Specialty property, such as senior living and assisted care facilities, are growing in demand in the United States and other countries due to a rapidly aging population. As modern medical breakthroughs allow for longer and more actives lives, the demand for senior living facilities continues to rise. Predicting the consumer cost and demand for specialty property can be a difficult task with disparate information available across disparate social, geographic, econometric and demographic strata.
Further, existing methods for predicting cost and demand of senior living and similar specialty properties are based on surveys of property managers rather than consumer transactions. Properties may respond to surveys with list prices that do not reflect actual costs because they do not account for one-off move-in concessions or consumer-level variation in the cost of senior care. Furthermore, surveying at the property level prevents detailed inference about the distribution of costs in addition to point estimates. This application presents an invention that overcomes the limitations of existing methods by estimating specialty property costs based on consumer-level transaction data from a specialty property referral service.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
The subject matter of embodiments disclosed herein is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described. Embodiments will be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, exemplary embodiments by which the systems and methods described herein may be practiced. The systems and methods may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy the statutory requirements and convey the scope of the subject matter to those skilled in the art.
Among other things, the present subject matter may be embodied in whole or in part as a system, as one or more methods, or as one or more devices. Embodiments may take the form of a hardware-implemented embodiment, a software implemented embodiment, or an embodiment combining software and hardware aspects. For example, in some embodiments, one or more of the operations, functions, processes, or methods described herein may be implemented by one or more suitable processing elements (such as a processor, microprocessor, CPU, controller, or the like) that is part of a client device, server, network element, or other form of computing device/platform and that is programmed with a set of executable instructions (e.g., software instructions), where the instructions may be stored in a suitable data storage element. In some embodiments, one or more of the operations, functions, processes, or methods described herein may be implemented by a specialized form of hardware, such as a programmable gate array, application specific integrated circuit (ASIC), or the like. The following detailed description is, therefore, not to be taken in a limiting sense.
Prior to discussing specific details of the embodiments described herein, a brief overview of the subject matter is presented. Generally, one or more embodiments are directed to systems, apparatuses, and methods for enabling a user to collect, assemble, manipulate, and utilize data corresponding to one or more specific markets about specialty properties, such as assisted living, long-term care facilities, and the like. Several factors will affect a specific market and the ebb and flow of regional demand, regional cost, regional demographics, and regional econometrics. Further, intra-regional and extra-regional data may also reflect the behavior of individuals in a market based on additional factors. Collecting this data and assigning relative values to the data based on follow-on activities, such as actual inquiries into property, lead generation for specific properties and move-in data for specific properties leads to an ever-changing set of indices that is continuously updated through a machine-learning algorithm by which index data may be gleaned at any given moment in time for any specific region.
To this end, several specific factors may influence these indices more than others. These factors may exhibit variable importance across varies regions and demographics. By identifying and determining the impact of these variable importance factors on future costs or future demand allow a specialty property manager to more insightfully plan for acquisition and expansion based on gleaned statistics from actual data in the ebb and flow of specialty property use. These and other aspects of the specific embodiments are discussed below with respect to
The environment 100 may further include several additional computing entities for data collection, provision, and consumption. These entities include internal data collectors 110, such as employee computing devices and contractor computing devices. Internal data collectors 110 may typically be associated with a company or business entity that administers the server computer 105. As such, internal data collectors 110 may also be located behind the firewall 108 with direct access to the server computer (without using any external network 115). Internal data collectors may collect and assimilate data from various sources of data regarding specialty properties. Such data collected may include data from potential resident inquiries, leads data from advisors working with/for the business entity, and move-in data from property owners and operators. Many other examples of collected data exist but are discussed further below with respect to additional embodiments. The aspects of the specific data collected by internal data collectors 110 is described below with respect to
The environment 100 may further include external data collectors 117, such as partners, operators and property owners. Internal data collectors 110 may typically be third party businesses that have a business relationship with the company or business entity that administers the server computer 105. External data collectors 110 may typically be located outside of the firewall 108 without direct access to the server computer such that credentials are used through the external network 115. Such data collected may include data from potential resident inquiries, leads data from advisors working with/for the business entity, and move-in data from property owners and operators. Many other examples of collected data exist but are discussed further below with respect to additional embodiments. The aspects of the specific data collected by external data collectors 117 is also described below with respect to
The environment 100 may further include data from third-party data providers 119, that includes private entities such as WalkScore, Redfin, or Zillow data about walkability and living costs. In addition, the environment may include public data sources such as the American Community Survey (ACS) and US Department of Housing and Urban Development (HUD). These third-party data providers may provide geographic, econometric, and demographic data to further lend insights into the collected data about potential resident inquiries, leads, and move-in data. Many other examples of third-party data exist but are discussed further below with respect to additional embodiments.
The environment 100 may further include primary data consumers 112, such as existing and potential residents as well as service providers. The environment 100 may further include, and third-party data consumers 114, such as Real-Estate Investment Trusts (REITs), financiers, third-party operators, and third-party property owners. These primary data consumers 112 and third-party data consumers 114 may use the assimilated data in the database collected from data collectors and third parties to glean information about one or more specialty property markets. Such data consumed may include the very data from potential resident inquiries, leads data and move-in data. Many other examples of consumed data exist but are discussed further below with respect to additional embodiments as well as discussed in related patent applications.
Collectively, the data collected and consumed may be stored in the database 106 and manipulated in various ways described below by the server computer 105. Prior to discussing aspects of the operation and data collection and consumption as well as eth cultivation of the database, a brief description of any one of the computing devices discussed above is provided with respect to
As an example,
It should be understood that the present disclosure as described above can be implemented in the form of control logic using computer software in a modular or integrated manner. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will know and appreciate other ways and/or methods to implement the present disclosure using hardware and a combination of hardware and software.
Any of the software components, processes or functions described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, R, Java, JavaScript, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions, or commands on a computer readable medium, such as a random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM. Any such computer readable medium may reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.
The machine-learning module 350 may include lists of data delineated by various identifications that are indicative of the type and nature of the information stored in the ordered lists. At the outset, these lists, in this embodiment, include a first list of lead data called DIM_LEAD 325. A lead includes data about an individual who is interested in acquiring rights and services at a specialty property and each record in DIM_LEAD 325 may be identified by a LEAD_ID. In this embodiment, the rights and services may include rents and personal care services at a senior living facility. In other embodiments, the specialty property is not necessarily a senior care facility or senior housing. The LEAD_ID may also include specific geographic data about a preferred location of a specialty property. The data that populates this list may be received at the machine-learning module 350 via a data collection module 321 that facilitates communications from various data collectors and third-party data providers as discussed with respect to
Another list of data includes data about various properties in the pool of available or used specialty properties and this list is called DIM_PROPERY 326. The records in this list may include data about services provided at each property as well as cost data, availability, and specific location. DIM_PROPERY records may also include a history of property attributes over time for each PROPERTY_ID, so that leads can be matched to the property with each respective leads attributes. Records in DIM_PROPERY 326 are identified by a unique identifier called PROPERTY_ID. The data that populates this list may be received at the machine-learning module 350 via a data collection module 321 that facilitates communications from various data collectors and third-party data providers as discussed with respect to
Another list of data includes data about various geographic locations in the pool of available or used specialty properties and this list is called DIM_GEOGRAPHY 327. The records in DIM_GEOGRAPHY 327 may include data about the geographic locations of all properties such as ZIP code, county, city, metropolitan area, state, and region. The records here may also include data about weather associated with various geographic location along with time and season factors. For example, one could collect data about time-stamped weather event to examine the impact of weather on the cost index. Records in this list are identified by a unique identifier called GEOGRAPHY_ID. The data that populates this list may be received at the machine-learning module 350 via a data collection module 321 that facilitates communications from various data collectors and third-party data providers as discussed with respect to
All data from these various lists of data may be updated from time-to-time as various events occur or new data is collected or provided by various data collectors and third-party data providers via data collection module 321. As events takes place, a new conglomerate list, FACT_LEAD_ACTIVITY 330, may be initiated and populated with various events that occur along with associated relevant data from the lists. Records in FACT_LEAD_ACTIVITY 330 include data with regard to lead events and move-in events. A lead event is defined as the event in which an advisor refers a specific property to a potential user of services. A move-in event is defined as an event in which a user of services moves into a recommended property from a lead. As such, the records will also include specific data about the dates of the activity underlying the event as well as specific data about the recommended property (e.g., cost, location, region, demographics of the area) and the user (or potential user) of services (e.g., demographics, budget, services desired).
As mentioned, all data from these various lists of data may be updated from time-to-time as various events occur or new data is collected or provided by various data collectors and third-party data providers via data collection module 321. When an action takes place, such as a referral of a property to a lead or a lead moving in to a referred property, an activity record may be created in the list FACT_LEAD_ACTIVITY 330. This information may include data drawn from the initial three lists discussed above when a specific action takes place. Thus, each record will include a LEAD_ID, a PROPERTY_ID, and a GEOGRAPHY_ID that may be indexed with additional data such as activity type (e.g., referral or move-in) and activity date. For example, a new inquiry may be made, a new lead may be generated, a new property may become part of the property pool, geographic data may be updated as ZIP codes or city/county lines shift, and the like. Further, collected data could be used to update or populate DIM_PROPERY 326, DIM_LEAD 325, DIM_GEOGRAPHY 327 and FACT_LEAD_ACTIVITY 330 in that collected data about economics, demography, and geography (including weather) may be assimilated in any of the lists discussed above.
All data in FACT_LEAD_ACTIVITY 330 may be used by an analytics module 320 to generate several manners of data for use in the system. An operator may enter various analytical constraints and parameters using the operator input 322. The analytics module 320 may be manipulated such operator input to yield a desired analysis of the records stored in FACT_LEAD_ACTIVITY 330. Generally speaking, the data that may be assembled from the FACT_LEAD_ACTIVITY list 330 includes indexed referrals data 334 and indexed move-ins data 336. Such assembled data may be used to generate various cost and demand indexes and probabilities for a specialty property market across the several geographic, economic, and demographic categories. This useful indexed data across the operator desired constraints and parameters may then be communicated to other computing devices via communications module 340.
Regardless of the entity conducting the data collection, the event of the inquiry is converted into an indexed record at step 446 that includes various attributes about the inquiry, such as the inquirer's desired budget, desired service level or care needs, desired location, age, time-horizon and the like. Based on the provided data, the advisor may recommend a series of potential properties to the lead at step 447. Some of this initially collected data, such as budget data, may be sent to a machine-learning algorithm 150 at the time the data is collected. This data may be used to populate and/or update DIM_LEAD 325 as discussed above with respect to
As various properties are recommended at step 448, each recommendation generates a “Lead Referral” (which is a tracked activity in FACT_LEAD_ACTIVITY 330) that includes sending lead data to the machine-learning algorithm 150. Further yet, as various leads actually move in to a recommended property at step 450, each move-in generates a “Move-In” event (which is also a tracked activity FACT_LEAD_ACTIVITY 330) that includes sending move-in data to the machine-learning algorithm 150. With all this indexed data being input to the machine-learning algorithm 150, analytics can be used to determine future cost for various property types in the form of projected cost growth probability at step 462. Put another way, a specialty property cost index may be generated based on all past and current data collected through the method of
In an embodiment, the method may begin, at step 502, by assembling first-month rent and care charges across multiple care types, geographies, economies, and demographics as discussed above with respect to
The machine-learning algorithm 350 comprises multi-level, regression, and post-stratification aspects 514 (sometimes called MRP or “MisterP”) that will yield a number of different usable data sets that can then be part of a process for generating cost estimates and the like. The multi-level aspect of MRP refers to the fact that the model for cost estimates takes advantage of the hierarchical nesting of first-month rent and care charge data into ZIP codes, cities, counties, metropolitan areas, states, regions, and other nested groupings. The regression aspect of MRP refers to the fact that the cost estimates are modeled using a regression method (i.e., the GAMLSS described above). The post-stratification aspect of MRP refers to the fact that cost estimates from the GAMLSS are weighted by an estimate of the proportion of likely specialty property consumers who reside in a particular location (e.g., a county) that live in a more granular geographic unit (e.g., a ZIP code or more accurately a ZIP-code tabulation area) within that county. The overall assembled cost index data may be culled to produce interim data sets for use with generating any number of summary statistic as described below in step 530. Once such interim data set may be a distribution (e.g., share) of specialty property eligible tenants (e.g., an older population) is subset 520. Another interim data set 522 is a weighted average of mean and variance costs as distributed by location. Yet another interim data set includes zip-code level estimates at step 524 that may include both a mean of log charges and a variance of log charges.
Collectively, this subset data and the post-stratified estimates of the distributional parameters for a particular location and type(s) of care may be used to produce any summary statistic of interest for specialty property costs in that location and for that/those care type(s) at step 530. For example, one generated summary statistic may be a mean cost estimate for a specific location for a specific care-type. Another example may be generated summary statistic for median cost of a metropolitan area across all care-types. Yet another example is the 95 percent prediction interval for costs in a metropolitan area for a particular care type. Thus, a specific cost-growth estimate may be generated for any cross-section from the various input parameters available across any future time period.
Generally speaking, these factors and categories may associated with and determined within geographic data sets, econometric data sets, and demographic data sets. As previously discussed, geographic data may include data arranged by ZIP code, city, county, state, metro area, regional area (e.g., Western US, Midwest, and the like), and country. Geographic data may also include non-location based factors such as weather, walkability, neighborhood appeal, and the like. Econometric data may be inflation rate, mean income data, median income data, consumer price index data, and the like. Demographic data may include data about individuals such as household income, age, ethnicity, religion, gender, marital status, and the like. All of these variable importance factors may be gleaned from an initial index of specialty property data (e.g., a cost index or a demand index) or subsequently gleaned from a modified or updated index.
Turning to
With having established an index, a server computer hosting the index may delineate the collected data into any manner of group level distinctions (indicators) such as by economic, geographic, or demographic groups at step 604. This categorized data may be further processed for analysis and modelling using steps 502-508 of
At step 608, a user may select specific predictors to model using the machine learning algorithm in order to determine which of the selected predictors result in the greatest influence on the overall index. The selected predictors (e.g., variable importance factors) may include data about weather, walkability, econometric trends, and the like for each specialty property identified with a lead or move-in. For example, one may wish to decipher data within the index about how much emphasis on costs or demands may be attributable to walkability. Thus, the walkability factor may have a decipherable weighting (e.g., a variable importance) that exhibits greater costs or demand for properties with a higher walkability factor of various specialty properties that are in the index. As another example, various properties having data corresponding to favorable weather may be weighted higher because of higher costs or demand exhibited for properties in favorable weather locations. In this manner, the user may tailor the gleaning of data from an index according to factors best suited toward the user's preference.
Within the context of the method of
As data is gleaned from these analyses, a review of the assembled data will lead to determining specific variable importance factors that may be more important in terms of costs or demand. These variable importance factors may be used to decipher specific factors that have a greater influence on cost and demand. For example, if the cost data includes data about variables such as weather, state income tax, and walkability, one may determine among these three factors which has the greatest impact on cost. Additional variables may be analyzed as well. Together, each variable that is analyzed may be ranked in terms of impact (e.g., importance) of overall cost data or demand data.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and/or were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the specification and in the following claims are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “having,” “including,” “containing” and similar referents in the specification and in the following claims are to be construed as open-ended terms (e.g., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely indented to serve as a shorthand method of referring individually to each separate value inclusively falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments and does not pose a limitation to the scope of the disclosure unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to each embodiment of the present disclosure.
Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present subject matter is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications can be made without departing from the scope of the claims below.
This application claims the benefit of U.S. Provisional Application No. 62/511,278 entitled “SYSTEM AND METHOD FOR GENERATING VARIABLE IMPORTANCE FACTORS IN SPECIALTY PROPERTY DATA,” filed May 25, 2017, which is incorporated by reference in its entirety herein for all purposes. This application is cross-related to the following U.S. patent applications: (Attorney Docket No 126129-001003) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Specialty Property Demand Index,” filed May ______, 2018; (Attorney Docket No 126129-001103) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Specialty Property Cost Index,” filed May ______, 2018; (Attorney Docket No 126129-001303) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Cost Estimates for Specialty Property,” filed May ______, 2018; (Attorney Docket No 126129-001603) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Same Property Cost Growth Estimate in Changing Inventory of Specialty Property,” filed May ______, 2018; (Attorney Docket No 126129-001803) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Indexed Specialty Property Data Influenced by Geographic, Econometric, and Demographic Data,” filed May ______, 2018; (Attorney Docket No 126129-001903) U.S. patent application Ser. No. ______, entitled “System and Method for Identifying Outlier Data in Indexed Specialty Property Data,” filed May ______, 2018; (Attorney Docket No 126129-002003) U.S. patent application Ser. No. ______, entitled “System and Method for Generating Indexed Specialty Property Data From Transactional Move-In Data,” filed May ______, 2018. Each of these are incorporated by reference in their entireties herein for all purposes.
Number | Date | Country | |
---|---|---|---|
62511278 | May 2017 | US |