Tissue viscoelasticity can be imaged by monitoring shear wave propagation inside of tissue. Shear wave motion, as a function of time and space, can be analyzed in the temporal- and spatial-frequency domain by performing a Fourier transform. This domain is often called “k-space.” It is known that a k-space representation of a shear wave is a useful tool for estimating shear wave velocity and applying directional filters.
The shear wave velocities, c, at different frequencies can be identified by finding the local maxima in k-space and using the temporal frequency, f, and spatial frequency,
coordinates,
where λ is the wavelength of the shear wave. A unique feature of k-space analysis is that waves of different modes can be separated even when they are at the same frequency. This is also useful since multiple modes can exist simultaneously when tissue vibrates.
One important advantage of k-space analysis is that the waves propagating in opposite directions can be differentiated. This is especially useful in mechanical-wave-based tissue elastography methods, since wave reflections can be common in certain tissues. In fact, directional filtering is based on this feature because it only selects the energy in specific locations in k-space and then transform back to time and spatial domain, to remove waves travelling in unwanted directions.
Though, as addressed above, k-space local maxima analysis for estimating wave velocity is a useful tool, the accuracy of the estimates can vary. For example, soft tissues are inherently viscoelastic. Thus, as waves travel through soft tissues, the energy in the wave is diminished, causing its amplitude to decrease. Without a more accurate wave velocity estimate, accurate estimates of complex modulus of the tissue may be difficult or highly variable and are of limited clinical utility.
Therefore, it would be desirable to have a system and method for determining an accurate wave velocity and, by extension, complex modulus of the tissue that can be used in clinical analysis of tissue.
The present disclosure addresses the aforementioned drawbacks by providing a system and method for estimating shear wave velocity and attenuation from k-space analysis. By estimating tissue wave velocities more robustly, a more accurate calculation of the complex modulus of the tissue can be performed, which can then be used in clinical analysis and diagnosis.
It is an aspect of the present disclosure to provide a system for determining a property of a tissue of a subject. The system includes an ultrasound transmitter configured to engage a subject and cause a shear wave to propagate through the subject; an ultrasound receiver configured to acquire data from the subject as the shear wave to propagates through the subject; and a processor. The processor is configured to transform the data acquired by the ultrasound receiver into a spatial frequency domain to form k-space data; compute a gradient of the k-space data to form gradient data; and process the gradient data to compute shear wave velocity values associated with the shear wave as it propagated through the subject. The system also includes a report generator configured to generate a report indicating at least one of the shear wave velocity values and a metric calculated using the shear wave velocity values.
It is another aspect of the present disclosure to provide a method for estimating at least one of phase velocity and attenuation of shear waves propagating through a subject. The method includes controlling a source of energy to generate shear waves within the subject and acquiring, with a medical device, data about the shear waves as the shear waves propagate through the subject. The data are transformed to a spatial frequency domain to form k-space data and gradient data are generated by computing a gradient of the k-space data. The gradient data are processed to compute a shear wave velocity, and a report is generated using the at least one of the shear wave attenuation and shear wave velocity.
The foregoing and other aspects and advantages of the present disclosure will appear from the following description. In the description, reference is made to the accompanying drawings that form a part hereof, and in which there is shown by way of illustration a preferred embodiment. This embodiment does not necessarily represent the full scope of the invention, however, and reference is therefore made to the claims and herein for interpreting the scope of the invention.
Referring to
The transmitter 106 drives the transducer array 102 such that an ultrasonic beam is produced which is directed substantially perpendicular to its front surface. To focus this beam at a range, R, from the transducer 102 a subgroup of the elements 104 are energized to produce the beam, and the pulsing of the inner elements 104 in this subgroup are delayed relative to the outer elements 104 as shown at 118. A beam focused at point P results from the interference of the small separate wavelets produced by the subgroup elements. The time delays determine the depth of focus, or range, R, and this is typically changed during a scan when a two-dimensional image is to be produced. The same time delay pattern is used when receiving the echo signals resulting in dynamic focusing of the echo signals received by the subgroup of elements 104. In this manner a single scan line in the image is formed.
To generate the next scan line, the subgroup of elements to be energized are shifted one element position along the transducer length and another scan line is required. As indicated by the arrow 120, the focal point, P, of the ultrasonic beam is thus shifted along the length of the transducer 102 by repeatedly shifting the location of the energized subgroup of elements 104.
Referring particularly to
As indicated above, to steer the transmitted beam of the ultrasonic energy in the desired manner, the pulses 126 for each of the N channels must be produced and delayed by the proper amount. These delays are provided by a transmit control 130 which receives control signals from the digital controller 112 of
Referring particularly to
The beam forming section 134 of the receiver 108 of
Referring still to
The detection processor 158 may also implement correction methods that, for example, examine the received beam samples and calculate corrective values that can be used in subsequent measurements by the transmitter 106 and receiver 108 of
Some embodiments of the methods described in the present disclosure may be implemented, in part, by a tissue property processor 160 that forms part of the mid-processor 136. As will be explained in detail below, this processor 160 receives the I and Q beam samples acquired during a sequence of measurements of the subject tissue and calculates a mechanical property of the tissue.
It is a discovery of the present disclosure that the phase velocity of a shear wave can be measured by transforming ultrasound data into the spatial frequency domain, or “k-space.” As one example, a 2D Fourier transform is applied (e.g., using a fast Fourier transform (FFT)) on spatiotemporal motion data (e.g., particle velocity) acquired with the ultrasound system. The resulting Fourier distribution, or k-space, has one temporal frequency (f) axis and one spatial frequency (k) axis. In other examples, a 1D Fourier transform may be applied such that the resulting Fourier distribution has one spatial frequency (k) axis.
For the harmonic wave case, a peak will occur in k-space at fv, and the coordinates where the peak occurs can be used to determine the phase velocity using,
For an impulsive wave that has multiple frequencies, the k-space will have a distribution that is spread across a frequency range. There are several ways to search for the peaks, but one approach is to find the peak, or peaks, in the k-direction at a given temporal frequency and to repeat that process for all the temporal frequencies of interest. As another example, peaks could be identified by finding peaks in the frequency direction at a given wave number, k.
Referring to
At optional process block 403, a model for the shear wave motion may be selected and at process block 404, the acquired data is transformed to k-space data. That is, as will be described, the shear wave may be considered to be planar, cylindrical, spherical, or any of a variety of other geometries. As an example, consider a source free, one-dimensional, plane, shear wave propagating in a linear viscoelastic medium that is described by:
where u is the displacement, x and t are the spatial and time variables, respectively. G* is the complex shear modulus and ρ is the mass density.
The general solution to Eqn. (2) is:
u(x,t)=u0ej(ω
where ω0=2πf0 is the angular frequency and f0 is the frequency, of the wave. u0 is the initial amplitude of the wave. The complex wave number k*0 can be expressed in terms of angular frequency ω0, wave speed c and attenuation α(>0) as:
Combining Eqns. (3) and (4) gives:
Transforming u(x,t) to k-space by taking 2D Fourier transform gives:
where k and f are the wave number and frequency variables, respectively, both of which are real. Since the two parts with x and t in Eqn. (5) are separable, Eqn. (6) can be simplified to:
where FTt{•} and FTx{•} are 1D Fourier transforms applied to time and spatial domains, respectively. They are defined as:
Note that:
where δ(•) is the Dirac delta function. Substituting the corresponding parts in Eqn. (7) with Eqns. (10) and (11) gives:
The magnitude can be expressed as:
Eqn. (13) shows that for a wave with frequency f0, the magnitude of its k-space transform has a corresponding peak at (k, f)=(f0/c, f0). Thus, some embodiments of the present disclosure recognize that such k-space analysis can be used to calculate wave velocity. Hence, at process block 406, the k-space data is analyzed, for example to calculate wave velocity.
At process block 408, wave attenuation is derived from the k-space analysis. In particular, practically, δ(0) has a finite amplitude. As such, it can be denoted as {circumflex over (δ)}(0) and u0{circumflex over (δ)}(0) can be defined as u0{circumflex over (δ)}(0)≡2A, where:
Its maximum magnitude is:
At half maximum magnitude:
Solving for k, the two solutions are:
Therefore, the full width at half maximum (FWHM) is:
With this in mind, wave attenuation can then be estimated as:
For some ultrasound elastography methods, the particle velocity instead of displacement may be used as the raw measurement for this determination. The particle velocity is the time derivative of the displacement, so the differentiation property of Fourier transform can be applied. Eqn. (19) still holds in this case.
After attenuation is derived at process bock 408, a variety of additional calculations or determinations can be performed at process block 410, for example, to provide clinically-useful information and/or provide clinical report, such as indicated at process block 412. For example, complex wave number k*0 can be calculated using Eqn. (4) above and/or the material complex shear modulus can be estimated as:
Both wave number and shear modulus can be used to, for example, improve the performance of tissue elastography. In this regard, the report generated at process block 412 may include an elastography or report indicating the elastic properties of tissue.
A 3D FE model was constructed in Abaqus/CAE 6.10-EF1 (Dassault Systèmes Simulia Corp., Providence, R.I., USA), as shown in
The medium of the model was assumed to be a Voigt material, which is described further below. A Voigt material was used because it is experimentally approved to provide a simple and effective way to describe shear wave speed and attenuation in tissue. Its material properties are listed as below: shear elasticity μ1=5 kPa, shear viscosity μ2=5 Pa·s, mass density ρ=1000 kg/m3, Poisson's ratio v=0.4999. The value of μ1 and μ2 are chosen because they are in the physical range of soft tissues. For example, skin (μ1=2-50 kPa, μ2=2-40 Pa·s), muscle (μ1=5-12kPa, μ2=1-4 Pa·s) and liver (μ1=2-8 kPa, μ2=0.5-5 Pa·s). The theoretical shear wave speed cs and attenuation αs were calculated as:
For a plane wave, the estimated attenuation by Eqn. (19) comes only from material. In the case of cylindrical or spherical waves, geometric attenuation could be considered. Compensation for this geometric attenuation can be done by using the appropriate wave equations and applying a Fourier transform to their general solutions for each different wave type.
In case of cylindrical and spherical waves, the motion (or velocity, or acceleration) field has to be corrected by a factor of √{square root over (r)} or r, where r is the distance vector. Here, we show the correction factor for the case of a cylindrical wave. Shear motion (uz) along the axis of excitation (z-axis) in case of a cylindrical wave is defined as:
where r is distance from the excitation, t is time, H a Hankel function and k*0 the complex wave number. In case of k*0r>>0, the equation simplifies into:
It should be noted that except for 1/√{square root over (r)}, all other terms are constants and constants do not affect the shape of the k-space and only scale it by a factor. Thus, multiplying both sides of uz by √{square root over (r)}, results in Eqn. (4), where the right-hand side is equal to the plane wave motion multiplied for a constant, as follows:
A similar process can be performed for spherical waves with a factor of r instead of √{square root over (r)} used for the cylindrical waves. Performing a 2D Fourier transform on Eqn. (25) results in the same expression as in Eqn. (5), except that u0 is multiplied by a constant, which does not change the shape of the peak in k-space so the velocity and attenuation measurements are invariant. A combination of the corrections for cylindrical and spherical waves, or a modification of either of them, can be used to account for propagations that are any mixture of plane, cylindrical and spherical waves.
It is worth-mentioning again that one of the advantages of k-space analysis, compared to some other methods for wave speed and attenuation estimation, such as phase and amplitude gradient methods, lies in its robustness to wave reflections. As shown in
A practical issue in performing a Fourier transform on sampled data is the length of the FFT. Normally, zero padding can be used to increase the resolution in the k-space domain. The methods described in the present disclosure are not affected by the number of points used in the Fourier transforms in both dimensions. Another issue related to Fourier transform is windowing. Applying a window modifies the energy distribution in time or spatial domain; it will affect the wave attenuation estimation, although wave speed estimation remains accurate.
In some other embodiments, rather than calculate or otherwise identify peaks in the k-space data, a gradient-based method can be used. In general, such a method can include computing a gradient of the k-space magnitude distribution and finding the associated zero-crossings in the gradient data that correspond to the peaks in the k-space data. This gradient-based method offers improved accuracy, which can allow for better viscoelastic characterization of soft tissues. Additionally, methods that rely on dispersion estimation can employ this gradient-based method, including methods for guided waves measured in arteries, the heart, tendons, bladder, esophagus, and the gastrointestinal tract.
Referring now to
The method includes generating one or more shear waves in a subject, or object, under examination, as indicated at step 802. Elastography data are then acquired from the subject, or object, using a medical imaging system, as indicated at step 804. For example, the medical imaging system may be an ultrasound system, such as the one described above with respect to
Gradient data are then generated by computing a gradient of the k-space data, as indicated at step 808. For a two-dimensional function, the gradient can be computed as,
For a one-dimensional function, the derivative of that function will be zero at peaks in the function. Detections of zero-crossings in the k-space gradient data can therefore be used to identify peaks in the magnitude distribution along a given search direction, either frequency, f, or wave number, k. When the k-space data are 2D data (e.g., having one spatial frequency dimension and one temporal frequency dimension), the data may be zero-padded. As such, the resolution of the k-space data can be variable. To calculate the gradient, a numerical gradient can be implemented. However, some numerical methods use a central difference algorithm, which can give different results depending on the resolution of the k-space. In a more general application, a Fourier-based derivative can be calculated using,
where “Re” indicates taking the real component, kx is the Fourier-domain variable corresponding to the variable, x. For 2D k-space data, the Fourier-based derivative can be performed in both the temporal and spatial dimensions and the results summed to compute the gradient of the k-space.
As indicated at step 810, the gradient data are analyzed to detect zero-crossings. An example of ultrasound data transformed into k-space is illustrated in
Thus, the present disclosure provides a system and method for ultrasound processes and analysis for estimating wave velocity and attenuation using k-space analysis. It will be appreciated that the methods described here can be used in conjunction with each other. For instance, the methods described in relation to
Any of the foregoing methods, processes, and steps may be embodied as systems or methods or computer-implemented processes. Thus, the foregoing may be performed by computer processors that are configured or have access to a computer-readable, non-transitory storage medium having instructions stored thereon. Whether direction configured or caused to when accessing the instructions, the computer processors may carry out the foregoing. The processor may be one of the above-described processors, for example, as described with respect to
The present disclosure has described one or more preferred embodiments, and it should be appreciated that many equivalents, alternatives, variations, and modifications, aside from those expressly stated, are possible and within the scope of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/432,312, filed on Mar. 30, 2015, and entitled “SHEAR WAVE ATTENUATION FROM K-SPACE ANALYSIS SYSTEM,” which is the U.S. National Stage Application of PCT/US2013/062617 filed on Sep. 30, 2013, and entitled “SYSTEM AND METHOD FOR SHEAR WAVE ATTENUATION FROM K-SPACE ANALYSIS”, which claims the benefit of U.S. Provisional Patent Application 61/708,382, filed on Oct. 1, 2012, and entitled, “SYSTEM AND METHOD FOR SHEAR WAVE ATTENUATION FROM K-SPACE ANALYSIS,” all of which are herein incorporated by reference in their entirety.
This invention was made with government support under DK092255 awarded by the National Institutes of Health and HHS 268-2015-00021 awarded by the Department of Health and Human Services. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61708382 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14432312 | Mar 2015 | US |
Child | 15440279 | US |