The disclosure relates to search of multimedia content, and more specifically to generation of complex signatures to enable matches of multimedia content.
With the abundance of multimedia data made available through various means in general and the Internet and world-wide web (WWW) in particular, there is a need for effective ways of searching for, and management of, such multimedia data. Searching, organizing and management of multimedia data in general and video data in particular may be challenging at best due to the difficulty of representing and comparing the information embedded in the video content, and due to the scale of information that needs to be checked. Moreover, when it is necessary to find a content of video by means of textual query, prior art cases revert to various metadata that textually describe the content of the multimedia data. However, such content may be abstract and complex by nature and not necessarily adequately defined by the existing and/or attached metadata.
The rapidly increasing multimedia databases, accessible for example through the Internet, call for the application of new methods of representation of information embedded in video content. Searching for multimedia in general and for video data in particular is challenging due to the huge amount of information that has to be priory indexed, classified and clustered. Moreover, prior art techniques revert to model-based methods to define and/or describe multimedia data. However, by its very nature, the structure of such multimedia data may be too abstract and/or complex to be adequately represented by means of metadata. The difficulty arises in cases where the target sought for multimedia data is not adequately defined in words, or by the respective metadata of the multimedia data. For example, it may be desirable to locate a car of a particular model in a large database of video clips or segments. In some cases the model of the car would be part of the metadata but in many cases it would not. Moreover, the car may be at angles different from the angles of a specific photograph of the car that is available as a search item. Similarly, if a piece of music, as in a sequence of notes, is to be found, it is not necessarily the case that in all available content the notes are known in their metadata form, or for that matter, the search pattern may just be a brief audio clip.
A system implementing a computational architecture (hereinafter “the Architecture”) that is based on a PCT patent application publication number WO 2007/049282 and published on May 3, 2007, entitled “A Computing Device, a System and a Method for Parallel Processing of Data Streams”, assigned to common assignee, is hereby incorporated by reference for all the useful information it contains. Generally, the Architecture consists of a large ensemble of randomly, independently, generated, heterogeneous processing cores, mapping in parallel data-segments onto a high-dimensional space and generating compact signatures for classes of interest.
A vast amount of multimedia content exists today, whether available on the web or on private networks, having partial or full metadata that describes the content. When new content is added, it is a challenge to provide metadata that is accurate because of the plurality of metadata that may be potentially associated with a multimedia data element. Trying to do so manually is a tedious task and impractical in view of the amount of multimedia content being generated daily. Even more challenging is the matching between different multimedia content that represents the same, similar, or related concepts and/or information from different perspectives. For example, an image of the Washington Memorial in Washington D.C., may be taken from different angles, from different distances, in different lighting conditions, and at different positions of the camera, so that while in one photograph the Memorial is diagonal to the picture it is horizontal in another.
It would be therefore advantageous to provide a solution to overcome the limitations of the prior art described hereinabove.
A summary of several example embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor to delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term “some embodiments” may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.
Certain embodiments disclosed herein include a method and system for generating a complex signature. The method comprises: generating at least one signature for each of a plurality of different minimum size multi-media data elements (MMDEs), wherein generation of each of the at least one signature is performed by a plurality of computational cores, each computational core having at least one configurable property characterizing the core, and wherein configuration of the at least one configurable property respective of each core results in statistical independence among the plurality of cores; and assembling at least a complex signature including the generated signatures.
Certain embodiments described herein also include a non-transitory computer readable medium having stored thereon instructions for causing one or more processing units to execute a method. The method comprises: generating at least one signature for each of a plurality of different minimum size multi-media data elements (MMDEs), wherein generation of each of the at least one signature is performed by a plurality of computational cores, each computational core having at least one configurable property characterizing the core, and wherein configuration of the at least one configurable property respective of each core results in statistical independence among the plurality of cores; and assembling at least a complex signature including the generated signatures.
Certain embodiments disclosed herein also include a system for generating a complex signature. The system comprises: a processing system; and a memory, the memory containing instructions that, when executed by the processing system, configured the processing system to: generate at least one signature for each of a plurality of different minimum size multi-media data elements (MMDEs), wherein generation of each of the at least one signature is performed by a plurality of computational cores, each computational core having at least one configurable property characterizing the core, and wherein configuration of the at least one configurable property respective of each core results in statistical independence among the plurality of cores; and assemble at least a complex signature including the generated signatures.
The subject matter that is regarded as the disclosure is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
The embodiments disclosed herein are only examples of the many possible advantageous uses and implementations of the innovative teachings presented herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed embodiments. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.
A method implemented according to the disclosed embodiments enables the association of metadata to a multimedia content based on finding matches to similar, partially-similar and/or related multimedia content. An input given multimedia content is matched to at least another multimedia content with corresponding metadata. Upon determination of a match, the corresponding metadata is processed and then used as metadata of the given multimedia content. When a large number of multimedia data is compared, a ranked list of metadata is provided. The most appropriate metadata is associated to the input given multimedia content based on various criteria. The method can be implemented in any applications which involve large-scale content-based clustering, recognition and classification of multimedia data, such as, content-tracking, video filtering, multimedia taxonomy generation, video fingerprinting, speech-to-text, audio classification, object recognition, video search and any other application requiring content-based signatures generation and matching for large content volumes such as, web and other large-scale databases.
Certain embodiments include a framework, a method, and a system, and their technological implementations and embodiments, for large-scale matching-based multimedia Deep Content Classification (DCC). In accordance with an embodiment, the system is based on the Architecture which is an implementation of a computational architecture described in patent application publication number WO 2007/049282. As mentioned above, the Architecture consists of a large ensemble of randomly, independently, generated, heterogeneous processing computational cores, mapping in parallel data-segments onto a high-dimensional space and generating compact signatures for classes of interest.
In accordance with the principles of the disclosed embodiments, a realization of The Architecture embedded in large-scale video matching system (hereinafter “the Matching System”) for multimedia DCC is disclosed. The Architecture receives an input stream of multimedia content segments, injected in parallel to all computational cores. The computational cores generate compact signatures of a specific content segment, and/or of a certain class of equivalence and interest of content-segments. For large-scale volumes of data, the signatures are stored in a conventional way in a database of size N, allowing match between the generated signatures of a certain content-segment and the signatures stored in the database, and accomplishing it with a low-cost, in terms of complexity, i.e. ≦O(log N), and response time.
An embodiment of the Matching System used for the purpose of explaining the principles of the embodiments disclosed therein is now demonstrated. Other embodiments are described in the co-pending patent applications of which this patent application is a continuation-in-part of, which are incorporated herein by reference. Moreover, it is appreciated that other embodiments will be apparent to one of ordinary skill in the art.
Characteristics and advantages of the Matching System include, but are not limited to: the Matching System is flat and generates signatures at an extremely high throughput rate; the Matching System generates robust natural signatures, invariant to various distortions of the signal; the Matching System is highly-scalable in high-volume signatures generation; the Matching System is highly scalable in matching against large volumes of signatures; the Matching System generates Robust Signatures for exact match with low cost, in terms of complexity and response time; the Matching System accuracy is scalable versus the number of computational cores, with no degradation effect on the throughput rate of processing; the throughput of the Matching System is scalable with the number of computational threads, and is scalable with the platform for computational cores implementation, such as FPGA, ASIC, etc.; and, the Robust Signatures produced by the Matching System are task-independent, thus the process of classification, recognition and clustering can be done independently from the process of signatures generation, in the superior space of the generated signatures.
The goal of the Matching System is to effectively find matches between members of a large scale Master Database (DB) of video content-segments and a large scale Target DB of video content-segments. The match between two video content segments should be invariant to a certain set of statistical distortions performed independently on two relevant content-segments. Moreover, the process of matching between a certain content-segment from the Master DB to the Target DB consisting of N segments, cannot be done by matching directly from the Master content-segment to all N Target content-segments, for large-scale N, since the corresponding complexity of O(N), will lead to a non-practical response time. Thus, the representation of content-segments by both Robust Signatures and Signatures is crucial application-wise. The Matching System embodies a specific realization of the Architecture for large scale video matching purposes.
A high-level description of the process for large scale video matching performed by the Matching System is depicted in
To demonstrate an example of signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosure, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. The Matching System is extensible for signatures generation capturing the dynamics in-between the frames and the information of the frame's patches.
The signatures generation process will now be described with reference to
In order to generate Robust Signatures, i.e., Signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) computational cores are utilized in the Matching System. A frame i is injected into all the Cores. The Cores generate two binary response vectors: {right arrow over (S)} which is a Signature vector, and {right arrow over (RS)} which is a Robust Signature vector.
For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, etc., a core Ci={ni} (1≦i≦L) may consist of a single leaky integrate-to-threshold unit (LTU) node or more nodes. The node ni equations are:
θ is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j); kj is an image component j (for example, grayscale value of a certain pixel j); Thx is a constant Threshold value, where x is ‘S’ for Signature and ‘RS’ for Robust Signature; and Vi is a Coupling Node Value.
The Threshold values Thx are set differently for Signature generation and for Robust Signature generation. For example, for a certain distribution of Vi values (for the set of nodes), the thresholds for Signature (ThS) and Robust Signature (ThRS) are set apart, after optimization, according to at least one or more of the following criteria:
i.e., given that I nodes (cores) constitute a Robust Signature of a certain image I, the probability that not all of these I nodes will belong to the Signature of same, but noisy image, Ĩ is sufficiently low (according to a system's specified accuracy).
p(Vi>ThRS)≈l/L II:
i.e., approximately/out of the total L nodes can be found to generate Robust Signature according to the above definition.
It should be understood that the creation of a signature is a unidirectional compression where the characteristics of the compressed data are maintained but the compressed data cannot be reconstructed. Therefore, a signature can be used for the purpose of comparison to another signature without the need of comparison of the original data. Detailed description of the signature generation process can be found in the co-pending patent applications of which this patent application is a continuation-in-part, and are hereby incorporated by reference.
Computational Core generation is a process of definition, selection and tuning of the Architecture parameters for a certain realization in a specific system and application. The process is based on several design considerations, such as:
(a) The Cores should be designed so as to obtain maximal independence, i.e. the projection from a signal space should generate a maximal pair-wise distance between any two cores' projections into a high-dimensional space.
(b) The Cores should be optimally designed for the type of signals, i.e. the Cores should be maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space. Thus, in some cases a core represents a dynamic system, such as state in space, phase space, edge of chaos, etc., which is uniquely used herein to exploit their maximal computational power.
(c) The Cores should be optimally designed with regard to invariance to a set of signal distortions, of interest in relevant applications.
A system and method for generating complex signatures for a multimedia data element (MMDE) based on signatures of minimum size multimedia data elements are now discussed. Accordingly, a partitioning unit partitions the multimedia data content into minimum size multimedia data elements and selects a reduced set of MMDEs, based on generic low-level characteristics of MMDEs. A signature generator generates signatures for each of the selected minimum size multimedia data elements. An assembler unit assembles a complex signature for a higher level partition multimedia data element by assembling respective complex signatures or signatures of minimum size multimedia data elements of an immediately lower partition level. Multimedia data elements include, but are not limited to, images, graphics, video streams, video clips, audio streams, audio clips, video frames, photographs, images of signals, combinations thereof, and portions thereof. This process generates a hologram-like relationship within the complex-signature set of signatures, i.e., each signature contains some information of the complete set of multimedia data elements. While the original signature represents some local information about relevant multimedia data elements, the complex signature structure enables distributed representation of the information of the entire set of multimedia data elements.
According to certain embodiments of the disclosed embodiments, complex signatures, for example but without limitation, signatures as described hereinabove, are generated for the multimedia data elements.
A complex signature is a signature which is a combination of lower level signatures. In the exemplary case, the signature of the multimedia element 310 is therefore the following combination: S310={S310-a, S310-b . . . S310-i}. Each of the signatures S310-a through S310-i is also a complex signature of lower level signatures, for example, the signature S310-c is a complex signature that is a combination of: S310-c={S310-c-a, S310-c-b . . . S310-c-i}. As explained above, this may continue such that a signature S310-c-b may be a complex signature of lower level signatures. In one embodiment, at least the lowest level multimedia data elements have signatures respective of at least four angular permutations of the element, i.e., rotated by 0°, rotated by 90°, rotated by 180° and rotated by 270°. While degrees of permutations are shown herein, other permutations may be used depending on the type of the multimedia data element. The rationale for having such image permutations is to enable better matching between multimedia data elements. The matching process is explained in detail herein below.
A complex signature may be generated by an exemplary and non-limiting system 600 depicted in
In accordance with another embodiment, the system 600 can be utilized to compare input multimedia data elements against stored multimedia data elements. In this embodiment, a comparison unit 650 connected to the storage unit 640 and the assembler unit 630 is used to compare the signatures comprising the complex signature of an input multimedia data element to the signatures of at least one stored multimedia data element. The comparison unit 650 further generates a match indication when a match between the input multimedia data element and the stored multimedia data element is found.
The principles of the disclosed embodiments may be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the disclosure and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosure, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Number | Date | Country | Kind |
---|---|---|---|
171577 | Oct 2005 | IL | national |
173409 | Jan 2006 | IL | national |
185414 | Aug 2007 | IL | national |
This application is a continuation of U.S. patent application Ser. No. 14/530,970 filed on Nov. 3, 2014, now allowed, which is a continuation of U.S. patent application Ser. No. 13/668,559 filed on Nov. 5, 2012, now U.S. Pat. No. 8,880,566, which is a continuation of U.S. patent application Ser. No. 12/538,495 filed on Aug. 10, 2009, now U.S. Pat. No. 8,312,031, which is a continuation-in-part of: (1) U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, now U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235, filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005 and Israeli Application No. 173409 filed on 29 Jan. 2006; (2) U.S. patent application Ser. No. 12/195,863, filed on Aug. 21, 2008, now U.S. Pat. No. 8,326,775, which claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007, and which is also a continuation-in-part of the above-referenced U.S. patent application Ser. No. 12/084,150; and (3) U.S. patent application Ser. No. 12/348,888, filed on Jan. 5, 2009, now pending which is a continuation-in-part of the above-referenced U.S. patent application Ser. No. 12/084,150 and the above-referenced U.S. patent application Ser. No. 12/195,863. All of the applications referenced above are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4733353 | Jaswa | Mar 1988 | A |
4932645 | Schorey et al. | Jun 1990 | A |
4972363 | Nguyen et al. | Nov 1990 | A |
5307451 | Clark | Apr 1994 | A |
5568181 | Greenwood et al. | Oct 1996 | A |
5745678 | Herzberg et al. | Apr 1998 | A |
5806061 | Chaudhuri et al. | Sep 1998 | A |
5852435 | Vigneaux et al. | Dec 1998 | A |
5870754 | Dimitrova et al. | Feb 1999 | A |
5873080 | Coden et al. | Feb 1999 | A |
5887193 | Takahashi et al. | Mar 1999 | A |
5940821 | Wical | Aug 1999 | A |
5978754 | Kumano | Nov 1999 | A |
5987454 | Hobbs | Nov 1999 | A |
6038560 | Wical | Mar 2000 | A |
6052481 | Grajski et al. | Apr 2000 | A |
6076088 | Paik et al. | Jun 2000 | A |
6122628 | Castelli et al. | Sep 2000 | A |
6128651 | Cezar | Oct 2000 | A |
6137911 | Zhilyaev | Oct 2000 | A |
6144767 | Bottou et al. | Nov 2000 | A |
6147636 | Gershenson | Nov 2000 | A |
6240423 | Hirata | May 2001 | B1 |
6243375 | Speicher | Jun 2001 | B1 |
6243713 | Nelson et al. | Jun 2001 | B1 |
6275599 | Adler et al. | Aug 2001 | B1 |
6329986 | Cheng | Dec 2001 | B1 |
6363373 | Steinkraus | Mar 2002 | B1 |
6381656 | Shankman | Apr 2002 | B1 |
6411229 | Kobayashi | Jun 2002 | B2 |
6422617 | Fukumoto et al. | Jul 2002 | B1 |
6493692 | Kobayashi et al. | Dec 2002 | B1 |
6493705 | Kobayashi et al. | Dec 2002 | B1 |
6507672 | Watkins et al. | Jan 2003 | B1 |
6523022 | Hobbs | Feb 2003 | B1 |
6523046 | Liu et al. | Feb 2003 | B2 |
6524861 | Anderson | Feb 2003 | B1 |
6526400 | Takata et al. | Feb 2003 | B1 |
6550018 | Abonamah et al. | Apr 2003 | B1 |
6560597 | Dhillon et al. | May 2003 | B1 |
6594699 | Sahai et al. | Jul 2003 | B1 |
6601060 | Tomaru | Jul 2003 | B1 |
6611628 | Sekiguchi et al. | Aug 2003 | B1 |
6611837 | Schreiber | Aug 2003 | B2 |
6618711 | Ananth | Sep 2003 | B1 |
6643620 | Contolini et al. | Nov 2003 | B1 |
6643643 | Lee et al. | Nov 2003 | B1 |
6665657 | Dibachi | Dec 2003 | B1 |
6675159 | Lin et al. | Jan 2004 | B1 |
6704725 | Lee | Mar 2004 | B1 |
6728706 | Aggarwal et al. | Apr 2004 | B2 |
6732149 | Kephart | May 2004 | B1 |
6751363 | Natsev et al. | Jun 2004 | B1 |
6751613 | Lee et al. | Jun 2004 | B1 |
6754435 | Kim | Jun 2004 | B2 |
6763069 | Divakaran et al. | Jul 2004 | B1 |
6763519 | McColl et al. | Jul 2004 | B1 |
6774917 | Foote et al. | Aug 2004 | B1 |
6795818 | Lee | Sep 2004 | B1 |
6804356 | Krishnamachari | Oct 2004 | B1 |
6819797 | Smith et al. | Nov 2004 | B1 |
6836776 | Schreiber | Dec 2004 | B2 |
6845374 | Oliver et al. | Jan 2005 | B1 |
6901207 | Watkins | May 2005 | B1 |
6938025 | Lulich et al. | Aug 2005 | B1 |
6970881 | Mohan et al. | Nov 2005 | B1 |
6978264 | Chandrasekar et al. | Dec 2005 | B2 |
7006689 | Kasutani | Feb 2006 | B2 |
7013051 | Sekiguchi et al. | Mar 2006 | B2 |
7020654 | Najmi | Mar 2006 | B1 |
7043473 | Rassool et al. | May 2006 | B1 |
7047033 | Wyler | May 2006 | B2 |
7124149 | Smith et al. | Oct 2006 | B2 |
7158681 | Persiantsev | Jan 2007 | B2 |
7199798 | Echigo et al. | Apr 2007 | B1 |
7215828 | Luo | May 2007 | B2 |
7260564 | Lynn et al. | Aug 2007 | B1 |
7277928 | Lennon | Oct 2007 | B2 |
7296012 | Ohashi | Nov 2007 | B2 |
7302117 | Sekiguchi et al. | Nov 2007 | B2 |
7313805 | Rosin et al. | Dec 2007 | B1 |
7340458 | Vaithilingam et al. | Mar 2008 | B2 |
7346629 | Kapur et al. | Mar 2008 | B2 |
7353224 | Chen et al. | Apr 2008 | B2 |
7376672 | Weare | May 2008 | B2 |
7376722 | Sim et al. | May 2008 | B1 |
7392238 | Zhou et al. | Jun 2008 | B1 |
7406459 | Chen et al. | Jul 2008 | B2 |
7433895 | Li et al. | Oct 2008 | B2 |
7450740 | Shah et al. | Nov 2008 | B2 |
7464086 | Black et al. | Dec 2008 | B2 |
7519238 | Robertson et al. | Apr 2009 | B2 |
7523102 | Bjarnestam et al. | Apr 2009 | B2 |
7526607 | Singh et al. | Apr 2009 | B1 |
7536384 | Venkataraman et al. | May 2009 | B2 |
7536417 | Walsh et al. | May 2009 | B2 |
7542969 | Rappaport et al. | Jun 2009 | B1 |
7548910 | Chu et al. | Jun 2009 | B1 |
7555477 | Bayley et al. | Jun 2009 | B2 |
7555478 | Bayley et al. | Jun 2009 | B2 |
7562076 | Kapur | Jul 2009 | B2 |
7574436 | Kapur et al. | Aug 2009 | B2 |
7574668 | Nunez et al. | Aug 2009 | B2 |
7577656 | Kawai et al. | Aug 2009 | B2 |
7657100 | Gokturk et al. | Feb 2010 | B2 |
7660468 | Gokturk et al. | Feb 2010 | B2 |
7660737 | Lim et al. | Feb 2010 | B1 |
7689544 | Koenig | Mar 2010 | B2 |
7694318 | Eldering et al. | Apr 2010 | B2 |
7697791 | Chan et al. | Apr 2010 | B1 |
7769221 | Shakes et al. | Aug 2010 | B1 |
7788132 | Desikan et al. | Aug 2010 | B2 |
7788247 | Wang et al. | Aug 2010 | B2 |
7836054 | Kawai et al. | Nov 2010 | B2 |
7860895 | Scofield et al. | Dec 2010 | B1 |
7904503 | De | Mar 2011 | B2 |
7920894 | Wyler | Apr 2011 | B2 |
7921107 | Chang et al. | Apr 2011 | B2 |
7933407 | Keidar et al. | Apr 2011 | B2 |
7974994 | Li et al. | Jul 2011 | B2 |
7987194 | Walker et al. | Jul 2011 | B1 |
7987217 | Long et al. | Jul 2011 | B2 |
7991715 | Schiff et al. | Aug 2011 | B2 |
8000655 | Wang et al. | Aug 2011 | B2 |
8023739 | Hohimer et al. | Sep 2011 | B2 |
8036893 | Reich | Oct 2011 | B2 |
8098934 | Vincent et al. | Jan 2012 | B2 |
8112376 | Raichelgauz et al. | Feb 2012 | B2 |
8266185 | Raichelgauz et al. | Sep 2012 | B2 |
8312031 | Raichelgauz et al. | Nov 2012 | B2 |
8315442 | Gokturk et al. | Nov 2012 | B2 |
8316005 | Moore | Nov 2012 | B2 |
8326775 | Raichelgauz et al. | Dec 2012 | B2 |
8332478 | Levy et al. | Dec 2012 | B2 |
8345982 | Gokturk et al. | Jan 2013 | B2 |
8548828 | Longmire | Oct 2013 | B1 |
8655801 | Raichelgauz et al. | Feb 2014 | B2 |
8677377 | Cheyer et al. | Mar 2014 | B2 |
8682667 | Haughay | Mar 2014 | B2 |
8688446 | Yanagihara | Apr 2014 | B2 |
8706503 | Cheyer et al. | Apr 2014 | B2 |
8775442 | Moore et al. | Jul 2014 | B2 |
8799195 | Raichelgauz et al. | Aug 2014 | B2 |
8799196 | Raichelquaz et al. | Aug 2014 | B2 |
8818916 | Raichelgauz et al. | Aug 2014 | B2 |
8868619 | Raichelgauz et al. | Oct 2014 | B2 |
8880539 | Raichelgauz et al. | Nov 2014 | B2 |
8880566 | Raichelgauz et al. | Nov 2014 | B2 |
8886648 | Procopio et al. | Nov 2014 | B1 |
8898568 | Bull et al. | Nov 2014 | B2 |
8922414 | Raichelgauz et al. | Dec 2014 | B2 |
8959037 | Raichelgauz et al. | Feb 2015 | B2 |
8990125 | Raichelgauz et al. | Mar 2015 | B2 |
9009086 | Raichelgauz et al. | Apr 2015 | B2 |
9031999 | Raichelgauz et al. | May 2015 | B2 |
9087049 | Raichelgauz et al. | Jul 2015 | B2 |
9104747 | Raichelgauz et al. | Aug 2015 | B2 |
9165406 | Gray et al. | Oct 2015 | B1 |
9191626 | Raichelgauz et al. | Nov 2015 | B2 |
9197244 | Raichelgauz et al. | Nov 2015 | B2 |
9218606 | Raichelgauz et al. | Dec 2015 | B2 |
9235557 | Raichelgauz et al. | Jan 2016 | B2 |
9256668 | Raichelgauz et al. | Feb 2016 | B2 |
9323754 | Ramanathan et al. | Apr 2016 | B2 |
9330189 | Raichelgauz et al. | May 2016 | B2 |
9438270 | Raichelgauz et al. | Sep 2016 | B2 |
20010019633 | Tenze et al. | Sep 2001 | A1 |
20010038876 | Anderson | Nov 2001 | A1 |
20010056427 | Yoon et al. | Dec 2001 | A1 |
20020010682 | Johnson | Jan 2002 | A1 |
20020019881 | Bokhari et al. | Feb 2002 | A1 |
20020038299 | Zernik et al. | Mar 2002 | A1 |
20020059580 | Kalker et al. | May 2002 | A1 |
20020072935 | Rowse et al. | Jun 2002 | A1 |
20020087530 | Smith et al. | Jul 2002 | A1 |
20020099870 | Miller et al. | Jul 2002 | A1 |
20020107827 | Benitez-Jimenez et al. | Aug 2002 | A1 |
20020123928 | Eldering et al. | Sep 2002 | A1 |
20020126872 | Brunk et al. | Sep 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020129296 | Kwiat et al. | Sep 2002 | A1 |
20020143976 | Barker et al. | Oct 2002 | A1 |
20020147637 | Kraft et al. | Oct 2002 | A1 |
20020152267 | Lennon | Oct 2002 | A1 |
20020157116 | Jasinschi | Oct 2002 | A1 |
20020159640 | Vaithilingam et al. | Oct 2002 | A1 |
20020161739 | Oh | Oct 2002 | A1 |
20020163532 | Thomas et al. | Nov 2002 | A1 |
20020174095 | Lulich et al. | Nov 2002 | A1 |
20020178410 | Haitsma et al. | Nov 2002 | A1 |
20030028660 | Igawa et al. | Feb 2003 | A1 |
20030041047 | Chang et al. | Feb 2003 | A1 |
20030050815 | Seigel et al. | Mar 2003 | A1 |
20030078766 | Appelt et al. | Apr 2003 | A1 |
20030086627 | Berriss et al. | May 2003 | A1 |
20030089216 | Birmingham et al. | May 2003 | A1 |
20030105739 | Essafi et al. | Jun 2003 | A1 |
20030126147 | Essafi et al. | Jul 2003 | A1 |
20030182567 | Barton et al. | Sep 2003 | A1 |
20030191764 | Richards | Oct 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030217335 | Chung et al. | Nov 2003 | A1 |
20030229531 | Heckerman et al. | Dec 2003 | A1 |
20040003394 | Ramaswamy | Jan 2004 | A1 |
20040025180 | Begeja et al. | Feb 2004 | A1 |
20040068510 | Hayes et al. | Apr 2004 | A1 |
20040107181 | Rodden | Jun 2004 | A1 |
20040111465 | Chuang et al. | Jun 2004 | A1 |
20040117367 | Smith et al. | Jun 2004 | A1 |
20040128142 | Whitham | Jul 2004 | A1 |
20040128511 | Sun et al. | Jul 2004 | A1 |
20040133927 | Sternberg et al. | Jul 2004 | A1 |
20040153426 | Nugent | Aug 2004 | A1 |
20040215663 | Liu et al. | Oct 2004 | A1 |
20040249779 | Nauck et al. | Dec 2004 | A1 |
20040260688 | Gross | Dec 2004 | A1 |
20040267774 | Lin et al. | Dec 2004 | A1 |
20050021394 | Miedema et al. | Jan 2005 | A1 |
20050114198 | Koningstein et al. | May 2005 | A1 |
20050131884 | Gross et al. | Jun 2005 | A1 |
20050144455 | Haitsma | Jun 2005 | A1 |
20050172130 | Roberts | Aug 2005 | A1 |
20050177372 | Wang et al. | Aug 2005 | A1 |
20050238238 | Xu et al. | Oct 2005 | A1 |
20050245241 | Durand et al. | Nov 2005 | A1 |
20050262428 | Little et al. | Nov 2005 | A1 |
20050281439 | Lange | Dec 2005 | A1 |
20050289163 | Gordon et al. | Dec 2005 | A1 |
20050289590 | Cheok et al. | Dec 2005 | A1 |
20060004745 | Kuhn et al. | Jan 2006 | A1 |
20060013451 | Haitsma | Jan 2006 | A1 |
20060020860 | Tardif et al. | Jan 2006 | A1 |
20060020958 | Allamanche et al. | Jan 2006 | A1 |
20060026203 | Tan et al. | Feb 2006 | A1 |
20060031216 | Semple et al. | Feb 2006 | A1 |
20060041596 | Stirbu et al. | Feb 2006 | A1 |
20060048191 | Xiong | Mar 2006 | A1 |
20060064037 | Shalon et al. | Mar 2006 | A1 |
20060112035 | Cecchi et al. | May 2006 | A1 |
20060129822 | Snijder et al. | Jun 2006 | A1 |
20060143674 | Jones et al. | Jun 2006 | A1 |
20060153296 | Deng | Jul 2006 | A1 |
20060159442 | Kim et al. | Jul 2006 | A1 |
20060173688 | Whitham | Aug 2006 | A1 |
20060184638 | Chua et al. | Aug 2006 | A1 |
20060204035 | Guo et al. | Sep 2006 | A1 |
20060217818 | Fujiwara | Sep 2006 | A1 |
20060217828 | Hicken | Sep 2006 | A1 |
20060224529 | Kermani | Oct 2006 | A1 |
20060236343 | Chang | Oct 2006 | A1 |
20060242139 | Butterfield et al. | Oct 2006 | A1 |
20060242554 | Gerace et al. | Oct 2006 | A1 |
20060247983 | Dalli | Nov 2006 | A1 |
20060248558 | Barton et al. | Nov 2006 | A1 |
20060253423 | McLane et al. | Nov 2006 | A1 |
20070009159 | Fan | Jan 2007 | A1 |
20070011151 | Hagar et al. | Jan 2007 | A1 |
20070019864 | Koyama et al. | Jan 2007 | A1 |
20070033163 | Epstein et al. | Feb 2007 | A1 |
20070038608 | Chen | Feb 2007 | A1 |
20070038614 | Guha | Feb 2007 | A1 |
20070042757 | Jung et al. | Feb 2007 | A1 |
20070061302 | Ramer et al. | Mar 2007 | A1 |
20070067304 | Ives | Mar 2007 | A1 |
20070067682 | Fang | Mar 2007 | A1 |
20070071330 | Oostveen et al. | Mar 2007 | A1 |
20070074147 | Wold | Mar 2007 | A1 |
20070083611 | Farago et al. | Apr 2007 | A1 |
20070091106 | Moroney | Apr 2007 | A1 |
20070130112 | Lin | Jun 2007 | A1 |
20070130159 | Gulli et al. | Jun 2007 | A1 |
20070168413 | Barletta et al. | Jul 2007 | A1 |
20070174320 | Chou | Jul 2007 | A1 |
20070195987 | Rhoads | Aug 2007 | A1 |
20070220573 | Chiussi et al. | Sep 2007 | A1 |
20070244902 | Seide et al. | Oct 2007 | A1 |
20070253594 | Lu et al. | Nov 2007 | A1 |
20070255785 | Hayashi et al. | Nov 2007 | A1 |
20070268309 | Tanigawa et al. | Nov 2007 | A1 |
20070282826 | Hoeber et al. | Dec 2007 | A1 |
20070294295 | Finkelstein et al. | Dec 2007 | A1 |
20070298152 | Baets | Dec 2007 | A1 |
20080019614 | Robertson et al. | Jan 2008 | A1 |
20080040277 | DeWitt | Feb 2008 | A1 |
20080046406 | Seide et al. | Feb 2008 | A1 |
20080049629 | Morrill | Feb 2008 | A1 |
20080072256 | Boicey et al. | Mar 2008 | A1 |
20080091527 | Silverbrook et al. | Apr 2008 | A1 |
20080152231 | Gokturk et al. | Jun 2008 | A1 |
20080163288 | Ghosal et al. | Jul 2008 | A1 |
20080165861 | Wen et al. | Jul 2008 | A1 |
20080172615 | Igelman et al. | Jul 2008 | A1 |
20080201299 | Lehikoinen et al. | Aug 2008 | A1 |
20080201314 | Smith et al. | Aug 2008 | A1 |
20080204706 | Magne et al. | Aug 2008 | A1 |
20080228995 | Tan et al. | Sep 2008 | A1 |
20080237359 | Silverbrook et al. | Oct 2008 | A1 |
20080253737 | Kimura et al. | Oct 2008 | A1 |
20080263579 | Mears et al. | Oct 2008 | A1 |
20080270373 | Oostveen et al. | Oct 2008 | A1 |
20080313140 | Pereira et al. | Dec 2008 | A1 |
20090013414 | Washington et al. | Jan 2009 | A1 |
20090022472 | Bronstein et al. | Jan 2009 | A1 |
20090024641 | Quigley et al. | Jan 2009 | A1 |
20090037408 | Rodgers | Feb 2009 | A1 |
20090043637 | Eder | Feb 2009 | A1 |
20090089587 | Brunk et al. | Apr 2009 | A1 |
20090119157 | Dulepet | May 2009 | A1 |
20090125529 | Vydiswaran et al. | May 2009 | A1 |
20090125544 | Brindley | May 2009 | A1 |
20090148045 | Lee et al. | Jun 2009 | A1 |
20090157575 | Schobben et al. | Jun 2009 | A1 |
20090172030 | Schiff et al. | Jul 2009 | A1 |
20090175538 | Bronstein et al. | Jul 2009 | A1 |
20090204511 | Tsang | Aug 2009 | A1 |
20090216639 | Kapczynski et al. | Aug 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090245603 | Koruga et al. | Oct 2009 | A1 |
20090253583 | Yoganathan | Oct 2009 | A1 |
20090254824 | Singh | Oct 2009 | A1 |
20090277322 | Cai et al. | Nov 2009 | A1 |
20100023400 | DeWitt | Jan 2010 | A1 |
20100042646 | Raichelgauz et al. | Feb 2010 | A1 |
20100082684 | Churchill et al. | Apr 2010 | A1 |
20100088321 | Solomon et al. | Apr 2010 | A1 |
20100104184 | Bronstein et al. | Apr 2010 | A1 |
20100106857 | Wyler | Apr 2010 | A1 |
20100125569 | Nair et al. | May 2010 | A1 |
20100162405 | Cook et al. | Jun 2010 | A1 |
20100173269 | Puri et al. | Jul 2010 | A1 |
20100191567 | Lee et al. | Jul 2010 | A1 |
20100268524 | Nath et al. | Oct 2010 | A1 |
20100306193 | Pereira et al. | Dec 2010 | A1 |
20100318493 | Wessling | Dec 2010 | A1 |
20100322522 | Wang et al. | Dec 2010 | A1 |
20110035289 | King et al. | Feb 2011 | A1 |
20110052063 | McAuley et al. | Mar 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110106782 | Ke et al. | May 2011 | A1 |
20110125727 | Zou et al. | May 2011 | A1 |
20110145068 | King et al. | Jun 2011 | A1 |
20110202848 | Ismalon | Aug 2011 | A1 |
20110208822 | Rathod | Aug 2011 | A1 |
20110246566 | Kashef et al. | Oct 2011 | A1 |
20110251896 | Impollonia et al. | Oct 2011 | A1 |
20110313856 | Cohen et al. | Dec 2011 | A1 |
20120082362 | Diem et al. | Apr 2012 | A1 |
20120131454 | Shah | May 2012 | A1 |
20120150890 | Jeong et al. | Jun 2012 | A1 |
20120167133 | Carroll et al. | Jun 2012 | A1 |
20120185445 | Borden et al. | Jul 2012 | A1 |
20120191686 | Hjelm et al. | Jul 2012 | A1 |
20120197857 | Huang et al. | Aug 2012 | A1 |
20120239694 | Avner et al. | Sep 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20120331011 | Raichelgauz et al. | Dec 2012 | A1 |
20130031489 | Gubin et al. | Jan 2013 | A1 |
20130066856 | Ong et al. | Mar 2013 | A1 |
20130067035 | Amanat et al. | Mar 2013 | A1 |
20130067364 | Berntson et al. | Mar 2013 | A1 |
20130086499 | Dyor et al. | Apr 2013 | A1 |
20130089248 | Remiszewski et al. | Apr 2013 | A1 |
20130104251 | Moore et al. | Apr 2013 | A1 |
20130159298 | Mason et al. | Jun 2013 | A1 |
20130173635 | Sanjeev | Jul 2013 | A1 |
20130325550 | Varghese et al. | Dec 2013 | A1 |
20130332951 | Gharaat et al. | Dec 2013 | A1 |
20140019264 | Wachman et al. | Jan 2014 | A1 |
20140025692 | Pappas | Jan 2014 | A1 |
20140147829 | Jerauld | May 2014 | A1 |
20140152698 | Kim et al. | Jun 2014 | A1 |
20140176604 | Venkitaraman et al. | Jun 2014 | A1 |
20140188786 | Raichelgauz et al. | Jul 2014 | A1 |
20140193077 | Shiiyama et al. | Jul 2014 | A1 |
20140250032 | Huang et al. | Sep 2014 | A1 |
20140282655 | Roberts | Sep 2014 | A1 |
20140300722 | Garcia | Oct 2014 | A1 |
20140310825 | Raichelgauz et al. | Oct 2014 | A1 |
20140330830 | Raichelgauz et al. | Nov 2014 | A1 |
20150286742 | Zhang et al. | Oct 2015 | A1 |
20150289022 | Gross | Oct 2015 | A1 |
20160026707 | Ong et al. | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
0231764 | Apr 2002 | WO |
2003005242 | Jan 2003 | WO |
2003067467 | Aug 2003 | WO |
2004019527 | Mar 2004 | WO |
2005027457 | Mar 2005 | WO |
20070049282 | May 2007 | WO |
2014137337 | Sep 2014 | WO |
2016040376 | Mar 2016 | WO |
Entry |
---|
Gomes et al., “Audio Watermaking and Fingerprinting: For Which Applications?” University of Rene Descartes, Paris, France, 2003. |
Zhu et al., Technology-Assisted Dietary Assessment. Computational Imaging VI, edited by Charles A. Bauman, Eric L. Miller, Ilya Pollak, Proc. of SPIE-IS&T Electronic Imaging, SPIE vol. 6814, 681411, Copyright 2008 SPIE-IS&T. pp 1-10. |
Brecheisen, et al., “Hierarchical Genre Classification for Large Music Collections”, ICME 2006, pp. 1385-1388. |
Chuan-Yu Cho, et al., “Efficient Motion-Vector-Based Video Search Using Query by Clip”, 2004, IEEE, Taiwan, pp. 1-4. |
Ihab Al Kabary, et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, Oct. 2013, ACM, Switzerland, pp. 1-3. |
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Towards Semantic Sensitive Retrieval and Browsing”, IEEE, vol. 13, No. 7, Jul. 2004, pp. 1-19. |
Lau, et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Year: 2008, pp. 98-103, DOI: 10.1109/CITISIA.2008.4607342 IEEE Conference Publications. |
McNamara, et al., “Diversity Decay in Opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Year: 2011, pp. 1-3, DOI: 10.1109/WoWMoM.2011.5986211 IEEE Conference Publications. |
Odinaev, et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Israel Institute of Technology, 2006 International Joint Conference on Neural Networks, Canada, 2006, pp. 285-292. |
Santos, et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for Multimedia and e-Learning”, 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM) Year: 2015, pp. 224-228, DOI: 10.1109/SOFTCOM.2015.7314122 IEEE Conference Publications. |
Shih-Fu Chang, et al., “VideoQ: A Fully Automated Video Retrieval System Using Motion Sketches”, 1998, IEEE, , New York, pp. 1-2. |
Wei-Te Li et al., “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, IEEE, vol. 22, No. 7, Jul. 2013, pp. 1-11. |
Wilk, et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, 2015 International Conference and Workshops on Networked Systems (NetSys) Year: 2015, pp. 1-5, DOI: 10.1109/NetSys.2015.7089081 IEEE Conference Publications. |
International Search Authority: International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) including “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) for the related International Patent Application No. PCT/IL2006/001235; dated Jul. 28, 2009. |
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995. |
Burgsteiner et al.: “Movement Prediction From Real-World Images Using a Liquid State Machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130. |
Cernansky et al., “Feed-forward Echo State Networks”; Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005. |
Clement, et al. “Speaker Diarization of Heterogeneous Web Video Files: A Preliminary Study”, Acoustics, Speech and Signal Processing (ICASSP), 2011, IEEE International Conference on Year: 2011, pp. 4432-4435, DOI: 10.1109/ICASSP.2011.5947337 IEEE Conference Publications, France. |
Cococcioni, et al, “Automatic Diagnosis of Defects of Rolling Element Bearings Based on Computational Intelligence Techniques”, University of Pisa, Pisa, Italy, 2009. |
Emami, et al, “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance, University of Queensland”, St. Lucia, Australia, 2012. |
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using NIMD Architecture”, 8th Mediterranean Electrotechnical Corsfe rersce, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3, pp. 1472-1475. |
Foote, Jonathan et al., “Content-Based Retrieval of Music and Audio”; 1997, Institute of Systems Science, National University of Singapore, Singapore (Abstract). |
Freisleben et al., “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637. |
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989. |
Gong, et al., “A Knowledge-based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, Video and Speech Processing, 2004, Proceedings of 2004 International Symposium on Year: 2004, pp. 467-470, DOI: 10.1109/ISIMP.2004.1434102 IEEE Conference Publications, Hong Kong. |
Guo et al, “AdOn: An Intelligent Overlay Video Advertising System”, SIGIR, Boston, Massachusetts, Jul. 19-23, 2009. |
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-based Intelligent Engineering Systems, 4 (2). pp. 86-93, 133N 1327-2314; first submitted Nov. 30, 1999; revised version submitted Mar. 10, 2000. |
International Search Authority: “Written Opinion of the International Searching Authority” (PCT Rule 43bis.1) including International Search Report for the related International Patent Application No. PCT/US2008/073852; dated Jan. 28, 2009; Entire Document. |
International Search Report for the related International Patent Application PCT/IL2006/001235; dated Nov. 2, 2008. |
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated May 30, 2012. |
Iwamoto, K.; Kasutani, E.; Yamada, A.: “Image Signature Robust to Caption Superimposition for Video Sequence Identification”; 2006 IEEE International Conference on Image Processing; pp. 3185-3188, Oct. 8-11, 2006; doi: 10.1109/ICIP.2006.313046. |
Jaeger, H.: “The “echo state” approach to analysing and training recurrent neural networks”, GMD Report, No. 148, 2001, pp. 1-43, XP002466251 German National Research Center for Information Technology. |
Li, et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature,” Proceedings of the Digital Imaging Computing: Techniques and Applications, Feb. 2005, vol. 0-7695-2467, Australia. |
Lin, C.; Chang, S.;, “Generating Robust Digital Signature for Image/Video Authentication,” Multimedia and Security Workshop at ACM Multimedia '98. Bristol, U.K. Sep. 1998, pp. 49-54. |
Lin, et al., “Robust Digital Signature for Multimedia Authentication: A Summary”, IEEE Circuits and Systems Magazine, 4th Quarter 2003, pp. 23-26. |
Lin, et al., “Summarization of Large Scale Social Network Activity”, Acoustics, Speech and Signal Processing, 2009, ICASSP 2009, IEEE International Conference on Year 2009, pp. 3481-3484, DOI: 10.1109/ICASSP.2009.4960375, IEEE Conference Publications, Arizona. |
Liu, et al., “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, Multimedia, IEEE Transactions on Year: 2014, vol. 16, Issue: 8, pp. 2242-2255, DOI: 10.1109/TMM.2014.2359332 IEEE Journals & Magazines. |
Lyon, Richard F.; “Computational Models of Neural Auditory Processing”; IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44. |
Maass, W. et al.: “Computational Models for Generic Cortical Microcircuits”, Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, published Jun. 10, 2003. |
Mahdhaoui, et al, “Emotional Speech Characterization Based on Multi-Features Fusion for Face-to-Face Interaction”, Universite Pierre et Marie Curie, Paris, France, 2009. |
Marti, et al, “Real Time Speaker Localization and Detection System for Camera Steering in Multiparticipant Videoconferencing Environments”, Universidad Politecnica de Valencia, Spain, 2011. |
May et al., “The Transputer”, Springer-Verlag, Berlin Heidelberg, 1989, teaches multiprocessing system. |
Mei, et al., “Contextual In-Image Advertising”, Microsoft Research Asia, pp. 439-448, 2008. |
Mei, et al., “VideoSense—Towards Effective Online Video Advertising”, Microsoft Research Asia, pp. 1075-1084, 2007. |
Mladenovic, et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book”, Telecommunications Forum (TELFOR), 2012 20th Year: 2012, pp. 1460-1463, DOI: 10.1109/TELFOR.2012.6419494 IEEE Conference Publications. |
Morad, T.Y. et al.: “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005 (Jul. 4, 2005), pp. 1-4, XP002466254. |
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on CONTROL '96, Sep. 2-5, 1996, Conference 1996, Conference Publication No. 427, IEE 1996. |
Nam, et al., “Audio Visual Content-Based Violent Scene Characterization”, Department of Electrical and Computer Engineering, Minneapolis, MN, 1998, pp. 353-357. |
Natsclager, T. et al.: “The “liquid computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of Telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253. |
Nouza, et al., “Large-scale Processing, Indexing and Search System for Czech Audio-Visual Heritage Archives”, Multimedia Signal Processing (MMSP), 2012, pp. 337-342, IEEE 14th Intl. Workshop, DOI: 10.1109/MMSP.2012.6343465, Czech Republic. |
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005), pp. 1-48 Submitted Nov. 2004; published Jul. 2005. |
Park, et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on Year: 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884293 IEEE Conference Publications. |
Raichelgauz, I. et al.: “Co-evolutionary Learning in Liquid Architectures”, Lecture Notes in Computer Science, [Online] vol. 3512, Jun. 21, 2005 (Jun. 21, 2005), pp. 241-248, XP019010280 Springer Berlin / Heidelberg ISSN: 1611-3349 ISBN: 978-3-540-26208-4. |
Ribert et al. “An Incremental Hierarchical Clustering”, Visicon Interface 1999, pp. 586-591. |
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publi, ISBN 2-930307-06-4. |
Semizarov et al. “Specificity of Short Interfering RNA Determined through Gene Expression Signatures”, PNAS, 2003, pp. 6347-6352. |
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96. |
Vailaya, et al., “Content-Based Hierarchical Classification of Vacation Images,” I.E.E.E.: Multimedia Computing and Systems, vol. 1, 1999, East Lansing, MI, pp. 518-523. |
Vallet, et al., “Personalized Content Retrieval in Context Using Ontological Knowledge,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346. |
Verstraeten et al., “Isolated word recognition with the Liquid State Machine; a case study”; Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available online Jul. 14, 2005; Entire Document. |
Verstraeten et al.: “Isolated word recognition with the Liquid State Machine; a case study”, Information Processing Letters, Amsterdam, NL, col. 95, No. 6, Sep. 30, 2005 (Sep. 30, 2005), pp. 521-528, XP005028093 ISSN: 0020-0190. |
Wang et al. “A Signature for Content-based Image Retrieval Using a Geometrical Transform”, ACM 1998, pp. 229-234. |
Ware et al., “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture”; Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144. |
Johnson, John L., “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images.” Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253. |
The International Search Report and the Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017. |
The International Search Report and the Written Opinion for PCT/US2016/054634 dated Mar. 16, 2017, ISA/RU, Moscow, RU. |
The International Search Report and the Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, Russia, dated Apr. 20, 2017. |
Whitby-Strevens, “The Transputer”, 1985 IEEE, Bristol, UK. |
Xian-Sheng Hua et al.: “Robust Video Signature Based on Ordinal Measure” In: 2004 International Conference on Image Processing, ICIP '04; Microsoft Research Asia, Beijing, China; published Oct. 24-27, 2004, pp. 685-688. |
Yanai, “Generic Image Classification Using Visual Knowledge on the Web,” MM'03, Nov. 2-8, 2003, Tokyo, Japan, pp. 167-176. |
Zang, et al., “A New Multimedia Message Customizing Framework for Mobile Devices”, Multimedia and Expo, 2007 IEEE International Conference on Year: 2007, pp. 1043-1046, DOI: 10.1109/ICME.2007.4284832 IEEE Conference Publications. |
Zeevi, Y. et al.: “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, IEEE World Congress on Computational Intelligence, IJCNN2006, Vancouver, Canada, Jul. 2006 (Jul. 2006), XP002466252. |
Zhou et al., “Ensembling neural networks: Many could be better than all”; National Laboratory for Novel Software Technology, Nanjing Unviersirty, Hankou Road 22, Nanjing 210093, PR China; Available online Mar. 12, 2002. |
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”; IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, pp. 37-42, Date of Publication: Mar. 2003. |
Hua, et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004. 2004 International conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004. |
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93, downloaded from http://proceedings.spiedigitallibrary.org/ on Aug. 2, 2017. |
Schneider, et. al., “A Robust Content Based Digital Signature for Image Authentication”, Proc. ICIP 1996, Laussane, Switzerland, Oct. 1996, pp. 227-230. |
Yanagawa, et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts.” Columbia University Advent technical report, 2007, pp. 222-2006-8. |
Zou, et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216. |
Number | Date | Country | |
---|---|---|---|
20160350291 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14530970 | Nov 2014 | US |
Child | 15227531 | US | |
Parent | 13668559 | Nov 2012 | US |
Child | 14530970 | US | |
Parent | 12538495 | Aug 2009 | US |
Child | 13668559 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12084150 | US | |
Child | 12538495 | US | |
Parent | 12195863 | Aug 2008 | US |
Child | 12538495 | US | |
Parent | 12084150 | US | |
Child | 12195863 | US | |
Parent | 12348888 | Jan 2009 | US |
Child | 12538495 | US | |
Parent | 12084150 | US | |
Child | 12348888 | US | |
Parent | 12195863 | US | |
Child | 12084150 | US |