002 | B1 |
6507672 | Watkins et al. | Jan 2003 | B1 |
6523022 | Hobbs | Feb 2003 | B1 |
6523046 | Liu et al. | Feb 2003 | B2 |
6524861 | Anderson | Feb 2003 | B1 |
6526400 | Takata et al. | Feb 2003 | B1 |
6550018 | Abonamah et al. | Apr 2003 | B1 |
6557042 | He et al. | Apr 2003 | B1 |
6560597 | Dhillon et al. | May 2003 | B1 |
6594699 | Sahai et al. | Jul 2003 | B1 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6601060 | Tomaru | Jul 2003 | B1 |
6611628 | Sekiguchi et al. | Aug 2003 | B1 |
6611837 | Schreiber | Aug 2003 | B2 |
6618711 | Ananth | Sep 2003 | B1 |
6640015 | Lafruit | Oct 2003 | B1 |
6643620 | Contolini et al. | Nov 2003 | B1 |
6643643 | Lee et al. | Nov 2003 | B1 |
6665657 | Dibachi | Dec 2003 | B1 |
6675159 | Lin et al. | Jan 2004 | B1 |
6681032 | Bortolussi et al. | Jan 2004 | B2 |
6704725 | Lee | Mar 2004 | B1 |
6710822 | Walker | Mar 2004 | B1 |
6728706 | Aggarwal et al. | Apr 2004 | B2 |
6732149 | Kephart | May 2004 | B1 |
6742094 | Igari | May 2004 | B2 |
6751363 | Natsev et al. | Jun 2004 | B1 |
6751613 | Lee et al. | Jun 2004 | B1 |
6754435 | Kim | Jun 2004 | B2 |
6763069 | Divakaran et al. | Jul 2004 | B1 |
6763519 | McColl et al. | Jul 2004 | B1 |
6774917 | Foote et al. | Aug 2004 | B1 |
6795818 | Lee | Sep 2004 | B1 |
6804356 | Krishnamachari | Oct 2004 | B1 |
6813395 | Kinjo | Nov 2004 | B1 |
6819797 | Smith et al. | Nov 2004 | B1 |
6836776 | Schreiber | Dec 2004 | B2 |
6845374 | Oliver et al. | Jan 2005 | B1 |
6877134 | Fuller et al. | Apr 2005 | B1 |
6901207 | Watkins | May 2005 | B1 |
6938025 | Lulich et al. | Aug 2005 | B1 |
6963975 | Weare | Nov 2005 | B1 |
6970881 | Mohan et al. | Nov 2005 | B1 |
6978264 | Chandrasekar et al. | Dec 2005 | B2 |
6985172 | Rigney et al. | Jan 2006 | B1 |
7006689 | Kasutani | Feb 2006 | B2 |
7013051 | Sekiguchi et al. | Mar 2006 | B2 |
7020654 | Najmi | Mar 2006 | B1 |
7023979 | Wu et al. | Apr 2006 | B1 |
7043473 | Rassool et al. | May 2006 | B1 |
7047033 | Wyler | May 2006 | B2 |
7124149 | Smith et al. | Oct 2006 | B2 |
7158681 | Persiantsev | Jan 2007 | B2 |
7199798 | Echigo et al. | Apr 2007 | B1 |
7215828 | Luo | May 2007 | B2 |
7260564 | Lynn et al. | Aug 2007 | B1 |
7277928 | Lennon | Oct 2007 | B2 |
7296012 | Ohashi | Nov 2007 | B2 |
7299261 | Oliver et al. | Nov 2007 | B1 |
7302117 | Sekiguchi et al. | Nov 2007 | B2 |
7313805 | Rosin et al. | Dec 2007 | B1 |
7340358 | Yoneyama | Mar 2008 | B2 |
7340458 | Vaithilingam et al. | Mar 2008 | B2 |
7346629 | Kapur et al. | Mar 2008 | B2 |
7353224 | Chen et al. | Apr 2008 | B2 |
7376672 | Weare | May 2008 | B2 |
7376722 | Sim et al. | May 2008 | B1 |
7392238 | Zhou et al. | Jun 2008 | B1 |
7406459 | Chen et al. | Jul 2008 | B2 |
7433895 | Li et al. | Oct 2008 | B2 |
7450740 | Shah et al. | Nov 2008 | B2 |
7464086 | Black et al. | Dec 2008 | B2 |
7519238 | Robertson et al. | Apr 2009 | B2 |
7523102 | Bjarnestam et al. | Apr 2009 | B2 |
7526607 | Singh et al. | Apr 2009 | B1 |
7529659 | Wold | May 2009 | B2 |
7536384 | Venkataraman et al. | May 2009 | B2 |
7536417 | Walsh et al. | May 2009 | B2 |
7542969 | Rappaport et al. | Jun 2009 | B1 |
7548910 | Chu et al. | Jun 2009 | B1 |
7555477 | Bayley et al. | Jun 2009 | B2 |
7555478 | Bayley et al. | Jun 2009 | B2 |
7562076 | Kapur | Jul 2009 | B2 |
7574436 | Kapur et al. | Aug 2009 | B2 |
7574668 | Nunez et al. | Aug 2009 | B2 |
7577656 | Kawai et al. | Aug 2009 | B2 |
7657100 | Gokturk et al. | Feb 2010 | B2 |
7660468 | Gokturk et al. | Feb 2010 | B2 |
7660737 | Lim et al. | Feb 2010 | B1 |
7689544 | Koenig | Mar 2010 | B2 |
7694318 | Eldering et al. | Apr 2010 | B2 |
7697791 | Chan et al. | Apr 2010 | B1 |
7769221 | Shakes et al. | Aug 2010 | B1 |
7788132 | Desikan et al. | Aug 2010 | B2 |
7788247 | Wang et al. | Aug 2010 | B2 |
7801893 | Gulli | Sep 2010 | B2 |
7836054 | Kawai et al. | Nov 2010 | B2 |
7860895 | Scofield | Dec 2010 | B1 |
7904503 | De | Mar 2011 | B2 |
7920894 | Wyler | Apr 2011 | B2 |
7921107 | Chang et al. | Apr 2011 | B2 |
7933407 | Keidar et al. | Apr 2011 | B2 |
7974994 | Li et al. | Jul 2011 | B2 |
7987194 | Walker et al. | Jul 2011 | B1 |
7987217 | Long et al. | Jul 2011 | B2 |
7991715 | Schiff et al. | Aug 2011 | B2 |
8000655 | Wang et al. | Aug 2011 | B2 |
8023739 | Hohimer et al. | Sep 2011 | B2 |
8036893 | Reich | Oct 2011 | B2 |
8098934 | Vincent | Jan 2012 | B2 |
8112376 | Raichelgauz et al. | Feb 2012 | B2 |
8266185 | Raichelgauz et al. | Sep 2012 | B2 |
8275764 | Jeon | Sep 2012 | B2 |
8311950 | Kunal | Nov 2012 | B1 |
8312031 | Raichelgauz et al. | Nov 2012 | B2 |
8315442 | Gokturk et al. | Nov 2012 | B2 |
8316005 | Moore | Nov 2012 | B2 |
8326775 | Raichelgauz et al. | Dec 2012 | B2 |
8332478 | Levy et al. | Dec 2012 | B2 |
8345982 | Gokturk et al. | Jan 2013 | B2 |
RE44225 | Aviv | May 2013 | E |
8457827 | Ferguson et al. | Jun 2013 | B1 |
8495489 | Everingham | Jul 2013 | B1 |
8527978 | Sallam | Sep 2013 | B1 |
8548828 | Longmire | Oct 2013 | B1 |
8634980 | Urmson | Jan 2014 | B1 |
8635531 | Graham et al. | Jan 2014 | B2 |
8655801 | Raichelgauz et al. | Feb 2014 | B2 |
8655878 | Kulkarni et al. | Feb 2014 | B1 |
8677377 | Cheyer et al. | Mar 2014 | B2 |
8682667 | Haughay | Mar 2014 | B2 |
8688446 | Yanagihara | Apr 2014 | B2 |
8706503 | Cheyer et al. | Apr 2014 | B2 |
8775442 | Moore et al. | Jul 2014 | B2 |
8781152 | Momeyer | Jul 2014 | B2 |
8782077 | Rowley | Jul 2014 | B1 |
8799195 | Raichelgauz et al. | Aug 2014 | B2 |
8799196 | Raichelquaz et al. | Aug 2014 | B2 |
8818916 | Raichelgauz et al. | Aug 2014 | B2 |
8868619 | Raichelgauz et al. | Oct 2014 | B2 |
8868861 | Shimizu et al. | Oct 2014 | B2 |
8880539 | Raichelgauz et al. | Nov 2014 | B2 |
8880566 | Raichelgauz et al. | Nov 2014 | B2 |
8880640 | Graham | Nov 2014 | B2 |
8886648 | Procopio et al. | Nov 2014 | B1 |
8898568 | Bull et al. | Nov 2014 | B2 |
8922414 | Raichelgauz et al. | Dec 2014 | B2 |
8959037 | Raichelgauz et al. | Feb 2015 | B2 |
8990125 | Raichelgauz et al. | Mar 2015 | B2 |
8990199 | Ramesh et al. | Mar 2015 | B1 |
9009086 | Raichelgauz et al. | Apr 2015 | B2 |
9031999 | Raichelgauz et al. | May 2015 | B2 |
9087049 | Raichelgauz et al. | Jul 2015 | B2 |
9104747 | Raichelgauz et al. | Aug 2015 | B2 |
9165406 | Gray et al. | Oct 2015 | B1 |
9191626 | Raichelgauz et al. | Nov 2015 | B2 |
9197244 | Raichelgauz et al. | Nov 2015 | B2 |
9218606 | Raichelgauz et al. | Dec 2015 | B2 |
9235557 | Raichelgauz et al. | Jan 2016 | B2 |
9252961 | Bosworth | Feb 2016 | B2 |
9256668 | Raichelgauz et al. | Feb 2016 | B2 |
9298763 | Zack | Mar 2016 | B1 |
9323754 | Ramanathan et al. | Apr 2016 | B2 |
9325751 | Bosworth | Apr 2016 | B2 |
9330189 | Raichelgauz et al. | May 2016 | B2 |
9384196 | Raichelgauz et al. | Jul 2016 | B2 |
9438270 | Raichelgauz et al. | Sep 2016 | B2 |
9440647 | Sucan | Sep 2016 | B1 |
9466068 | Raichelgauz et al. | Oct 2016 | B2 |
9542694 | Bosworth | Jan 2017 | B2 |
9606992 | Geisner et al. | Mar 2017 | B2 |
9646006 | Raichelgauz et al. | May 2017 | B2 |
9679062 | Schillings et al. | Jun 2017 | B2 |
9734533 | Givot | Aug 2017 | B1 |
9807442 | Bhatia et al. | Oct 2017 | B2 |
9875445 | Amer et al. | Jan 2018 | B2 |
9911334 | Townsend | Mar 2018 | B2 |
9984369 | Li et al. | May 2018 | B2 |
9996845 | Zhang | Jun 2018 | B2 |
10133947 | Yang | Nov 2018 | B2 |
10347122 | Takenaka | Jul 2019 | B2 |
10491885 | Hicks | Nov 2019 | B1 |
20010019633 | Tenze | Sep 2001 | A1 |
20010038876 | Anderson | Nov 2001 | A1 |
20010056427 | Yoon et al. | Dec 2001 | A1 |
20020010682 | Johnson | Jan 2002 | A1 |
20020010715 | Chinn | Jan 2002 | A1 |
20020019881 | Bokhari et al. | Feb 2002 | A1 |
20020019882 | Soejima | Feb 2002 | A1 |
20020032677 | Morgenthaler et al. | Mar 2002 | A1 |
20020037010 | Yamauchi | Mar 2002 | A1 |
20020038299 | Zernik et al. | Mar 2002 | A1 |
20020042914 | Walker et al. | Apr 2002 | A1 |
20020059580 | Kalker et al. | May 2002 | A1 |
20020072935 | Rowse et al. | Jun 2002 | A1 |
20020087530 | Smith et al. | Jul 2002 | A1 |
20020087828 | Arimilli et al. | Jul 2002 | A1 |
20020099870 | Miller et al. | Jul 2002 | A1 |
20020103813 | Frigon | Aug 2002 | A1 |
20020107827 | Benitez-Jimenez et al. | Aug 2002 | A1 |
20020113812 | Walker et al. | Aug 2002 | A1 |
20020123928 | Eldering et al. | Sep 2002 | A1 |
20020126872 | Brunk et al. | Sep 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020129296 | Kwiat et al. | Sep 2002 | A1 |
20020143976 | Barker et al. | Oct 2002 | A1 |
20020147637 | Kraft et al. | Oct 2002 | A1 |
20020152087 | Gonzalez | Oct 2002 | A1 |
20020152267 | Lennon | Oct 2002 | A1 |
20020157116 | Jasinschi | Oct 2002 | A1 |
20020159640 | Vaithilingam et al. | Oct 2002 | A1 |
20020161739 | Oh | Oct 2002 | A1 |
20020163532 | Thomas | Nov 2002 | A1 |
20020174095 | Lulich et al. | Nov 2002 | A1 |
20020178410 | Haitsma et al. | Nov 2002 | A1 |
20020184505 | Mihcak | Dec 2002 | A1 |
20030005432 | Ellis et al. | Jan 2003 | A1 |
20030028660 | Igawa et al. | Feb 2003 | A1 |
20030037010 | Schmelzer | Feb 2003 | A1 |
20030041047 | Chang | Feb 2003 | A1 |
20030050815 | Seigel et al. | Mar 2003 | A1 |
20030078766 | Appelt et al. | Apr 2003 | A1 |
20030086627 | Berriss et al. | May 2003 | A1 |
20030089216 | Birmingham et al. | May 2003 | A1 |
20030093790 | Logan et al. | May 2003 | A1 |
20030101150 | Agnihotri | May 2003 | A1 |
20030105739 | Essafi et al. | Jun 2003 | A1 |
20030115191 | Copperman et al. | Jun 2003 | A1 |
20030126147 | Essafi et al. | Jul 2003 | A1 |
20030182567 | Barton et al. | Sep 2003 | A1 |
20030184598 | Graham | Oct 2003 | A1 |
20030191764 | Richards | Oct 2003 | A1 |
20030191776 | Obrador | Oct 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030217335 | Chung | Nov 2003 | A1 |
20030229531 | Heckerman et al. | Dec 2003 | A1 |
20040003394 | Ramaswamy | Jan 2004 | A1 |
20040025180 | Begeja et al. | Feb 2004 | A1 |
20040047461 | Weisman | Mar 2004 | A1 |
20040059736 | Willse | Mar 2004 | A1 |
20040068510 | Hayes et al. | Apr 2004 | A1 |
20040091111 | Levy | May 2004 | A1 |
20040095376 | Graham et al. | May 2004 | A1 |
20040098671 | Graham et al. | May 2004 | A1 |
20040107181 | Rodden | Jun 2004 | A1 |
20040111432 | Adams et al. | Jun 2004 | A1 |
20040111465 | Chuang et al. | Jun 2004 | A1 |
20040117367 | Smith et al. | Jun 2004 | A1 |
20040117638 | Monroe | Jun 2004 | A1 |
20040119848 | Buehler | Jun 2004 | A1 |
20040128142 | Whitham | Jul 2004 | A1 |
20040128511 | Sun et al. | Jul 2004 | A1 |
20040133927 | Sternberg et al. | Jul 2004 | A1 |
20040153426 | Nugent | Aug 2004 | A1 |
20040215663 | Liu et al. | Oct 2004 | A1 |
20040230572 | Omoigui | Nov 2004 | A1 |
20040249779 | Nauck et al. | Dec 2004 | A1 |
20040260688 | Gross | Dec 2004 | A1 |
20040267774 | Lin | Dec 2004 | A1 |
20050010553 | Liu | Jan 2005 | A1 |
20050021394 | Miedema et al. | Jan 2005 | A1 |
20050114198 | Koningstein et al. | May 2005 | A1 |
20050131884 | Gross et al. | Jun 2005 | A1 |
20050144455 | Haitsma | Jun 2005 | A1 |
20050163375 | Grady | Jul 2005 | A1 |
20050172130 | Roberts | Aug 2005 | A1 |
20050177372 | Wang et al. | Aug 2005 | A1 |
20050193015 | Logston | Sep 2005 | A1 |
20050238198 | Brown et al. | Oct 2005 | A1 |
20050238238 | Xu et al. | Oct 2005 | A1 |
20050245241 | Durand et al. | Nov 2005 | A1 |
20050249398 | Khamene | Nov 2005 | A1 |
20050256820 | Dugan et al. | Nov 2005 | A1 |
20050262428 | Little et al. | Nov 2005 | A1 |
20050281439 | Lange | Dec 2005 | A1 |
20050289163 | Gordon et al. | Dec 2005 | A1 |
20050289590 | Cheok et al. | Dec 2005 | A1 |
20060004745 | Kuhn et al. | Jan 2006 | A1 |
20060013451 | Haitsma | Jan 2006 | A1 |
20060020860 | Tardif et al. | Jan 2006 | A1 |
20060020958 | Allamanche et al. | Jan 2006 | A1 |
20060026203 | Tan et al. | Feb 2006 | A1 |
20060031216 | Semple et al. | Feb 2006 | A1 |
20060033163 | Chen | Feb 2006 | A1 |
20060041596 | Stirbu et al. | Feb 2006 | A1 |
20060048191 | Xiong | Mar 2006 | A1 |
20060064037 | Shalon et al. | Mar 2006 | A1 |
20060100987 | Leurs | May 2006 | A1 |
20060112035 | Cecchi et al. | May 2006 | A1 |
20060120626 | Perlmutter | Jun 2006 | A1 |
20060129822 | Snijder et al. | Jun 2006 | A1 |
20060143674 | Jones et al. | Jun 2006 | A1 |
20060153296 | Deng | Jul 2006 | A1 |
20060159442 | Kim et al. | Jul 2006 | A1 |
20060173688 | Whitham | Aug 2006 | A1 |
20060184638 | Chua et al. | Aug 2006 | A1 |
20060204035 | Guo et al. | Sep 2006 | A1 |
20060217818 | Fujiwara | Sep 2006 | A1 |
20060217828 | Hicken | Sep 2006 | A1 |
20060218191 | Gopalakrishnan | Sep 2006 | A1 |
20060224529 | Kermani | Oct 2006 | A1 |
20060236343 | Chang | Oct 2006 | A1 |
20060242130 | Sadri | Oct 2006 | A1 |
20060242139 | Butterfield et al. | Oct 2006 | A1 |
20060242554 | Gerace et al. | Oct 2006 | A1 |
20060247983 | Dalli | Nov 2006 | A1 |
20060248558 | Barton | Nov 2006 | A1 |
20060251292 | Gokturk | Nov 2006 | A1 |
20060251338 | Gokturk | Nov 2006 | A1 |
20060251339 | Gokturk | Nov 2006 | A1 |
20060253423 | McLane et al. | Nov 2006 | A1 |
20060288002 | Epstein | Dec 2006 | A1 |
20070009159 | Fan | Jan 2007 | A1 |
20070011151 | Hagar et al. | Jan 2007 | A1 |
20070019864 | Koyama et al. | Jan 2007 | A1 |
20070022374 | Huang et al. | Jan 2007 | A1 |
20070033163 | Epstein et al. | Feb 2007 | A1 |
20070038608 | Chen | Feb 2007 | A1 |
20070038614 | Guha | Feb 2007 | A1 |
20070042757 | Jung et al. | Feb 2007 | A1 |
20070050411 | Hull | Mar 2007 | A1 |
20070061302 | Ramer et al. | Mar 2007 | A1 |
20070067304 | Ives | Mar 2007 | A1 |
20070067682 | Fang | Mar 2007 | A1 |
20070071330 | Oostveen et al. | Mar 2007 | A1 |
20070074147 | Wold | Mar 2007 | A1 |
20070083611 | Farago et al. | Apr 2007 | A1 |
20070091106 | Moroney | Apr 2007 | A1 |
20070130112 | Lin | Jun 2007 | A1 |
20070130159 | Gulli et al. | Jun 2007 | A1 |
20070156720 | Maren | Jul 2007 | A1 |
20070168413 | Barletta et al. | Jul 2007 | A1 |
20070174320 | Chou | Jul 2007 | A1 |
20070195987 | Rhoads | Aug 2007 | A1 |
20070196013 | Li | Aug 2007 | A1 |
20070220573 | Chiussi et al. | Sep 2007 | A1 |
20070244902 | Seide et al. | Oct 2007 | A1 |
20070253594 | Lu et al. | Nov 2007 | A1 |
20070255785 | Hayashi et al. | Nov 2007 | A1 |
20070268309 | Tanigawa et al. | Nov 2007 | A1 |
20070282826 | Hoeber et al. | Dec 2007 | A1 |
20070294295 | Finkelstein et al. | Dec 2007 | A1 |
20070298152 | Baets | Dec 2007 | A1 |
20080019614 | Robertson et al. | Jan 2008 | A1 |
20080040277 | DeWitt | Feb 2008 | A1 |
20080046406 | Seide et al. | Feb 2008 | A1 |
20080049629 | Morrill | Feb 2008 | A1 |
20080049789 | Vedantham et al. | Feb 2008 | A1 |
20080072256 | Boicey et al. | Mar 2008 | A1 |
20080079729 | Brailovsky | Apr 2008 | A1 |
20080091527 | Silverbrook et al. | Apr 2008 | A1 |
20080109433 | Rose | May 2008 | A1 |
20080152231 | Gokturk | Jun 2008 | A1 |
20080159622 | Agnihotri et al. | Jul 2008 | A1 |
20080163288 | Ghosal et al. | Jul 2008 | A1 |
20080165861 | Wen | Jul 2008 | A1 |
20080166020 | Kosaka | Jul 2008 | A1 |
20080172615 | Igelman et al. | Jul 2008 | A1 |
20080201299 | Lehikoinen et al. | Aug 2008 | A1 |
20080201314 | Smith et al. | Aug 2008 | A1 |
20080201326 | Cotter | Aug 2008 | A1 |
20080201361 | Castro et al. | Aug 2008 | A1 |
20080204706 | Magne et al. | Aug 2008 | A1 |
20080228995 | Tan et al. | Sep 2008 | A1 |
20080237359 | Silverbrook et al. | Oct 2008 | A1 |
20080253737 | Kimura | Oct 2008 | A1 |
20080263579 | Mears et al. | Oct 2008 | A1 |
20080270373 | Oostveen et al. | Oct 2008 | A1 |
20080270569 | McBride | Oct 2008 | A1 |
20080294278 | Borgeson | Nov 2008 | A1 |
20080307454 | Ahanger et al. | Dec 2008 | A1 |
20080313140 | Pereira et al. | Dec 2008 | A1 |
20090013414 | Washington et al. | Jan 2009 | A1 |
20090022472 | Bronstein | Jan 2009 | A1 |
20090024641 | Quigley et al. | Jan 2009 | A1 |
20090034791 | Doretto | Feb 2009 | A1 |
20090037408 | Rodgers | Feb 2009 | A1 |
20090043637 | Eder | Feb 2009 | A1 |
20090043818 | Raichelgauz | Feb 2009 | A1 |
20090080759 | Bhaskar | Mar 2009 | A1 |
20090089251 | Johnston | Apr 2009 | A1 |
20090089587 | Brunk et al. | Apr 2009 | A1 |
20090119157 | Dulepet | May 2009 | A1 |
20090125529 | Vydiswaran et al. | May 2009 | A1 |
20090125544 | Brindley | May 2009 | A1 |
20090148045 | Lee et al. | Jun 2009 | A1 |
20090157575 | Schobben et al. | Jun 2009 | A1 |
20090172030 | Schiff et al. | Jul 2009 | A1 |
20090175538 | Bronstein et al. | Jul 2009 | A1 |
20090204511 | Tsang | Aug 2009 | A1 |
20090208106 | Dunlop et al. | Aug 2009 | A1 |
20090216639 | Kapczynski et al. | Aug 2009 | A1 |
20090216761 | Raichelgauz | Aug 2009 | A1 |
20090220138 | Zhang et al. | Sep 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090245603 | Koruga et al. | Oct 2009 | A1 |
20090253583 | Yoganathan | Oct 2009 | A1 |
20090254572 | Redlich et al. | Oct 2009 | A1 |
20090254824 | Singh | Oct 2009 | A1 |
20090259687 | Mai et al. | Oct 2009 | A1 |
20090277322 | Cai et al. | Nov 2009 | A1 |
20090278934 | Ecker | Nov 2009 | A1 |
20090282218 | Raichelgauz et al. | Nov 2009 | A1 |
20090297048 | Slotine et al. | Dec 2009 | A1 |
20100023400 | DeWitt | Jan 2010 | A1 |
20100042646 | Raichelqauz | Feb 2010 | A1 |
20100082684 | Churchill | Apr 2010 | A1 |
20100088321 | Solomon et al. | Apr 2010 | A1 |
20100104184 | Bronstein | Apr 2010 | A1 |
20100106857 | Wyler | Apr 2010 | A1 |
20100111408 | Matsuhira | May 2010 | A1 |
20100125569 | Nair | May 2010 | A1 |
20100162405 | Cook | Jun 2010 | A1 |
20100173269 | Puri et al. | Jul 2010 | A1 |
20100191567 | Lee et al. | Jul 2010 | A1 |
20100198626 | Cho et al. | Aug 2010 | A1 |
20100212015 | Jin et al. | Aug 2010 | A1 |
20100268524 | Nath et al. | Oct 2010 | A1 |
20100284604 | Chrysanthakopoulos | Nov 2010 | A1 |
20100306193 | Pereira | Dec 2010 | A1 |
20100312736 | Kello | Dec 2010 | A1 |
20100318493 | Wessling | Dec 2010 | A1 |
20100322522 | Wang et al. | Dec 2010 | A1 |
20100325138 | Lee et al. | Dec 2010 | A1 |
20100325581 | Finkelstein et al. | Dec 2010 | A1 |
20110029620 | Bonforte | Feb 2011 | A1 |
20110035289 | King et al. | Feb 2011 | A1 |
20110038545 | Bober | Feb 2011 | A1 |
20110052063 | McAuley et al. | Mar 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110106782 | Ke et al. | May 2011 | A1 |
20110125727 | Zou et al. | May 2011 | A1 |
20110145068 | King et al. | Jun 2011 | A1 |
20110164180 | Lee | Jul 2011 | A1 |
20110164810 | Zang | Jul 2011 | A1 |
20110202848 | Ismalon | Aug 2011 | A1 |
20110208822 | Rathod | Aug 2011 | A1 |
20110218946 | Stern et al. | Sep 2011 | A1 |
20110246566 | Kashef | Oct 2011 | A1 |
20110251896 | Impollonia et al. | Oct 2011 | A1 |
20110276680 | Rimon | Nov 2011 | A1 |
20110296315 | Lin et al. | Dec 2011 | A1 |
20110313856 | Cohen et al. | Dec 2011 | A1 |
20120082362 | Diem et al. | Apr 2012 | A1 |
20120131454 | Shah | May 2012 | A1 |
20120133497 | Sasaki | May 2012 | A1 |
20120150890 | Jeong et al. | Jun 2012 | A1 |
20120167133 | Carroll | Jun 2012 | A1 |
20120179642 | Sweeney et al. | Jul 2012 | A1 |
20120179751 | Ahn | Jul 2012 | A1 |
20120185445 | Borden et al. | Jul 2012 | A1 |
20120191686 | Hjelm et al. | Jul 2012 | A1 |
20120197857 | Huang | Aug 2012 | A1 |
20120221470 | Lyon | Aug 2012 | A1 |
20120227074 | Hill et al. | Sep 2012 | A1 |
20120229028 | Ackermann | Sep 2012 | A1 |
20120239690 | Asikainen et al. | Sep 2012 | A1 |
20120239694 | Avner et al. | Sep 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120301105 | Rehg et al. | Nov 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20120331011 | Raichelgauz et al. | Dec 2012 | A1 |
20130031489 | Gubin et al. | Jan 2013 | A1 |
20130066856 | Ong et al. | Mar 2013 | A1 |
20130067035 | Amanat et al. | Mar 2013 | A1 |
20130067364 | Berntson et al. | Mar 2013 | A1 |
20130080433 | Raichelgauz et al. | Mar 2013 | A1 |
20130086499 | Dyor et al. | Apr 2013 | A1 |
20130089248 | Remiszewski | Apr 2013 | A1 |
20130103814 | Carrasco | Apr 2013 | A1 |
20130104251 | Moore et al. | Apr 2013 | A1 |
20130159298 | Mason et al. | Jun 2013 | A1 |
20130173635 | Sanjeev | Jul 2013 | A1 |
20130191323 | Raichelgauz | Jul 2013 | A1 |
20130211656 | An | Aug 2013 | A1 |
20130212493 | Krishnamurthy | Aug 2013 | A1 |
20130226820 | Sedota, Jr. | Aug 2013 | A1 |
20130226930 | Arngren | Aug 2013 | A1 |
20130283401 | Pabla et al. | Oct 2013 | A1 |
20130311924 | Denker et al. | Nov 2013 | A1 |
20130325550 | Varghese et al. | Dec 2013 | A1 |
20130332951 | Gharaat et al. | Dec 2013 | A1 |
20140019264 | Wachman et al. | Jan 2014 | A1 |
20140025692 | Pappas | Jan 2014 | A1 |
20140040232 | Raichelgauz | Feb 2014 | A1 |
20140059443 | Tabe | Feb 2014 | A1 |
20140095425 | Sipple | Apr 2014 | A1 |
20140111647 | Atsmon | Apr 2014 | A1 |
20140125703 | Roveta | May 2014 | A1 |
20140147829 | Jerauld | May 2014 | A1 |
20140149443 | Raichelgauz | May 2014 | A1 |
20140152698 | Kim et al. | Jun 2014 | A1 |
20140169681 | Drake | Jun 2014 | A1 |
20140176604 | Venkitaraman et al. | Jun 2014 | A1 |
20140188786 | Raichelgauz | Jul 2014 | A1 |
20140189536 | Lange | Jul 2014 | A1 |
20140193077 | Shiiyama et al. | Jul 2014 | A1 |
20140201330 | Lozano Lopez | Jul 2014 | A1 |
20140250032 | Huang et al. | Sep 2014 | A1 |
20140282655 | Roberts | Sep 2014 | A1 |
20140300722 | Garcia | Oct 2014 | A1 |
20140310825 | Raichelgauz et al. | Oct 2014 | A1 |
20140330830 | Raichelgauz et al. | Nov 2014 | A1 |
20140341471 | Ono | Nov 2014 | A1 |
20140341476 | Kulick et al. | Nov 2014 | A1 |
20140379477 | Sheinfeld | Dec 2014 | A1 |
20150009129 | Song | Jan 2015 | A1 |
20150033150 | Lee | Jan 2015 | A1 |
20150081725 | Ogawa | Mar 2015 | A1 |
20150100562 | Kohlmeier et al. | Apr 2015 | A1 |
20150117784 | Lin | Apr 2015 | A1 |
20150120627 | Hunzinger et al. | Apr 2015 | A1 |
20150134318 | Cuthbert | May 2015 | A1 |
20150134688 | Jing | May 2015 | A1 |
20150154189 | Raichelgauz | Jun 2015 | A1 |
20150242689 | Mau | Aug 2015 | A1 |
20150254344 | Kulkarni et al. | Sep 2015 | A1 |
20150286742 | Zhang et al. | Oct 2015 | A1 |
20150289022 | Gross | Oct 2015 | A1 |
20150317836 | Beaurepatre | Nov 2015 | A1 |
20150324356 | Gutierrez et al. | Nov 2015 | A1 |
20150363644 | Wnuk | Dec 2015 | A1 |
20160007083 | Gurha | Jan 2016 | A1 |
20160026707 | Ong et al. | Jan 2016 | A1 |
20160171785 | Banatwala | Jun 2016 | A1 |
20160210525 | Yang | Jul 2016 | A1 |
20160221592 | Puttagunta | Aug 2016 | A1 |
20160239566 | Raichelgauz et al. | Aug 2016 | A1 |
20160306798 | Guo et al. | Oct 2016 | A1 |
20160307048 | Krishnamoorthy | Oct 2016 | A1 |
20160342683 | Kwon | Nov 2016 | A1 |
20160342863 | Kwon | Nov 2016 | A1 |
20160357188 | Ansari | Dec 2016 | A1 |
20170017638 | Satyavarta et al. | Jan 2017 | A1 |
20170032257 | Sharifi | Feb 2017 | A1 |
20170041254 | Agara Venkatesha Rao | Feb 2017 | A1 |
20170066452 | Scofield | Mar 2017 | A1 |
20170072851 | Shenoy | Mar 2017 | A1 |
20170109602 | Kim | Apr 2017 | A1 |
20170150047 | Jung | May 2017 | A1 |
20170154241 | Shambik et al. | Jun 2017 | A1 |
20170255620 | Raichelgauz | Sep 2017 | A1 |
20170259819 | Takeda | Sep 2017 | A1 |
20170262437 | Raichelgauz | Sep 2017 | A1 |
20170277691 | Agarwal | Sep 2017 | A1 |
20170323568 | Inoue | Nov 2017 | A1 |
20180081368 | Watanabe | Mar 2018 | A1 |
20180101177 | Cohen | Apr 2018 | A1 |
20180157916 | Doumbouya | Jun 2018 | A1 |
20180158323 | Takenaka | Jun 2018 | A1 |
20180204111 | Zadeh | Jul 2018 | A1 |
20180286239 | Kaloyeros | Oct 2018 | A1 |
20180300654 | Prasad | Oct 2018 | A1 |
20190005726 | Nakano | Jan 2019 | A1 |
20190039627 | Yamamoto | Feb 2019 | A1 |
20190043274 | Hayakawa | Feb 2019 | A1 |
20190045244 | Balakrishnan | Feb 2019 | A1 |
20190056718 | Satou | Feb 2019 | A1 |
20190061784 | Koehler | Feb 2019 | A1 |
20190065951 | Luo | Feb 2019 | A1 |
20190188501 | Ryu | Jun 2019 | A1 |
20190220011 | Della Penna | Jul 2019 | A1 |
20190236954 | Komura | Aug 2019 | A1 |
20190317513 | Zhang | Oct 2019 | A1 |
20190320512 | Zhang | Oct 2019 | A1 |
20190364492 | Azizi | Nov 2019 | A1 |
20190384303 | Muller | Dec 2019 | A1 |
20190384312 | Herbach | Dec 2019 | A1 |
20190385460 | Magzimof | Dec 2019 | A1 |
20190389459 | Berntorp | Dec 2019 | A1 |
20190392710 | Kapoor | Dec 2019 | A1 |
20200004248 | Healey | Jan 2020 | A1 |
20200004251 | Zhu | Jan 2020 | A1 |
20200004265 | Zhu | Jan 2020 | A1 |
20200005631 | Visintainer | Jan 2020 | A1 |
20200018606 | Wolcott | Jan 2020 | A1 |
20200018618 | Ozog | Jan 2020 | A1 |
20200020212 | Song | Jan 2020 | A1 |
20200050973 | Stenneth | Feb 2020 | A1 |
20200073977 | Montemerlo | Mar 2020 | A1 |
20200090484 | Chen | Mar 2020 | A1 |
20200097756 | Hashimoto | Mar 2020 | A1 |
20200133307 | Kelkar | Apr 2020 | A1 |
20200043326 | Tao | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
1085464 | Jan 2007 | EP |
0231764 | Apr 2002 | WO |
0231764 | Apr 2002 | WO |
2003005242 | Jan 2003 | WO |
2003067467 | Aug 2003 | WO |
2004019527 | Mar 2004 | WO |
2005027457 | Mar 2005 | WO |
2007049282 | May 2007 | WO |
20070049282 | May 2007 | WO |
2014076002 | May 2014 | WO |
2014137337 | Sep 2014 | WO |
2016040376 | Mar 2016 | WO |
2016070193 | May 2016 | WO |
Entry |
---|
Li, et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature,” Proceedings of the Digital Imaging Computing: Techniques and Applications, Feb. 2005, vol. 0-7695-2467, Australia. |
May et al., “The Transputer”, Springer-Verlag, Berlin Heidelberg, 1989, teaches multiprocessing system. |
Nam, et al., “Audio Visual Content-Based Violent Scene Characterization”, Department of Electrical and Computer Engineering, Minneapolis, MN, 1998, pp. 353-357. |
Vailaya, et al., “Content-Based Hierarchical Classification of Vacation Images,” I.E.E.E.: Multimedia Computing and Systems, vol. 1, 1999, East Lansing, MI, pp. 518-523. |
Vallet, et al., “Personalized Content Retrieval in Context Using Ontological Knowledge,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346. |
Whitby-Strevens, “The Transputer”, 1985 IEEE, Bristol, UK. |
Yanai, “Generic Image Classification Using Visual Knowledge on the Web,” MM'03, Nov. 2-8, 2003, Tokyo, Japan, pp. 167-176. |
Guo et al., “AdOn: An Intelligent Overlay Video Advertising System”, SIGIR, Boston, Massachusetts, Jul. 19-23, 2009. |
Mei, et al., “Contextual In-Image Advertising”, Microsoft Research Asia, pp. 439-448, 2008. |
Mei, et al., “VideoSense—Towards Effective Online Video Advertising”, Microsoft Research Asia, pp. 1075-1084, 2007. |
Semizarov et al. “Specificity of Short Interfering RNA Determined through Gene Expression Signatures”, PNAS, 2003, pp. 6347-6352. |
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93, downloaded from http://proceedings.spiedigitallibrary.org/ on Aug. 2, 2017. |
Schneider, et al., “A Robust Content Based Digital Signature for Image Authentication”, Proc. ICIP 1996, Laussane, Switzerland, Oct. 1996, pp. 227-230. |
Yanagawa, et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts.” Columbia University ADVENT technical report, 2007, pp. 222-2006-8. |
International Search Authority: International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) including “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) for the related International Patent Application No. PCT/IL2006/001235; dated Jul. 28, 2009. |
Automatic Diagnosis of Defects of Rolling Element Bearings Based on Computational Intelligence Techniques, Cococcioni, etal, University of Pisa, Pisa, Italy, 2009. |
Boari et al., “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995. |
Cernansky et al., “Feed-forward Echo State Networks”; Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005. |
Emotional Speech Characterization Based on Multi-Features Fusion for Face-to-Face Interaction, Mahdhaoui, et al., Universite Pierre et Marie Curie, Paris, France, 2009. |
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using NIMD Architecture”, 8th Mediterranean Electrotechnical Corsfe rersce, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3, pp. 1472-1475. |
Foote, Jonathan et al., “Content-Based Retrieval of Music and Audio”; 1997, Institute of Systems Science, National University of Singapore, Singapore (ABSTRACT). |
International Search Authority: “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) including International Search Report for the related International Patent Application No. PCT/US2008/073852; dated Jan. 28, 2009; Entire Document. |
International Search Report for the related International Patent Application PCT/IL2006/001235 dated Nov. 2, 2008. |
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated May 30, 2012. |
Iwamoto, K.; Kasutani, E.; Yamada, A.: “Image Signature Robust to Caption Superimposition for Video Sequence Identification”; 2006 IEEE International Conference on Image Processing; pp. 3185-3188, Oct. 8-11, 2006; doi: 10.1109/ICIP.2006.313046. |
Jaeger, H.: “The “echo state” approach to analysing and training recurrent neural networks”, GMD Report, No. 148, 2001, pp. 1-43, XP002466251. German National Research Center for Information Technology. |
Lin, C.; Chang, S.;, “Generating Robust Digital Signature for Image/Video Authentication,” Multimedia and Security Workshop at ACM Multimedia '98. Bristol, U.K. Sep. 1998, pp. 49-54. |
Lyon, Richard F.; “Computational Models of Neural Auditory Processing”; IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44. |
Maass, W. et al.: “Computational Models for Generic Cortical Microcircuits”, Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, published Jun. 10, 2003. |
Morad, T.Y. et al.: “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005 (Jul. 4, 2005), pp. 1-4, XP002466254. |
Nagy et al., “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on CONTROL '96, Sep. 2-5, 1996, Conference 1996, Conference Publication No. 427, IEE 1996. |
Natsclager, T. et al.: “The “liquid computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of Telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253. |
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) 1-48 Submitted Nov. 2004; published Jul. 2005. |
Raichelgauz, I. et al.: “Co-evolutionary Learning in Liquid Architectures”, Lecture Notes in Computer Science, [Online] vol. 3512, Jun. 21, 2005 (Jun. 21, 2005), pp. 241-248, XP019010280 Springer Berlin / Heidelberg ISSN: 1611-3349 ISBN: 978-3-540-26208-4. |
Real Time Speaker Localization and Detection System for Camera Steering in Multiparticipant Videoconferencing Environments, Marti, et al., Universidad Politecnica de Valencia, Spain, 2011. |
Ribert et al. “An Incremental Hierarchical Clustering”, Visicon Interface 1999, pp. 586-591. |
Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance, Emami, et al., University of Queensland, St. Lucia, Australia, 2012. |
Scheper, et al. “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publi, ISBN 2-930307-06-4. |
Theodoropoulos et al., “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop On Parallel and Distributed Processing, 1996. PDP '96. |
Verstraeten et al., “Isolated word recognition with the Liquid State Machine; a case study”; Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available online Jul. 14, 2005; Entire Document. |
Verstraeten et al.: “Isolated word recognition with the Liquid State Machine; a case study”, Information Processing Letters, Amsterdam, NL, col. 95, No. 6, Sep. 30, 2005 (Sep. 30, 2005), pp. 521-528, XP005028093 ISSN: 0020-0190. |
Xian-Sheng Hua et al.: “Robust Video Signature Based on Ordinal Measure” In: 2004 International Conference on Image Processing, ICIP '04; Microsoft Research Asia, Beijing, China; published Oct. 24-27, 2004, pp. 685-688. |
Zeevi, Y. et al.: “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, IEEE World Congress on Computational Intelligence, IJCNN2006, Vancouver, Canada, Jul. 2006 (Jul. 2006), XP002466252. |
Zhou et al., “Ensembling neural networks: Many could be better than all”; National Laboratory for Novel Software Technology, Nanjing Unviersirty, Hankou Road 22, Nanjing 210093, PR China; Available online Mar. 12, 2002. |
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”; IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, pp. 37-42, Date of Publication: Mar. 2003. |
Liu, et al., “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, Multimedia, IEEE Transactions on Year: 2014, vol. 16, Issue: 8, pp. 2242-2255, DOI: 10.1109/TMM.2014.2359332 IEEE Journals & Magazines. |
Mladenovic, et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book”, Telecommunications Forum (TELFOR), 2012 20th Year: 2012, pp. 1460-1463, DOI: 10.1109/TELFOR.2012.6419494 IEEE Conference Publications. |
Park, et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on Year: 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884293 IEEE Conference Publications. |
Wang et al. “A Signature for Content-based Image Retrieval Using a Geometrical Transform”, ACM 1998, pp. 229-234. |
Zang, et al., “A New Multimedia Message Customizing Framework for Mobile Devices”, Multimedia and Expo, 2007 IEEE International Conference on Year: 2007, pp. 1043-1046, DOI: 10.1109/ICME.2007.4284832 IEEE Conference Publications. |
Chuan-Yu Cho, et al., “Efficient Motion-Vector-Based Video Search Using Query by Clip”, 2004, IEEE, Taiwan, pp. 1-4. |
Gomes et al., “Audio Watermaking and Fingerprinting: For Which Applications?” University of Rene Descartes, Paris, France, 2003. |
Ihab Al Kabary, et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, Oct. 2013, ACM, Switzerland, pp. 1-3. |
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Towards Semantic Sensitive Retrieval and Browsing”, IEEE, vol. 13, No. 7, Jul. 2004, pp. 1-19. |
Shih-Fu Chang, et al., “VideoQ: A Fully Automated Video Retrieval System Using Motion Sketches”, 1998, IEEE, , New York, pp. 1-2. |
Wei-Te Li et al., “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, IEEE, vol. 22, No. 7, Jul. 2013, pp. 1-11. |
Zhu et al., Technology-Assisted Dietary Assessment. Computational Imaging VI, edited by Charles A. Bouman, Eric L. Miller, Ilya Pollak, Proc. of SPIE-IS&T Electronic Imaging, SPIE vol. 6814, 681411, Copyright 2008 SPIE-IS&T. pp. 1-10. |
Brecheisen, et al., “Hierarchical Genre Classification for Large Music Collections”, ICME 2006, pp. 1385-1388. |
Lau, et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Year: 2008, pp. 98-103, DOI: 10.1109/CITISIA.2008.4607342 IEEE Conference Publications. |
Mcnamara, et al., “Diversity Decay in Opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Year: 2011, pp. 1-3, DOI: 10.1109/WoWMoM.2011.5986211 IEEE Conference Publications. |
Santos, et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for Multimedia and e-Leaming”, 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM) Year: 2015, pp. 224-228, DOI: 10.1109/SOFTCOM.2015.7314122 IEEE Conference Publications. |
Wilk, et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, 2015 International Conference and Workshops on Networked Systems (NetSys) Year: 2015, pp. 1-5, DOI: 10.1109/NetSys.2015.7089081 IEEE Conference Publications. |
Johnson, John L., “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images.” Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253. |
The International Search Report and the Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017. |
The International Search Report and the Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, Russia, dated Apr. 20, 2017. |
Clement, et al. “Speaker Diarization of Heterogeneous Web Video Files: A Preliminary Study”, Acoustics, Speech and Signal Processing (ICASSP), 2011, IEEE International Conference on Year: 2011, pp. 4432-4435, DOI: 10.1109/ICASSP.2011.5947337 IEEE Conference Publications, France. |
Gong, et al., “A Knowledge-based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, Video and Speech Processing, 2004, Proceedings of 2004 International Symposium on Year: 2004, pp. 467-470, DOI: 10.1109/ISIMP.2004.1434102 IEEE Conference Publications, Hong Kong. |
Lin, et al., “Robust Digital Signature for Multimedia Authentication: A Summary”, IEEE Circuits and Systems Magazine, 4th Quarter 2003, pp. 23-26. |
Lin, et al., “Summarization of Large Scale Social Network Activity”, Acoustics, Speech and Signal Processing, 2009, ICASSP 2009, IEEE International Conference on Year 2009, pp. 3481-3484, DOI: 10.1109/ICASSP.2009.4960375, IEEE Conference Publications, Arizona. |
Nouza, et al., “Large-scale Processing, Indexing and Search System for Czech Audio-Visual Heritage Archives”, Multimedia Signal Processing (MMSP), 2012, pp. 337-342, IEEE 14th Intl. Workshop, DOI: 10.1109/MMSP.2012.6343465, Czech Republic. |
Odinaev, et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Israel Institute of Technology, 2006 International Joint Conference on Neural Networks, Canada, 2006, pp. 285-292. |
The International Search Report and the Written Opinion for PCT/US2016/054634 dated Mar. 16, 2017, ISA/RU, Moscow, RU. |
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts institute of Technology, 2004, pp. 1-106. |
Mcnamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium an a World of Wireless, Mobile and Multimedia Networks, pp. 1-3. |
Rui, Yong et al. “Relevance feedback: a power tool for interactive content-based image retrieval.” IEEE Transactions on circuits and systems for video technology 8.5 (1998): 644-655. |
Wang et al., “Classifying Objectionable Websites Based onlmage Content”, Stanford University, pp. 1-12. |
Big Bang Theory Series 04 Episode 12, aired Jan. 6, 2011; [retrieved from Internet: ]. |
Boari et al., “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14. |
Burgsteiner et al., “Movement Prediction from Real-World Images Using a Liquid State machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130. |
Cernansky et al., “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4. |
Chinchor, Nancy A. et al.; Multimedia Analysis + Visual Analytics = Multimedia Analytics; IEEE Computer Society 2010; pp. 52-60. (Year: 2010). |
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3 pp. 1472-1475, vol. 3. |
Freisleben et al., “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637. |
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989. |
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts Institute of Technology, Jun. 2004, pp. 1-106. |
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314. |
Hua et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004, 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004. |
International Search Report and Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017. |
International Search Report and Written Opinion for PCT/US2016/054634, ISA/RU, Moscow, RU, dated Mar. 16, 2017. |
International Search Report and Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, RU, dated Apr. 20, 2017. |
Johnson et al, “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images”, Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253. |
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, 2008, pp. 98-103. |
Lin et al., “Generating robust digital signature for image/video authentication”, Multimedia and Security Workshop at ACM Multimedia '98, Bristol, U.K., Sep. 1998, pp. 245-251. |
Lu et al., “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”, IEEE Transactions on Multimedia, vol. 5, No. 2, Jun. 2003, pp. 161-173. |
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44. |
Marian Stewart B et al., “Independent component representations for face recognition”, Proceedings of the SPIE Symposium on Electronic Imaging: Science and Technology; Conference on Human Vision and Electronic Imaging III, San Jose, California, Jan. 1998, pp. 1-12. |
May et al., “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41. |
Mcnamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-3. |
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005, pp. 1-4, XP002466254. |
Nagy et al., “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on CONTROL '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996. |
Natschlager et al., “The ”Liquid Computer“: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253. |
Odinaev et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Institute of Technology, 2006 International Joint Conference on neural Networks, Canada, 2006, pp. 285-292. |
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48. |
Pandya etal. A Survey on QR Codes: in context of Research and Application. International Journal of Emerging Technology and U Advanced Engineering. ISSN 2250-2459, ISO 9001:2008 Certified Journal, vol. 4, Issue 3, Mar. 2014 (Year: 2014). |
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93. |
Rui, Yong et al. “Relevance feedback: a power tool for interactive content-based image retrieval.” IEEE Transactions an circuits and systems for video technology 8.5 (1998): 644-655. |
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Learning”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228. |
Scheper et al., “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12. |
Schneider et al., “A Robust Content based Digital Signature for Image Authentication”, Proc. ICIP 1996, Lausane, Switzerland, Oct. 1996, pp. 227-230. |
Srihari et al., “Intelligent Indexing and Semantic Retrieval of Multimodal Documents”, Kluwer Academic Publishers, May 2000, vol. 2, Issue 2-3, pp. 245-275. |
Srihari, Rohini K. “Automatic indexing and content-based retrieval of captioned images” Computer 0 (1995): 49-56. |
Stolberg et al., “Hibrid-Soc: A Mul Ti-Core Soc Architecture for Mul Timedia Signal Processing”, 2003 IEEE, pp. 189-194. |
Theodoropoulos et al., “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96, pp. 274-281. |
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: a case study”, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available onlline Jul. 14, 2005, pp. 521-528. |
Wang et al., “Classifying Objectionable Websites Based onImage Content”, Stanford University, pp. 1-12. |
Ware et al., “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144. |
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300. |
Wilk et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, International Conference and Workshops on networked Systems (NetSys), 2015, pp. 1-5. |
Yanagawa et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17. |
Yanagawa et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report #222, 2007, pp. 2006-2008. |
Zhou et al., “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China, Available online Mar. 12, 2002, pp. 239-263. |
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, Mar. 2003, pp. 37-42. |
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15. |
Zou et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216. |
Ma et el. (“Semantics modeling based image retrieval system using neural networks” 2005 (Year: 2005). |
“Computer Vision Demonstration Website”, Electronics and Computer Science, University of Southampton, 2005, USA. |
Guo et al, AdOn: An Intelligent Overlay Video Advertising System (Year: 2009). |
Li et al (“Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature” 2005) (Year: 2005). |
Stolberg et al (“Hibrid-Soc: A Multi-Core Soc Architecture for Multimedia Signal Processing” 2003). |
Vallet et al (“Personalized Content Retrieval in Context Using Ontological Knowledge” Mar. 2007) (Year: 2007). |
Jasinschi et al., A Probabilistic Layered Framework for Integrating Multimedia Content and Context Information, 2002, IEEE, p. 2057-2060. (Year: 2002). |
Jones et al., “Contextual Dynamics of Group-Based Sharing Decisions”, 2011, University of Bath, p. 1777-1786. (Year: 2011). |
Iwamoto, “Image Signature Robust to Caption Superimpostion for Video Sequence Identification”, IEEE, pp. 3185-3188 (Year: 2006). |
Cooperative Multi-Scale Convolutional Neural, Networks for Person Detection, Markus Eisenbach, Daniel Seichter, Tim Wengefeld, and Horst-Michael Gross Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Lab (Year; 2016). |
Chen, Yixin, James Ze Wang, and Robert Krovetz. “CLUE: cluster-based retrieval of images by unsupervised learning.” IEEE transactions on Image Processing 14.8 (2005); 1187-1201. (Year: 2005). |
Wusk et al (Non-Invasive detection of Respiration and Heart Rate with a Vehicle Seat Sensor; www.mdpi.com/journal/sensors; Published: May 8, 2018). (Year: 2018). |
Chen, Tiffany Yu-Han, et al. “Glimpse: Continuous, real-time object recognition on mobile devices.” Proceedings of the 13th ACM Confrecene on Embedded Networked Sensor Systems. 2015. (Year: 2015). |
Lai, Wei-Sheng, et al. “Deep laplacian pyramid networks for fast and accurate superresolution.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2017 (Year: 2017). |
Ren, Shaoqing, et al. “Faster r-cnn: Towards real-time object detection with region proposal networks.” IEEE transactions on pattern analysis and machine intelligence 39.6 (2016): 1137-1149 (Year: 2016). |
Felzenszwalb, Pedro F., et al. “Object detection with discriminatively trained partbased models.” IEEE transactions on pattern analysis and machine intelligence 32.9 (2009): 1627-1645. (Year: 2009). |
Lin, Tsung-Yi, et al. “Feature pyramid networks for object detection.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. (Year: 2017). |
Jasinschi, Radu S., et al. “A probabilistic layered framework for integrating multimedia content and context information.” 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing. vol. 2. IEEE, 2002. (Year: 2002). |
Gull et al., “A Clustering Technique to Rise Up the Marketing Tactics by Looking Out the Key Users Taking Facebook as a Case study”, 2014, IEEE International Advance Computing Conference (IACC), 579-585 (Year: 2014). |
Zhang et al., “Dynamic Estimation of Family Relations from Photos”, 2011, Advances in Multimedia Modeling. MMM 2011, pp. 65-76 (Year: 2011). |
Chen, “CLUE: Cluster-Based Retrieval of Images by Unsupervised Learning”, IEEE, vol. 14 pp. 1187-1201 (Year: 2005). |
Troung, “CASIS: A System for Concept-Aware Social Image Search”, 2012 (Year: 2012). |
Cody, W.F. et al. (Mar. 1995). “Querying multimedia data from multiple repositories by content: the Garlic project”. In Working Conference on Visual Database Systems (pp. 17-35). Springer, Boston, MA. (Year: 1995). |
Schneider, J.M. (Oct. 2015). “New approaches to interactive multimedia content retrieval from different sources”. Diss. Universidad Carlos Ill de Madrid. 274 pages. (Year: 2015). |
Yong, N .S. (2008). “Combining multi modal external resources for event-based news video retrieval and question answering”. PhD Diss, National University Singapore. 140 pages. (Year: 2008. |
Kennedy, L. et al. (2008). “Query-adaptive fusion for multimodal search”. Proceedings of the IEEE, 96(4), 567-588. (Year: 2008). |
Sang Hyun Joo, “Real time traversability analysis to enhance rough terrain navigation for an 6x6 autonomous vehicle”, 2013 (Year: 2013). |
Number | Date | Country | |
---|---|---|---|
20150161243 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61939287 | Feb 2014 | US |