1. Field of the Invention
This invention relates generally to computer networks, and more particularly provides a system and method for globally and securely accessing unified information in a computer network.
2. Description of the Background Art
The internet currently interconnects about 100,000 computer networks and several million computers. Each of these computers stores numerous application programs for providing numerous services, such as generating, sending and receiving e-mail, accessing World Wide Web sites, generating and receiving facsimile documents, storing and retrieving data, etc.
A roaming user, i.e., a user who travels and accesses a workstation remotely, is faced with several problems. Program designers have developed communication techniques for enabling the roaming user to establish a communications link and to download needed information and needed service application programs from the remote workstation to a local computer. Using these techniques, the roaming user can manipulate the data on the remote workstation and, when finished, can upload the manipulated data back from the remote workstation to the local computer. However, slow computers and slow communication channels make downloading large files and programs a time-consuming process. Further, downloading files and programs across insecure channels severely threatens the integrity and confidentiality of the downloaded data.
Data consistency is also a significant concern for the roaming user. For example, when maintaining multiple independently modifiable copies of a document, a user risks using an outdated version. By the time the user notices an inconsistency, interparty miscommunication or data loss may have already resulted. The user must then spend more time attempting to reconcile the inconsistent versions and addressing any miscommunications.
The problem of data inconsistency is exacerbated when multiple copies of a document are maintained at different network locations. For example, due to network security systems such as conventional firewall technology, a user may have access only to a particular one of these network locations. Without access to the other sites, the user cannot confirm that the version on the accessible site is the most recent draft.
Data consistency problems may also arise when using application programs from different vendors. For example, the Netscape Navigator™ web engine and the Internet Explorer™ web engine each store bookmarks for quick reference to interesting web sites. However, since each web engine uses different formats and stores bookmarks in different files, the bookmarks are not interchangeable. In addition, one web engine may store a needed bookmark, and the other may not. A user who, for example, runs the Internet Explorer™ web engine at home and runs the Netscape Navigator™ web engine at work risks having inconsistent bookmarks at each location.
Therefore, a system and method are needed to enable multiple users to access computer services remotely without consuming excessive user time, without severely threatening the integrity and confidentiality of the data, and without compromising data consistency.
The present invention provides a system and methods for providing global and secure access to services and to unified (synchronized) workspace elements in a computer network. A user can gain access to a global server using any terminal, which is connected via a computer network such as the Internet to the global server and which is enabled with a web engine.
A client stores a first set of workspace data, and is coupled via a computer network to a global server. The client is configured to synchronize selected portions of the first set of workspace data (comprising workspace elements) with the global server, which stores independently modifiable copies of the selected portions. The global server may also store workspace data not received from the client, such as e-mail sent directly to the global server. Accordingly, the global server stores a second set of workspace data. The global server is configured to identify and authenticate a user attempting to access it from a remote terminal, and is configured to provide access based on the client configuration either to the first set of workspace data stored on the client or to the second set of workspace data stored on the global server. It will be appreciated that the global server can manage multiple clients and can synchronize workspace data between clients.
Service engines for managing services such as e-mail management, accessing bookmarks, calendaring, network access, etc. may be stored anywhere in the computer network, including on the client, on the global server or on any other computer. The global server is configured to provide the user with access to services, which based on level of authentication management or user preferences may include only a subset of available services. Upon receiving a service request from the client, the global server sends configuration information to enable access to the service.
Each client includes a base system and the global server includes a synchronization agent. The base system and synchronization agent automatically establish a secure connection therebetween and synchronize the selected portions of the first set of workspace data stored on the client and the second set of workspace data stored on the global server. The base system operates on the client and examines the selected portions to determine whether any workspace elements have been modified since last synchronization. The synchronization agent operates on the global server and informs the base system whether any of the workspace elements in the second set have been modified. Modified version may then be exchanged so that an updated set of workspace elements may be stored at both locations, and so that the remote user can access an updated database. If a conflict exists between two versions, the base system then performs a responsive action such as examining content and generating a preferred version, which may be stored at both locations. The system may further include a synchronization-start module at the client site (which may be protected by a firewall) that initiates interconnection and synchronization when predetermined criteria have been satisfied.
A method of the present invention includes establishing a communications link between the client and the global server. The method includes establishing a communications link between the client and a service based upon user requests. The method receives configuration data and uses the configuration data to configure the client components such as the operating system, the web engine and other components. Configuring client components enables the client to communicate with the service and provides a user-and-service-specific user interface on the client. Establishing a communications link may also include confirming access privileges.
Another method uses a global translator to synchronize workspace elements. The method includes the steps of selecting workspace elements for synchronization, establishing a communications link between a client and a global server, examining version information for each of the workspace elements on the client and on the global server to determine workspace elements which have been modified since last synchronization. The method continues by comparing the corresponding versions and performing a responsive action. Responsive actions may include storing the preferred version at both stores or reconciling the versions using content-based analysis.
The system and methods of the present invention advantageously provide a secure globally accessible third party, i.e. the global server. The system and methods provide a secure technique for enabling a user to access the global server and thus workspace data remotely and securely. Because of the global firewall and the identification and security services performed by the global server, corporations can store relatively secret information on the global server for use by authorized clients. Yet, the present invention also enables corporations to maintain only a portion of their secret information on the global server, so that there would be only limited loss should the global server be compromised. Further, the global server may advantageously act as a client proxy for controlling access to services, logging use of keys and logging access of resources.
A client user who maintains a work site, a home site, an off-site and the global server site can securely synchronize the workspace data or portions thereof among all four sites. Further, the predetermined criteria (which control when the synchronization-start module initiates synchronization) may be set so that the general synchronization module synchronizes the workspace data upon user request, at predetermined times during the day such as while the user is commuting, or after a predetermined user action such as user log-off or user log-on. Because the system and method operate over the Internet, the system is accessible using any connected terminal having a web engine such as an internet-enabled smart phone, television settop (e.g., web TV), etc. and is accessible over any distance. Since the system and method include format translation, merging of workspace elements between different application programs and different platforms is possible. Further, because synchronization is initiated from within the firewall, the typical firewall, which prevents in-bound communications and only some protocols of out-bound communications, does not act as an impediment to workspace element synchronization.
Further, a roaming user may be enabled to access workspace data from the global server or may be enabled to access a service for accessing workspace data from a client. For example, a user may prefer not to store personal information on the global server but may prefer to have remote access to the information. Further, the user may prefer to store highly confidential workspace elements on the client at work as added security should the global server be compromised.
The present invention may further benefit the roaming user who needs emergency access to information. The roaming user may request a Management Information Systems (MIS) director controlling the client to provide the global server with the proper keys to enable access to the information on the client. If only temporary access is desired, the keys can then be later destroyed either automatically or upon request. Alternatively, the MIS director may select the needed information as workspace elements to be synchronized and may request immediate synchronization with the global server. Accordingly, the global server and the client can synchronize the needed information, and the user can access the information from the global server after it has completed synchronization.
The present invention also enables the system and methods to synchronize keys, available services and corresponding service addresses to update accessibility of workspace data and services. For example, if the user of a client accesses a site on the Internet which requires a digital certificate and the user obtains the certificate, the system and methods of the present invention may synchronize this newly obtained certificate with the keys stored on the global server. Thus, the user need not contact the global server to provide it with the information. The synchronization means will synchronize the information automatically.
The LAN 125 comprises a client 165, which includes a base system 170 for synchronizing workspace data 180 (e-mail data, file data, calendar data, user data, etc.) with the global server 115 and may include a service engine 175 for providing computer services such as scheduling, e-mail, paging, word-processing or the like. Those skilled in the art will recognize that workspace data 180 may include other types of data such as application programs. It will be further appreciated that workspace data 180 may each be divided into workspace elements, wherein each workspace element may be identified by particular version information 782 (FIG. 7). For example, each e-mail, file, calendar, etc. may be referred to as “a workspace element in workspace data.” For simplicity, each workspace element on the client 165 is referred to herein as being stored in format A. It will be further appreciated that the workspace data 180 or portions thereof may be stored at different locations such as locally on the client 165, on other systems in the LAN 125 or on other systems (not shown) connected to the global server 115.
The client 167 is similar to the client 165. However, workspace data stored on the client 167 is referred to as being stored in format B, which may be the same as or different than format A. All aspects described above and below with reference to the client 165 are also possible with respect to the client 167. For example, client 167 may include services (not shown) accessible from remote terminal 105, may include a base system (not shown) for synchronizing workspace elements with the global server 115, etc.
The global server 115 includes a security system 160 for providing only an authorized user with secure access through firewalls to services. The security system 160 may perform identification and authentication services and may accordingly enable multiple levels of access based on the level of identification and authentication. The global server 115 further includes a configuration system 155 that downloads configuration data 356 (
The global server 115 stores workspace data 163., which includes an independently modifiable copy of each selected workspace element in the selected portions of the workspace data 180. Accordingly, the workspace data 163 includes an independently modifiable copy of each corresponding version information 782 (FIG. 7). The workspace data 163 may also include workspace elements which originate on the global server 115 such as e-mails sent directly to the global server 115 or workspace elements which are downloaded from another client (not shown). The global server 115 maintains the workspace data 163 in a format, referred to as a “global format,” which is selected to be easily translatable by the global translator 150 to and from format A and to and from format B. As with format A and format B, one skilled in the art knows that the global format actually includes a global format for each information type. For example, there may be a global format for bookmarks (FIG. 5), a global format for files, a global format for calendar data, a global format for e-mails, etc.
The global server 115 also includes a synchronization agent 145 for examining the workspace elements of workspace data 163. More particularly, the base system 170 and the synchronization agent 145, collectively referred to herein as “synchronization means,” cooperate to synchronize the workspace data 163 with the selected portions of the workspace data 180. The synchronization means may individually synchronize workspace elements (e.g., specific word processor documents) or may synchronize workspace element folders (e.g., a bookmark folder). Generally, the base system 170 manages the selected portions of the workspace data 180 within the LAN 125 and the synchronization agent 145 manages the selected portions of workspace data 163 within the global server 115. It will be appreciated that the global translator 150 cooperates with the synchronization means to translate between format A (or format B) and the global format. It will be further appreciated that the global server 115 may synchronize the workspace data 163 with workspace data 180 and with the workspace data (not shown) on the client 167. Accordingly, the workspace data 163 can be easily synchronized with the workspace data (not shown) on the client 167.
The remote terminal 105 includes a web engine 140, which sends requests to the global server 115 and receives information to display from the global server 115. The web engine 140 may use HyperText Transfer Protocol (HTTP) and HyperText Markup Language (HTML) to interface with the global server 115. The web engine 140 may be enabled to run applets, which when executed operate as the security interface for providing access to the global server 115 and which operate as the application interface with the requested service. Using the present invention, a user can operate any remote client 105 connected to the Internet to access the global server 115, and thus to access the services and the workspace data on or accessible by the global server 115.
An operating system 270 includes a program for controlling processing by CPU 210, and is typically stored in data storage device 250 and loaded into RAM 260 (as shown) for execution. Operating system 270 further includes a communications engine 275 for generating and transferring message packets via the communications interface 240 to and from the communications channel 110. Operating system 270 further includes an Operating System (OS) configuration module 278, which configures the operating system 270 based on OS configuration data 356 (
Operating system 270 further includes the web engine 140 for communicating with the global server 115. The web engine 140 may include a web engine (WE) configuration module 286 for configuring elements of the web engine 140 such as home page addresses, bookmarks, caching data, user preferences, etc. based on the configuration data 356 received from the global server 115. The web engine 140 may also include an encryption engine 283 for using encryption techniques to communicate with the global server 115. The web engine 140 further may include an applet engine 290 for handling the execution of downloaded applets including applets for providing security. The applet engine 290 may include an Applet Engine (AE) configuration module 295 for configuring the elements of the applet engine 290 based on configuration data 356 received from the global server 115.
An operating system 380 includes a program for controlling processing by CPU 310, and is typically stored in data storage device 359 and loaded into RAM 370 (as illustrated) for execution. The operating system 380 further includes a communications engine 382 for generating and transferring message packets via the communications interface 340 to and from the communications channel 345. The operating system 380 also includes a web page engine 398 for transmitting web page data 368 to the remote terminal 105, so that the remote terminal 105 can display a web page 900 (
The operating system 380 may include an applet host engine 395 for transmitting applets to the remote terminal 105. A configuration engine 389 operates in conjunction with the applet host engine 395 for transmitting configuration applets 359 and configuration and user data 356 to the remote terminal 105. The remote terminal 105. executes the configuration applets 359 and uses the configuration and user data 356 to configure the elements (e.g., the operating system 270, the web engine 140 and the applet engine 290) of the remote terminal 105. Configuration and user data 356 is described in greater detail with reference to FIG. 6.
The operating system 380 also includes the synchronization agent 145 described with reference to FIG. 1. The synchronization agent 145 synchronizes the workspace data 163 on the global server 115 with the workspace data 180 on the client 165. As stated above with reference to
The operating system 380 may also includes a security engine 392 for determining whether to instruct a communications engine 382 to create a secure communications link with a client 165 or terminal 105, and for determining the access rights of the user. For example, the security engine 392 forwards to the client 165 or remote terminal 105 security applets 362, which when executed by the receiver poll the user and respond back to the global server 115. The global server 115 can examine the response to identify and authenticate the user.
For example, when a client 165 attempts to access the global server 115, the security engine 384 determines whether the global server 115 accepts in-bound communications from a particular port. If so, the security engine 392 allows the communications engine 382 to open a communications channel 345 to the client 165. Otherwise, no channel will be opened. After a channel is opened, the security engine 392 forwards an authentication security applet 362 to the remote terminal 105 to poll the user for identification and authentication information such as for a user ID and a password. The authentication security applet 362 will generate and forward a response back to the global server 115, which will use the information to verify the identity of the user and provide access accordingly.
It will be appreciated that a “request-servicing engine” may be the configuration engine 389 and the applet host engine 395 when providing services to a remote terminal 105 or client 165. The request-servicing engine may be the web page engine 398 when performing workspace data 163 retrieval operations directly from the global server 115. The request-servicing engine may be the configuration engine 389 and the applet host engine 395 when performing workspace data 180 retrieval operations from the client 165 or from any other site connected to the global server 115. The request-servicing engine may be security engine 392 when performing security services such as user identification and authentication. The request-servicing engine May be the synchronization agent when the performing synchronization with the client 165. Further, the request-servicing engine may be any combination of these components.
The general synchronization module 410 includes routines for determining whether workspace elements have been synchronized and routines for forwarding to the base system 170 version information (not shown) of elements determined to be modified after last synchronization. The general synchronization module 410 may either maintain its own last synchronization signature (not shown), receive a copy of the last synchronization signature with the request to synchronize from the base system 170, or any other means for insuring that the workspace data has been synchronized. The general synchronization module 410 further includes routines for receiving preferred versions of workspace data 180 workspace elements from the base system 170 and routines for forwarding preferred versions of workspace data 180 workspace elements to the base system 170.
Configuration data 356 further includes the set of services 615, which will be provided to the user. Services 615 include a list of registered users and each user's list of user-preferred available services 615. Services may also include a list of authentication levels needed to access the services 615. Configuration and user data 137 further includes service addresses 620 specifying the location of each of the services 615 accessible via the global server 115.
An operating system 735 includes a program for controlling processing by the CPU 705, and is typically stored in the data storage device 720 and loaded into the RAM 730 (as illustrated) for execution. A service engine 175 includes a service program for managing workspace data 180 that includes version information (not shown). The service engine 175 may be also stored in the data storage device 720 and loaded into the RAM 730 (as illustrated) for execution. The workspace data 180 may be stored in the data storage device 330. As stated above with reference to
The communications module 805 includes routines for compressing data, and routines for communicating via the communications interface 710 (
The user interface 810 includes routines for communicating with a user, and may include a conventional Graphical User Interface (GUI). The user interface 810 operates in coordination with the client 165 components as described herein.
The locator modules 815 include routines for identifying the memory locations of the workspace elements in the workspace data 180 and the memory locations of the workspace elements in the workspace data 163. Workspace element memory location identification may be implemented using intelligent software, i.e., preset memory addresses or the system's registry, or using dialogue boxes to query a user. It will be appreciated that the locator modules 815 may perform workspace element memory location identification upon system boot-up or after each communication with the global server 115 to maintain updated memory locations of workspace elements.
The synchronization-start module 820 includes routines for determining when to initiate synchronization of workspace data 163 and workspace data 180. For example, the synchronization-start module 820 may initiate data synchronization upon user request, at a particular time of day, after a predetermined time period passes, after a predetermined number of changes, after a user action such as user log-off or upon like criteria. The synchronization-start module 820 initiates data synchronization by instructing the general synchronization module 825 to begin execution of its routines. It will be appreciated that communications with synchronization agent 145 preferably initiate from within the LAN 125, because the typical LAN firewall 125 prevents in-bound communications and allows out-bound communications.
The general synchronization module 825 includes routines for requesting version information from the synchronization agent 145 (
It will be appreciated that the synchronization agent 145 preferably examines the local version information 124 and forwards only the elements that have been modified since the last synchronization signature 835. This technique makes efficient use of processor power and avoids transferring unnecessary data across the communications channel 712. The general synchronization module 825 in the LAN 135 accordingly compares the data elements to determine if reconciliation is needed. Upon completion of the data synchronization, the general synchronization module 825 updates the last synchronization signature 835.
The content-based synchronization module 830 includes routines for reconciling two or more modified versions of workspace data 163, 180 in the same workspace element. For example, if the original and the copy of a user workspace element have both been modified independently since the last synchronization, the content-based synchronization module 830 determines the appropriate responsive action. The content-based synchronization module 830 may request a user to select the preferred one of the modified versions or may respond based on preset preferences, i.e., by storing both versions in both stores or by integrating the changes into a single preferred version which replaces each modified version at both stores. When both versions are stored at both stores, each version may include a link to the other version so that the user may be advised to select the preferred version.
It will be appreciated that any client 165 that wants synchronization may have a base system 170. Alternatively, one base system 170 can manage multiple clients 165. It will be further appreciated that for a thin client 165 of limited computing power such as a smart telephone, all synchronization may be performed by the global server 115. Accordingly, components of the base system 170 such as the user interface module 810, the locator modules 815, the general synchronization module 825 and the content-based synchronization module 830 may be located on the global server 115. To initiate synchronization from the client 165, the client 165 includes the communications module 805 and the synch-start module 820.
After user access privileges are confirmed, the web page engine 398 of the global server 115 in step 1015 transmits web page data 368 and configuration and user data 356 to the remote terminal 105. The web engine 140 of the remote terminal 105 in step 1020 uses the web page data 368 and the configuration and user data 356 to display a web page service list 900 (
From the options listed on the web page 900, the user in step 1025 selects a service 615 via input device 220. In response, the request-servicing engine (described with reference to
The applet engine 290 of the remote terminal 105 in step 1035 initiates execution of the corresponding downloaded applet. The global server 115 in step 1040 initiates the selected service 615 and in step 1045 selects one of three modes described with reference to
Thereafter, the applet 359 in step 1325 acts as the I/O interface with the communications interface 340 of the global server 115. If the global server 115 in step 1330 determines that it is unauthorized to perform a remote terminal 105 user's request, then the global server 115 in step 1345 determines whether the method 1050b ends, e.g., whether the user has quit. If so, then method 1050b ends. Otherwise, method 1050b returns to step 1325 to obtain another request. If the global server 115 in step 1330 determines that it is authorized to perform the remote terminal 105 user's request, then the global server 115 in step. 1340 acts as the proxy for the remote terminal 105 to the service 615. As proxy, the global server 115 forwards the service request to the selected service 615 and forwards responses to the requesting applet 359 currently executing on the remote terminal 105. Method 1050b then jumps to step 1345.
In step 1415, a determination is made whether the service 615 is currently running. If so, then in step 1425 a determination is made whether the service 615 can handle multiple users. If so, then the global server 115 in step 1430 creates an instance for the user, and the applet in step 1440 acts as the I/O interface with the service 615 on the global server 115. Method 1050c then ends. Otherwise, if the service 615 in step 1425 determines that it cannot handle multiple users, then method 1050c proceeds to step 1440. Further, if in step 1415 the global server 115 determines that the service 615 is not currently running, then the global server 115 in step 1420 initializes the service 615 and proceeds to step 1425.
The synchronization-start module 820 in step 1520 determines whether predetermined criteria have been met which indicate that synchronization of the workspace elements selected in step 1505 should start. If not, then the synchronization-start module 820 in step 1525 waits and loops back to step 1520. Otherwise, the communications module 805 and the communications module 405 in step 1530 establish a secure communications channel therebetween.
The general synchronization module 825 in step 1535 determines whether any workspace elements have been modified. That is, the general synchronization module 825 in step 1535 examines the version information of each selected workspace element in the workspace data 180 against the last synchronization signature 435 to locate modified workspace elements. This comparison may include comparing the date of last modification with the date of last synchronization, or may include a comparison between the current status and the previous status as of the last interaction. Similarly, the general synchronization module 815 examines the version information of each corresponding workspace element in workspace data 163 and the last synchronization signature 435 to locate modified workspace elements.
If in step 1535 no modified workspace elements or folders are located, then the general synchronization module 825 in step 1560 updates the last synchronization signature 435 and method 1500 ends. Otherwise, the general synchronization module 825 in step 1540 determines whether more than one version of a workspace element has been modified since the last synchronization.
If only one version has been modified, then the corresponding general synchronization module 825 in step 1545 determines the changes made. As stated above, determining the changes made may be implemented by comparing the current status of the workspace element against the previous status of the workspace element as of the last interaction therebetween. If the changes were made only to the version in the workspace data 163, then the global translator 150 in step 1550 translates the changes to the format used by the other store, and the general synchronization module 410 in step 1555 forwards the translated changes to the general synchronization module 825 for updating the outdated workspace element in the workspace data 180. If the updated version is a workspace element in the workspace data 180, then the general synchronization module 825 sends the changes to the updated version to the global translator 150 for translation and then to the general synchronization module 410 for updating the outdated workspace element in the workspace data 163. The general synchronization module 825 and the general synchronization module 410 in step 1557 update the previous state of the workspace element to reflect the current state as of this interaction. Method 1500 then returns to step 1535.
If the general synchronization module 825 in step 1540 determines that multiple versions have been modified, then the general synchronization module 825 in step 1565 computes the changes to each version and in step 1570 instructs the content-based synchronization module 830 to examine content to determine if any conflicts exist. For example, the content-based synchronization module 830 may determine that a conflict exists if a user deletes a paragraph in one version and modified the same paragraph in another version. The content-based synchronization module 830 may determine that a conflict does not exist if a user deletes different paragraphs in each version. If no conflict is found, then method 1500 jumps to step 1550 for translating and forwarding the changes in each version to the other store. However, if a conflict is found, then the content-based synchronization module 830 in step 1575 reconciles the modified versions. As stated above, reconciliation may include requesting instructions from the user or based on previously selected preferences performing responsive actions such as storing both versions at both stores. It will be appreciated that a link between two versions may be placed in each of the two versions, so that the user will recognize to examine both versions to select the preferred version. Method 1500 then proceeds to step 1550.
It will be further appreciated that in step 1510 new workspace elements and preexisting workspace elements to which new workspace elements will be merged are set to “modified” and the previous status is set to the null set. Thus, the general synchronization module 825 in step 1540 will determine that more that one version has been modified and the content-based synchronization module 830 in step 1570 will determine that no conflict exists. The changes in each will be translated and forwarded to the other store. Accordingly, the two versions will be effectively merged and stored at each store.
For example, if a first bookmark folder was created by the web engine 140 on the client 165, a second folder was created by a web engine 140 on the remote terminal 105, no preexisting folder existed on the global server 115 and the user selected each of these folders for synchronization, then the synchronization means will effectively merge the first and second folders. That is, the general synchronization module 825 on the client 165, will determine that the first folder has been modified and the previous status is equal to the null set. The general synchronization module 825 will determine and send the changes, i.e., all the workspace elements in the first folder, to a new global folder on the global server 115. Similarly the general synchronization module (not shown) on the remote terminal 105 will determine that, as of its last interaction, the previous status of each of the second and the global folders is the null set. The general synchronization module 825 will instruct the content-based synchronization module 830 to examine the changes made to each folder to determine whether a conflict exists. Since no conflicts will exist, the general synchronization module 825 will forward the changes to the global folder and the general synchronization module 410 will forward its changes to the second store, thereby merging the workspace elements of the first and second folders in the global and second folders. The general synchronization module 410 will inform the general synchronization module 825 that the global folder has been modified relative to the last interaction, and will forward the new changes to the first folder. Thus, the first and second folders will be merged and stored at each store.
The foregoing description of the preferred embodiments of the invention is by way of example only, and other variations of the above-described embodiments and methods are provided by the present invention. For example, a server can be any computer which is polled by a client. Thus, the remote terminal 105 may be referred to as a type of client. Although the system and method have been described with reference to applets, other downloadable executables such as Java™ applets, Java™ applications or ActiveX™ control developed by the Microsoft Corporation can alternatively be used. Components of this invention may be implemented using a programmed general-purpose digital computer, using application specific integrated circuits, or using a network of interconnected conventional components and circuits. The embodiments described herein have been presented for purposes of illustration and are not intended to be exhaustive or limiting. Many variations and modifications are possible in light of the foregoing teaching. The invention is limited only by the following claims.
This application is a continuation of and incorporates by reference patent application Ser. No. 09/666,877, entitled “System and Method for Globally and Securely Accessing Unified Information in a Computer Network” filed on Sep. 20, 2000, now U.S. Pat. No. 6,708,221, by inventors Daniel J. Mendez, Mark D. Riggins, Prasad Wagle, Hong Q. Bui, Mason Ng. Sean Michael Quinlan, Christine C. Ying, Christopher R. Zuleeg, David J. Cowan, Joanna A. Aptekar-Strober and R. Stanley Bailes, which application is a continuation of and incorporates by reference parent application U.S. patent application Ser. No. 08/903,118 entitled “System and Method for Globally and Securely Accessing Unified Information in a Computer Network” of Daniel J. Mendez, Mark D. Riggins, Prasad Wagle, Hong Q. Bui, Mason Ng, Sean Michael Quinlan, Christine C. Ying, Christopher R. Zuleeg, David J. Cowan, Joanna A. Aptekar-Strober and R. Stanley Bailes, filed Jul. 30, 1997, now abandoned,which is a continuation-in-part of patent application entitled “System and Method for Globally Accessing Computer Services,” Ser. No. 08/766,307, now issued as Pat. No. 6,131,116, filed on Dec. 13, 1996, by inventors Mark D. Riggins, R. Stanley Bailes, Hong Q. Bui, David J. Cowan, Daniel J. Mendez, Mason Ng, Sean Michael Quinlan, Prasad Wagle, Christine C. Ying, Christopher R. Zuleeg and Joanna A. Aptekar-Strober; and of co-pending patent application entitled “System and Method for Enabling Secure Access to Services in a Computer Network,” Ser. No. 08/841,950, filed on Apr. 8, 1997, by inventor Mark Riggins; and of patent application entitled “System and Method for Securely Synchronizing Multiple Copies of a Workspace Element in a Network,” Ser. No. 08/835,997, now issued as Pat. No. 6,085,192, filed on Apr. 11, 1997, by inventors Daniel J. Mendez, Mark D. Riggins, Prasad Wagle and Christine C. Ying; and of patent application entitled “System and Method for Using a Global Translator to Synchronize Workspace Elements Across a Network,” Ser. No. 08/865,075, now issued as Pat. No. 6,023,708, filed on May 29, 1997, by inventors Daniel J. Mendez, Mark D. Riggins, Prasad Wagle and Christine C. Ying. These applications have been commonly assigned to Visto Corporation, and are incorporated herein by reference as if copied verbatim hereafter. Benefit of the earlier filing dates is claimed on all common subject matter.
Number | Name | Date | Kind |
---|---|---|---|
4652698 | Hale et al. | Mar 1987 | A |
4714995 | Materna et al. | Dec 1987 | A |
4831582 | Miller et al. | May 1989 | A |
4875159 | Cary et al. | Oct 1989 | A |
4882752 | Lindman et al. | Nov 1989 | A |
4897781 | Chang et al. | Jan 1990 | A |
4916738 | Chandra et al. | Apr 1990 | A |
5048085 | Abraham et al. | Sep 1991 | A |
5150407 | Chan | Sep 1992 | A |
5220603 | Parker | Jun 1993 | A |
5263157 | Janis | Nov 1993 | A |
5265159 | Kung | Nov 1993 | A |
5333266 | Boaz et al. | Jul 1994 | A |
5386564 | Shearer et al. | Jan 1995 | A |
5388255 | Pytlik et al. | Feb 1995 | A |
5392390 | Crozier | Feb 1995 | A |
5420927 | Micali | May 1995 | A |
5425102 | Moy | Jun 1995 | A |
5434918 | Kung et al. | Jul 1995 | A |
5483596 | Rosenow et al. | Jan 1996 | A |
5491752 | Kaufman et al. | Feb 1996 | A |
5495533 | Linehan et al. | Feb 1996 | A |
5510777 | Pilc et al. | Apr 1996 | A |
5544320 | Konrad | Aug 1996 | A |
5544322 | Cheng et al. | Aug 1996 | A |
5572643 | Judson | Nov 1996 | A |
5581749 | Hossain et al. | Dec 1996 | A |
5588132 | Cardoza | Dec 1996 | A |
5600834 | Howard | Feb 1997 | A |
5604788 | Tett | Feb 1997 | A |
5613012 | Hoffman et al. | Mar 1997 | A |
5623601 | Vu | Apr 1997 | A |
5627658 | Connors et al. | May 1997 | A |
5627997 | Pearson et al. | May 1997 | A |
5632011 | Landfield et al. | May 1997 | A |
5634053 | Noble et al. | May 1997 | A |
5644354 | Thompson et al. | Jul 1997 | A |
5647002 | Brunson | Jul 1997 | A |
5652884 | Palevich | Jul 1997 | A |
5657390 | Elgamal et al. | Aug 1997 | A |
5664207 | Crumpler et al. | Sep 1997 | A |
5666530 | Clark et al. | Sep 1997 | A |
5666553 | Crozier | Sep 1997 | A |
5675782 | Montague et al. | Oct 1997 | A |
5678039 | Hinks et al. | Oct 1997 | A |
5680542 | Mulchandani et al. | Oct 1997 | A |
5682478 | Watson et al. | Oct 1997 | A |
5682524 | Freund et al. | Oct 1997 | A |
5684951 | Goldman et al. | Nov 1997 | A |
5684984 | Jones et al. | Nov 1997 | A |
5684990 | Boothby | Nov 1997 | A |
5687322 | Deaton et al. | Nov 1997 | A |
5701400 | Amado | Dec 1997 | A |
5701423 | Crozier | Dec 1997 | A |
5706427 | Tabuki | Jan 1998 | A |
5706502 | Foley et al. | Jan 1998 | A |
5710918 | Lagarde et al. | Jan 1998 | A |
5710922 | Alley et al. | Jan 1998 | A |
5713019 | Keaten | Jan 1998 | A |
5715403 | Stefik | Feb 1998 | A |
5717925 | Harper et al. | Feb 1998 | A |
5721779 | Funk | Feb 1998 | A |
5721908 | Lagarde et al. | Feb 1998 | A |
5721914 | DeVries | Feb 1998 | A |
5727202 | Kucala | Mar 1998 | A |
5729735 | Meyering | Mar 1998 | A |
5742668 | Pepe et al. | Apr 1998 | A |
5745360 | Leone et al. | Apr 1998 | A |
5752059 | Holleran et al. | May 1998 | A |
5752246 | Rogers et al. | May 1998 | A |
5754830 | Butts et al. | May 1998 | A |
5757916 | MacDoran et al. | May 1998 | A |
5758150 | Bell et al. | May 1998 | A |
5758354 | Huang et al. | May 1998 | A |
5758355 | Buchanan | May 1998 | A |
5764902 | Rothrock | Jun 1998 | A |
5765171 | Gehani et al. | Jun 1998 | A |
5768510 | Gish | Jun 1998 | A |
5778346 | Frid-Nielsen et al. | Jul 1998 | A |
5784463 | Chen et al. | Jul 1998 | A |
5784464 | Akiyama et al. | Jul 1998 | A |
5787172 | Arnold | Jul 1998 | A |
5790425 | Wagle | Aug 1998 | A |
5790790 | Smith et al. | Aug 1998 | A |
5790974 | Tognazzini | Aug 1998 | A |
5794252 | Bailey et al. | Aug 1998 | A |
5799086 | Sudia | Aug 1998 | A |
5799318 | Cardinal et al. | Aug 1998 | A |
5802530 | Van Hoff | Sep 1998 | A |
5812398 | Nielsen | Sep 1998 | A |
5812668 | Weber | Sep 1998 | A |
5812773 | Norin | Sep 1998 | A |
5815683 | Vogler | Sep 1998 | A |
5818935 | Maa | Oct 1998 | A |
5828840 | Cowan et al. | Oct 1998 | A |
5832483 | Barker | Nov 1998 | A |
5835087 | Herz et al. | Nov 1998 | A |
5835601 | Shimbo et al. | Nov 1998 | A |
5845282 | Alley et al. | Dec 1998 | A |
5857201 | Wright, Jr. et al. | Jan 1999 | A |
5862325 | Reed et al. | Jan 1999 | A |
5862346 | Kley et al. | Jan 1999 | A |
5870544 | Curtis | Feb 1999 | A |
5870759 | Bauer et al. | Feb 1999 | A |
5870765 | Bauer et al. | Feb 1999 | A |
5878230 | Weber et al. | Mar 1999 | A |
5909689 | Van Ryzin | Jun 1999 | A |
5924103 | Ahmed et al. | Jul 1999 | A |
5928329 | Clark et al. | Jul 1999 | A |
5943676 | Boothby | Aug 1999 | A |
5951652 | Ingrassia, Jr. et al. | Sep 1999 | A |
5961590 | Mendez et al. | Oct 1999 | A |
5966714 | Huang et al. | Oct 1999 | A |
5968131 | Mendez et al. | Oct 1999 | A |
5974238 | Chase, Jr. | Oct 1999 | A |
5982898 | Hsu et al. | Nov 1999 | A |
5987609 | Hasebe | Nov 1999 | A |
5999932 | Paul | Dec 1999 | A |
5999947 | Zollinger et al. | Dec 1999 | A |
6006017 | Joshi et al. | Dec 1999 | A |
6006274 | Hawkins et al. | Dec 1999 | A |
6020885 | Honda | Feb 2000 | A |
6021427 | Spagna et al. | Feb 2000 | A |
6023700 | Owens et al. | Feb 2000 | A |
6023708 | Mendez et al. | Feb 2000 | A |
6034621 | Kaufman | Mar 2000 | A |
6052735 | Ulrich et al. | Apr 2000 | A |
6073165 | Narasimhan et al. | Jun 2000 | A |
6085192 | Mendez et al. | Jul 2000 | A |
6094477 | Nada et al. | Jul 2000 | A |
6108691 | Lee et al. | Aug 2000 | A |
6108709 | Shinomura et al. | Aug 2000 | A |
6118856 | Paarsmarkt et al. | Sep 2000 | A |
6125281 | Wells et al. | Sep 2000 | A |
6131096 | Ng et al. | Oct 2000 | A |
6131116 | Riggins et al. | Oct 2000 | A |
6138146 | Moon et al. | Oct 2000 | A |
6151606 | Mendez | Nov 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6169986 | Bowman et al. | Jan 2001 | B1 |
6182118 | Finney et al. | Jan 2001 | B1 |
6212529 | Boothby et al. | Apr 2001 | B1 |
6249805 | Fleming, III | Jun 2001 | B1 |
6295541 | Bodnar et al. | Sep 2001 | B1 |
6304881 | Halim et al. | Oct 2001 | B1 |
6311186 | MeLampy et al. | Oct 2001 | B1 |
6317797 | Clark et al. | Nov 2001 | B1 |
6324542 | Wright, Jr. et al. | Nov 2001 | B1 |
6334140 | Kawamata | Dec 2001 | B1 |
6343313 | Salesky et al. | Jan 2002 | B1 |
6389455 | Fuisz | May 2002 | B1 |
6438583 | McDowell et al. | Aug 2002 | B1 |
6446090 | Hart | Sep 2002 | B1 |
6477545 | LaRue | Nov 2002 | B1 |
6510455 | Chen et al. | Jan 2003 | B1 |
6564218 | Roth | May 2003 | B1 |
6631416 | Bendinelli et al. | Oct 2003 | B1 |
6697942 | L'Heureux et al. | Feb 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20040139178 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09966877 | Sep 2000 | US |
Child | 10741113 | US | |
Parent | 08903118 | Jul 1997 | US |
Child | 09966877 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08865075 | May 1997 | US |
Child | 08903118 | US | |
Parent | 08835997 | Apr 1997 | US |
Child | 08865075 | US | |
Parent | 08841950 | Apr 1997 | US |
Child | 08835997 | US | |
Parent | 08766307 | Dec 1996 | US |
Child | 08841950 | US |