Large distributed computing environments may include multiple components or services that may be queried for information. In many cases, these services may rely on databases or other information sources for processing requests. Generally, the less efficient the structure of these information sources, the longer the processing time for a given service query. For instance, inefficiently structured data may require a significant quantity of time and/or computational power to traverse. In one example, for a service generally focused on information retrieval, an inefficiently structured information source may hinder the service's ability to quickly process information retrieval requests. Similarly, computational requests to perform some action that depends on retrieved information may be slowed by inefficiently structured information sources. In some cases, additional hardware resources, such as additional physical or virtual processing resources, may be used to compensate for the aforesaid inefficiencies. Generally, these processing resources require capital costs that may hinder an entity's ability to thrive in a highly competitive commercial environment.
While the system and method for graph conditioning with non-overlapping orderable values for efficient graph evaluation is described herein by way of example for several embodiments and illustrative drawings, those skilled in the art will recognize that the system and method for graph conditioning with non-overlapping orderable values for efficient graph evaluation is not limited to the embodiments or drawings described. It should be understood, that the drawings and detailed description thereto are not intended to limit the system and method for graph conditioning with non-overlapping orderable values for efficient graph evaluation to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the system and method for graph conditioning with non-overlapping orderable values for efficient graph evaluation as defined by the appended claims. The headings used herein are for organizational purposes only and are not meant to be used to limit the scope of the description or the claims. As used throughout this application, the word “may” is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must). Similarly, the words “include,” “including,” and “includes” mean including, but not limited to.
Introduction
Various embodiments of a system and method for graph conditioning with non-overlapping orderable values for efficient graph evaluation are described. In various embodiments, graphs including one or more subgraphs may be utilized to represent values that may be evaluated by one or more logical operations, such as Boolean operations (e.g., AND, OR, NOT, etc). While instances herein may refer to these values as representing geographic regions for clarity of description, embodiments are not limited to using values in this manner.
In
In various embodiments, any number of regions may be added to the graph data. For instance, a merchant might create multiple different regions to represent multiple different delivery zones serviced by different shipment carriers. Furthermore, graph data 100 may also include primitives that have different types, as illustrated by the state, country, and postal code and other primitive not illustrated (e.g., city, county, etc.). In some cases, trivial primitives (e.g., TRUE, FALSE) may also be included. As described in more detail, some of these primitives may be orderable (e.g., according to alphabetic or numeric order). In other cases, some primitives, such as postal codes may not be directly orderable absent some modification in the way these codes are represented within the graph data. For instance, postal codes may be specified by prefixes that designate ranges of postal codes. These postal codes may be only partially orderable in cases where one or more of these ranges overlap.
As described in more detail below, embodiments may include a graph evaluator component configured to evaluate graph data and return a result. For instance, one type of function that the graph evaluator may perform is a determination of whether an address resides in a given region. For instance, the graph evaluator may take as input an address and a region ID and determine whether that address is included within the region defined by that region ID. An example system that may utilize such a configuration may include an electronic market place that needs to determine whether a customer's delivery address resides in a region serviced by a shipment carrier, although embodiments are not limited to such examples. The graph evaluator may locate the region specified by the request and perform a test to determine whether the address meets the requirements of that region (e.g., determine whether the address resides within that region). If the address does reside within that region, the graph evaluator may return true. If the address does not reside within that region, the graph evaluator may return false. In one non-limiting example, the graph evaluator may be utilized to test a customer address against multiple delivery zones associated with different shipment carriers. Client systems may then use that information to, for example, determine shipment pricing for a customer's shipment.
Evaluation Time of Large Disjunctions
In various embodiments, the graph evaluator described herein may be relied on to determine whether a particular shipment carrier can deliver to a given customer's address. In some cases, delivery areas may include many (e.g., up to tens of thousands or more) postal code ranges defined as a large disjunction. Furthermore, because either zero or one postal code will match the customer's address in most instances, much if not all of the postal code ranges in the disjunction may be tested against the customer's address. In some cases, this may significantly impact the performance of the graph evaluator for a given set of hardware resources.
As described in more detail below, various embodiments may utilize techniques to transform a first subgraph, such as the defined by region R10 of
The above-described process for transforming unorderable and/or partially orderable sets is intended as a non-exhaustive overview of these techniques; multiple variations and modifications to these techniques, some of which are described in more detail below, may be implemented in various embodiments. For instance, as described in more detail below, embodiments may include performing one or more transformations to broaden the candidate pool of region values (e.g., postal code values) before the batching of sets is performed. These and other variations are described in more detail below.
Example System Configuration
Graph conditioner 320 may perform one or more conditioning techniques on graph(s) 324 to generate conditioned graph(s) 314. These techniques are described in more detail below with respect to
Graph evaluator 310 may receive one or more evaluation requests 302 from various client systems, such as client system 300. For instance, graph evaluator 310 may be a component of a merchant's electronic commerce (“e-commerce”) computing environment and client system 300 may be another component of that e-commerce computing environment. In some embodiments, graph evaluator 310 may provide a network-accessible service interface that may be queried by other systems, such as client system 300. In some embodiments, evaluation request 302 may include a customer address (or another address of interest) and a region ID (e.g., an identifier of a particular node or subgraph within conditioned graph(s) 314). The address may consist of one or more values that generally correspond to primitive types of the conditioned graph(s) 314. For instance, an address may include a city, county, state, country, postal code, or even a street address. Graph evaluator 310 may be configured to test the region identified by the region ID of request 302 to determine whether the address resides within that region. For instance, as described above, a merchant may define delivery zones for different shipment carriers as regions and the graph evaluator may be utilized to test a customer address against multiple delivery zones associated with different shipment carriers. If the customer address of request 302 resides within the region defined by request 302, graph evaluator 310 may send a response 304 that indicates the address resides within that region (e.g., TRUE). If the customer address of request 302 does not reside within the region defined by request 302, graph evaluator 310 may send a response 304 that indicates the address does not reside within that region (e.g., FALSE). Client system 300 may then use that information to, for example, determine shipment pricing for a customer's shipment based on known rates for different shipment carriers and/or delivery zones.
In various embodiments, graph evaluator 310 may be configured as a Boolean expression evaluator in order to test whether a given address is located within a specified region. In some embodiments, graph evaluator 310 may utilize “short circuit” techniques when evaluating disjunctions (logical ORs) and conjunctions (logical ANDs). For instance, graph evaluator 310 may cease evaluation of a disjunction once a child term tests TRUE as a disjunction only requires one TRUE for the entire expression to be TRUE. Similarly, graph evaluator 310 may cease evaluation of a conjunction once a child term tests FALSE as a disjunction only requires one FALSE for the entire expression to be FALSE.
In various embodiments, as unordered or partially-orderable sets of primitives (e.g., overlapping postal code ranges) are replaced with non-overlapping ordered sets of primitives when graph conditioner 314 generates conditioned graph(s) 314, graph evaluator 310 may be configured to quickly process client requests even for regions that were previously represented by large disjunctions (e.g., within graph(s) 324). For instance, consider the logically equivalent subgraphs of
As described in more detail below, graph conditioner 320 may utilize techniques to broaden the candidate pool of region values (e.g., postal code values) under logical operations (e.g., disjunction/conjunctions) before the batching of primitives into ordered, non-overlapping sets is performed. In some embodiments, broadening the pool of region values need not be completed before batching into sets, as insertions into the set may be performed at a later time. These and other variations are described in more detail below.
Conditioning Subgraphs for Efficient Evaluation
Graph conditioner 320 may utilize various techniques to process the subgraphs of each region within graph(s) 324 to generate conditioned graph(s) 314.
Once the child nodes are processed, the method may proceed to block 408, wt which point the method may include performing one or more transformation to transform the current region (e.g., a subgraph) toward conjunctive or disjunctive normal form, although embodiments are not limited to these transformations. Specific operations to perform this portion of the method are described in more detail below; generally these operations are performed in order to, under a given logical operation, group more primitives for batching into sets that may be searched in a time complexity that is faster than linear time (e.g., logarithmic time). As one non-limiting example, prior to transforming the region towards conjunctive or disjunctive normal form, the current region may include a disjunction (e.g., a logical OR) of n terms. After transformation toward conjunctive or disjunctive normal form, this disjunction may have n+1 or more terms. In this way, transforming the range towards conjunctive or disjunctive normal form may “flatten” this subgraph such that more terms may be batched up into non-overlapping sets that may be searched in faster-than-linear time. As noted above, embodiments are not limited to transformations that move a subgraph toward normal form. In general, these transformations may include any transformation that, for a given logical operation (e.g., disjunction) of a transformed subgraph, cause more primitives to be grouped under that logical operation relative to the original subgraph. In this way, for a given logical operation more primitives (in some cases the maximum amount of primitives) may be available for batching into sets that are searchable in logarithmic time (or another time complexity that generally provides faster evaluation than linear time complexity).
In various embodiments, block 408 of the method may but need not transform the region into conjunctive or disjunctive normal form. For instance, a full transformation toward conjunctive or disjunctive normal form may require distribution operations that may have an intractable complexity in some cases. As such, the degree to which the region is transformed toward conjunctive or disjunctive normal form may in some cases depend on the computing resources at the graph conditioner 320's disposal (e.g., the more computing resources available, the closer the graph conditioner may transform each region toward conjunctive or disjunctive normal form). In general, this portion of the method may include performing one or more transformations on the current region's logical operations and primitives in order to generate a new logically equivalent subgraph that also includes one or more logical operations and primitives. In various embodiments, the transformation may be performed such that, for a given logical operation (e.g., a disjunction) of the new subgraph, more primitives are grouped under that logical operation relative to the first representation of the subgraph. For instance, in the new representation of the region, more primitives representing different postal code ranges may be grouped under the same logical operation, such as a disjunction. While at least some of these primitives may overlap, the more primitives that are grouped together under a logical operation, the more primitives that may be batched up into ordered sets of non-overlapping values (which may be searched in faster-than-linear time).
In some embodiments, performing a transformation at block 408 may include eliminating double negation, such as transforming expressions of the form (NOT (NOT p)) into p where p is a primitive. In some embodiments, performing a transformation at block 408 may include moving negations below conjunctions using DeMorgan's law, such as transforming expressions of the form (NOT (AND p q)) to the form (OR (NOT p) (NOT q)) and expression of the form (NOT (OR p q)) to the form (AND (NOT p) (NOT q)), where p and q are primitives. In some embodiments, performing a transformation at block 408 may include removing one or more trivial tautologies, such as transforming expressions of the form (AND False p) to False where p is a primitive, transforming expressions of the form (AND True p) to p, transforming expressions of the form (OR False p) to p, transforming expressions of the form (OR True p) to True, transforming expressions of the form (NOT True) to False, and transforming expressions of the form (NOT False) to True. In various embodiments, these transformations alone may not provide a full transformation to a normal form as a full transformation may require distributing expression of the form (OR p (AND q r)) to the form (AND (OR p q) (OR p r)), where p, q and r are primitives, which may be of an intractable complexity in some cases. In various embodiments, intractable operations need not to be fully (or even partially) completed for the terms to remain logically correct. Each partial application of these operations may result in a logically equivalent term even though that term is not guaranteed to be the simplest equivalent term as a result of stopping transformation before full normal form is achieved. Using these techniques, embodiments may transform the terms as close to normal form as possible given the amount of computation time and resources available. In various embodiments, one or more logic minimization techniques may be applied to subgraphs, including those that have been transformed to normal or near-normal form. One non-limiting example of logic minimization includes the Espresso heuristic logic minimizer. In some embodiments, other heuristic logic minimization techniques may be utilized, whether presently known or developed in the future. In some cases, a full NP-hard minimizer may be utilized when tractable.
At block 410, the method may include combining child values of the same class (e.g., postal codes) into sets. In various embodiments, this may portion of the method may include performing the following transformations of expressions where the notation p:t implies that p is a primitive in class t (e.g., a city, state, district, country or postal code range). Furthermore, in the following transformation, the notation {p,q} may represent a totally ordered set that is logically equivalent to the set of p and q where p and q are of the same class. In various embodiments, one of the transformations may include transforming expressions of the form (AND p:t1 q:t1 r:t2) to the form (AND s r) where s is the intersection of p and q. In various embodiments, another one of the transformations may include transforming expressions of the form (AND (NOT p:t1) (NOT q:t1) r:t2) to the form (AND (NOT {p,q}) r). In various embodiments, another one of the transformations may include transforming expressions of the form (OR p:t1 q:t1 r:t2) to the form (OR {p,q} r). In various embodiments, another one of the transformations may include transforming expressions of the form (OR (NOT p:t1) (NOT q:t1) r:t2) to the form (OR (NOT s) r) where s is the intersection of p and q. By utilizing these transformations, embodiments of the method may transform previously unorderable (or only partially orderable) ranges of values to a set of ordered, non-overlapping values that, as described above, may be searched in faster-than-linear-time (e.g., logarithmic time). In this way, the graph evaluator, when using graphs conditioned in this manner (e.g., conditioned graph(s) 314) may quickly find results the result using faster-than-linear-time search techniques, examples of which include binary search techniques applied to the aforesaid ordered, non-overlapping values. In a small number of cases (e.g., for very simple disjunctions with few primitives or other logical operations that are not very complex), evaluating the untransformed subgraph may prove to be faster than evaluating new subgraph including the searchable set of ordered, non-overlapping values. Generally, dependent on a given logical operation's complexity (e.g., a very large disjunction with many primitive values, at least some of which overlap), the requisite time to perform a search operation for a value within the ordered set of non-overlapping values will be less than a requisite time to perform the original logical operation on its primitives. As searching (e.g., binary searching) of an ordered set of non-overlapping values may be performed in logarithmic time, the techniques described herein may in the aggregate provide a significant reduction in processing time when evaluating transformed subgraphs (which in their previous form were evaluated in linear time as unorderable or only partially-orderable values).
Once a given region has been transformed, the method at block 412 may include determining whether a logically equivalent region already exists in the processed table. For instance, the method may include generating a hash value based on the transformed region and determining whether that region already resides in the table of processed regions. If that hash does already exist in the list of processed regions (block 414), the method may include replacing the current transformed region with a reference to the subgraph that represents the region that has already been added to the processed list. In some embodiments, this may include replacing the current region with a new primitive class (e.g., an ID class) that has a single child node holding the value to the referenced subgraph. In this way embodiments may substantially reduce the size of the graphs by eliminating many forms of redundancy. In other cases, if the hash of the current transformed region is not already included in the list of processed nodes (block 416), the method may include adding region to the processed table (e.g., adding the hash of the current region to the processed table. As indicated by block 418, various portions of the method may be repeated for each region of the graph. At the conclusion of the method, one or more conditioned graph(s) 314 may be generated.
In the above-described method, some operations (e.g., block 410) may include performing a union operation on overlapping values (e.g., overlapping postal code values) to generate a totally ordered set {p,q}. An example of a modified merge-sort operation that may be utilized to generate such a set is described herein. For instance, in various embodiments, unmodified postal code ranges may be represented as only a partially orderable set before transformation. By modifying this set with the merge-sort operations, the non-orderable elements of this set may transform the set into an equivalent set for the purpose of the Boolean evaluation into a set of totally orderable ranges. For example, given the postal code ranges {(0-2), (4-6), (5-7), (1-1)}, each set may be divided in half to form the following sets, {{(0-2), (4-6)}, {(5-7), (1-1)}}. These sets may be divided in half again to identify the based case for each set having a single element, which may be represented as, {{ 40-2)}, {(4-6)}}, {{(5-7)}, {(1-1)}}. Next, the first two sets may be merged, iterating each element of both sets and inserting the smallest element into the new set at each iteration to form, {{(0-2), (4-6)}, {{(5-7)}, {(1-1)}}}. The previous operation may be repeated on the latter two sets to form such that the sets are represented as {{(0-2), (4-6)}, {(1-1), (5-7)}} When attempting to iterate the two remaining sets, it may be determined that the ranges (0-2) and (1-1) are not orderable, as they overlap. In accordance with the techniques described herein, the union of the two ranges may be determined and the result of this union may be inserted into the new set two consume both ranges. This operation may be performed on the remaining two elements. As these ranges are not orderable, the union may be taken again, leaving the totally ordered set of ranges {(0-2), (4-7)}, which may be structurally different than the original set yet equivalent for evaluation purposes. Using techniques similar to these, embodiments may consistently transform partially orderable sets into totally ordered sets which can then be searched in faster-than-linear time (e.g., logarithmic time).
In some embodiments, the method described above with respect to
In various embodiments, throughout the first pass (e.g.,
Graph Conditioning Example
One example transformation according to the above described techniques is described below with respect to
Condition of the data may begin with iterating through the regions. For instance, region R1 includes region R2 as a child, which is not in the (currently empty) processed list; as such, embodiments may iterate forward to Region 2. In this example, region R2 has no viable transformations, so it is moved to the processed table unchanged, as are regions R3-R6. Region R7 has child R1 which is not processed so this region remains in the unprocessed table. Regions R8 and R9 may also move to the processed table without transformation. After the first pass of conditioning, the processed and unprocessed tables are illustrated by graph data 600 of
In the second pass, embodiments may determine that all child regions of region R1 have been processed. In accordance with the conditioning method (e.g.,
As the values for this example are the same as the example merge sort describe above with respect to
Note that in various embodiments, the techniques described above may also be applied to the discovery of equivalent compound subgraphs after transformation. For instance, a subgraph defined by (AND (country US) (OR (postal 1-3) (postal (4-6))) may be equivalent to a subgraph defined by (AND (country US) (OR (postal 1-2) (postal (2-3) (postal (4-6))) after transformation and may be transformed to a node of the ID class (e.g., to reduce the memory footprint of the overall graph by replacing a subgraph with a reference to a previously evaluated logically equivalent subgraph).
The final list of processed regions of
In various embodiments, the techniques described herein may be applied to information other than geographic regions or locations. For instance, since the transformations described herein may be applicable to any Boolean expressions, and take advantage of totally orderable sets (or partially orderable sets that are transformable to totally ordered sets not limited to using the techniques described herein), the embodiments described herein need not be limited to the particular primitive classes described herein. In one non-limiting example, the techniques described herein may be applied to regulatory compliance rules for shipment methods given shipment contents as an input. In various embodiments, other types of information may be utilized according to the graph conditioning and evaluation techniques described herein.
Example Computer System
Various embodiments of the system and method for graph conditioning with non-overlapping orderable values for efficient graph evaluation, as described herein, may be executed on one or more computer systems, which may interact with various other devices. Note that any component, action, or functionality described above with respect to
In various embodiments, computer system 900 may be a uniprocessor system including one processor 910, or a multiprocessor system including several processors 910 (e.g., two, four, eight, or another suitable number). Processors 910 may be any suitable processor capable of executing instructions. For example, in various embodiments processors 910 may be general-purpose or embedded processors implementing any of a variety of instruction set architectures (ISAs), such as the x86, PowerPC, SPARC, or MIPS ISAs, or any other suitable ISA. In multiprocessor systems, each of processors 910 may commonly, but not necessarily, implement the same ISA.
System memory 920 may be configured to store program instructions 922 and/or data 932 accessible by processor 910. In various embodiments, system memory 920 may be implemented using any suitable memory technology, such as static random access memory (SRAM), synchronous dynamic RAM (SDRAM), nonvolatile/Flash-type memory, or any other type of memory. In the illustrated embodiment, program instructions 922 may be configured to implement any functionality of graph conditioner 320 and graph evaluator 310 described above. Additionally, data 932 of memory 920 may store any of the information or data structures described above, including but not limited to graph(s) 324 and conditioned graph(s) 314 and in at least some cases relational data store tables. In some embodiments, program instructions and/or data may be received, sent or stored upon different types of computer-accessible media or on similar media separate from system memory 920 or computer system 900. While computer system 900 is described as implementing the functionality of functional blocks of previous Figures, any of the functionality described herein may be implemented via such a computer system.
In one embodiment, I/O interface 930 may be configured to coordinate I/O traffic between processor 910, system memory 920, and any peripheral devices in the device, including network interface 940 or other peripheral interfaces, such as input/output devices 950. In some embodiments, I/O interface 930 may perform any necessary protocol, timing or other data transformations to convert data signals from one component (e.g., system memory 920) into a format suitable for use by another component (e.g., processor 910). In some embodiments, I/O interface 930 may include support for devices attached through various types of peripheral buses, such as a variant of the Peripheral Component Interconnect (PCI) bus standard or the Universal Serial Bus (USB) standard, for example. In some embodiments, the function of I/O interface 930 may be split into two or more separate components, such as a north bridge and a south bridge, for example. Also, in some embodiments some or all of the functionality of I/O interface 930, such as an interface to system memory 920, may be incorporated directly into processor 910.
Network interface 940 may be configured to allow data to be exchanged between computer system 900 and other devices attached to a network 985 (e.g., client system 300) or between nodes of computer system 900. Network 985 may in various embodiments include one or more networks including but not limited to Local Area Networks (LANs) (e.g., an Ethernet or corporate network), Wide Area Networks (WANs) (e.g., the Internet), wireless data networks, some other electronic data network, or some combination thereof. In various embodiments, network interface 940 may support communication via wired or wireless general data networks, such as any suitable type of Ethernet network, for example; via telecommunications/telephony networks such as analog voice networks or digital fiber communications networks; via storage area networks such as Fibre Channel SANs, or via any other suitable type of network and/or protocol.
Input/output devices 950 may, in some embodiments, include one or more display terminals, keyboards, keypads, touchpads, scanning devices, voice or optical recognition devices, or any other devices suitable for entering or accessing data by one or more computer systems 900. Multiple input/output devices 950 may be present in computer system 900 or may be distributed on various nodes of computer system 900. In some embodiments, similar input/output devices may be separate from computer system 900 and may interact with one or more nodes of computer system 900 through a wired or wireless connection, such as over network interface 940.
As shown in
Those skilled in the art will appreciate that computer system 900 is merely illustrative and is not intended to limit the scope of embodiments. In particular, the computer system and devices may include any combination of hardware or software that can perform the indicated functions, including computers, network devices, Internet appliances, PDAs, wireless phones, pagers, etc. Computer system 900 may also be connected to other devices that are not illustrated, or instead may operate as a stand-alone system. In addition, the functionality provided by the illustrated components may in some embodiments be combined in fewer components or distributed in additional components. Similarly, in some embodiments, the functionality of some of the illustrated components may not be provided and/or other additional functionality may be available.
Those skilled in the art will also appreciate that, while various items are illustrated as being stored in memory or on storage while being used, these items or portions of them may be transferred between memory and other storage devices for purposes of memory management and data integrity. Alternatively, in other embodiments some or all of the software components may execute in memory on another device and communicate with the illustrated computer system via inter-computer communication. Some or all of the system components or data structures may also be stored (e.g., as instructions or structured data) on a computer-accessible medium or a portable article to be read by an appropriate drive, various examples of which are described above. In some embodiments, instructions stored on a computer-accessible medium separate from computer system 900 may be transmitted to computer system 900 via transmission media or signals such as electrical, electromagnetic, or digital signals, conveyed via a communication medium such as a network and/or a wireless link. Various embodiments may further include receiving, sending or storing instructions and/or data implemented in accordance with the foregoing description upon a computer-accessible medium. Generally speaking, a computer-accessible medium may include a computer-readable storage medium or memory medium such as magnetic or optical media, e.g., disk or DVD/CD-ROM, volatile or non-volatile media such as RAM (e.g. SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc. In some embodiments, a computer-accessible medium may include transmission media or signals such as electrical, electromagnetic, or digital signals, conveyed via a communication medium such as network and/or a wireless link.
The methods described herein may be implemented in software, hardware, or a combination thereof, in different embodiments. In addition, the order of the blocks of the methods may be changed, and various elements may be added, reordered, combined, omitted, modified, etc. Various modifications and changes may be made as would be obvious to a person skilled in the art having the benefit of this disclosure. The various embodiments described herein are meant to be illustrative and not limiting. Many variations, modifications, additions, and improvements are possible. Accordingly, plural instances may be provided for components described herein as a single instance. Boundaries between various components, operations and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of claims that follow. Finally, structures and functionality presented as discrete components in the exemplary configurations may be implemented as a combined structure or component. These and other variations, modifications, additions, and improvements may fall within the scope of embodiments as defined in the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
6439783 | Antoshenkov | Aug 2002 | B1 |
6915290 | Bestgen et al. | Jul 2005 | B2 |
7558802 | Yako et al. | Jul 2009 | B2 |
7680789 | Sareen et al. | Mar 2010 | B2 |
7962489 | Chiang et al. | Jun 2011 | B1 |
8290923 | Kurapat et al. | Oct 2012 | B2 |
8386264 | Hori et al. | Feb 2013 | B2 |
20010000536 | Tarin | Apr 2001 | A1 |
20030191740 | Stark | Oct 2003 | A1 |
20070027837 | Kutsch et al. | Feb 2007 | A1 |
20070239969 | Biles et al. | Oct 2007 | A1 |
20090327377 | Ylonen | Dec 2009 | A1 |
20110004581 | Schmidt et al. | Jan 2011 | A1 |
20110225038 | Fontoura et al. | Sep 2011 | A1 |