Carbon nanotubes (CNTs) have become the most studied structures in the field of nanotechnology due to their remarkable electrical, thermal, and mechanical properties. In general, a carbon nanotube can be visualized as a sheet of hexagonal graph paper rolled up into a seamless tube and joined. Each line on the graph paper represents a carbon-carbon bond, and each intersection point represents a carbon atom. In general, CNTs are elongated tubular bodies which are typically only a few atoms in circumference. The CNTs are hollow and have a linear fullerene structure. Such elongated fullerenes having diameters as small as 0.4 nanometers (nm) (Nature (408), pgs. 50-51, November 2000) and lengths of several micrometers to tens of millimeters have been recognized. Both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) have been recognized.
CNTs have been proposed for a number of applications because they possess a very desirable and unique combination of physical properties relating to, for example, strength and weight ratio. For instance, CNTs are being considered for a large number of applications, including without limitation field-emitter tips for displays, transistors, interconnect and memory elements in integrated circuits, scan tips for atomic force microscopy, and sensor elements for chemical and biological sensing. CNTs are either conductors (metallic) or semiconductors, depending on their diameter and the spiral alignment of the hexagonal rings of graphite along the tube axis. They also have very high tensile strengths. See Saito, R., et al., Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998); Springer: New York, 2001; Vol. 80. CNTs have demonstrated excellent electrical conductivity. See e.g. Yakobson, B. I., et al., American Scientist, 85, pg. 324-337 (1997); and Dresselhaus, M. S., et al., Science of Fullerenes and Carbon Nanotubes, 1996, San Diego: Academic Press, pp. 901-908. 902-905. For example, CNTs conduct heat and electricity better than copper or gold and have 100 times the tensile strength of steel, with only one-sixth of the weight of steel.
Various techniques for producing CNTs have been developed. The early processes used for CNT production were laser ablation and an arc discharge approach. More recently, chemical vapor deposition (CVD) is becoming widely used for growing CNTs. In this approach, a feedstock, such as CO or a hydrocarbon or alcohol, is heated (e.g., to 600-1000° C.) with a transition metal catalyst to promote the CNT growth. Even more recently, plasma enhanced CVD (PECVD) has been proposed for use in producing CNTs, which may permit their growth at lower temperatures, see e.g., Meyyappan, M. et al., “Carbon nanotube growth by PECVD: a review,” Plasma Sources Sci. Technology 12, pg. 205-216 (2003). Thus, in several production processes, such as CVD and PECVD, CNTs can be grown from a catalyst on a substrate surface, such as a substrate (e.g., silicon or quartz) that is suitable for fabrication of electronic devices, sensors, field emitters and other applications. For instance, using techniques as CVD and PECVD, CNTs can be grown on a substrate (e.g., wafer) that may be used in known semiconductor fabrication processes. In general, the catalyst includes nanoparticles therein from which nanotubes grow during the growth process (i.e., one nanotube may grow from each nanoparticle).
CNT growth using transition-metal catalyst nanoparticles in a CVD system has become the standard technique for growth of single-wall and multi-wall CNTs for substrate-deposited applications, see e.g., Meyyappan, M. et al., “Carbon nanotube growth by PECVD: a review,” Plasma Sources Sci. Technology 12, pg. 205-216 (2003). Various catalyst systems have been developed for CVD growth, including iron/molybdenum/alumina films (see e.g., M. Su et al., “Lattice-Oriented Growth of Single-Walled Carbon Nanotubes,” J. Phys. Chem. B 104(28), p. 6505 (2000)), iron nanoparticles formed with ferritin (see e.g., Y. Li et al., “Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes,” J. Phys. Chem. B 105, p. 11424 (2001)), nickel/alumina films (see e.g., R. Y. Zhang et al., “Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as catalyst,” Nano Lett. 3(6), p. 731 (2003)), cobalt-based catalyst films, and self-assembled arrays of nanoparticle catalysts formed using diblock copolymers (J. Raez et al., “Self-assembled organometallic block copolymer nanotubes,” Angewandte Chemie 39(21), p 3862-3865 (2000)).
Key to many applications is the control of CNT placement on a substrate. However, handling of CNTs is generally cumbersome, resulting in difficulty in post-processing of CNTs (after they are grown) to control/modify their placement on a substrate. Thus, it becomes desirable to control the placement of CNTs on a substrate during their growth. For instance, by controlling the placement of the as-grown nanotubes, such nanotubes may be grown to achieve a placement desired for a given application. Generally, CNTs grow in an uncontrolled, somewhat random manner from a catalyst. Certain techniques are known to influence the direction of growth of nanotubes. Examples of such techniques for influencing the direction of nanotube growth include application of electric fields (either external to or arranged locally on the substrate), blowing gas in a certain direction, a directed ion stream, control of carbon gas density gradient during growth (which may influence in what direction the tubes grow, i.e., they should grow along the carbon gradient). However, typically a nanotube grows from each of the nanoparticles included in a catalyst layer. Thus, for example, a catalyst layer may be implemented as a thin film that is spun on a substrate and that includes nanoparticles therein from which nanotubes can be grown. Due to the densely populated nanoclusters in a catalyst thin film, many nanotubes grown from this catalyst layer may intertwine.
To aid in controlling placement of CNTs grown on a substrate, techniques to pattern catalyst layers on substrate surfaces have also been proposed, see e.g., J. Kong et al., “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature 395, p. 878 (1998). In another technique, self-assembled arrays of nanoparticles formed using diblock copolymers have been confined to patterned trenches on a substrate, see e.g., J. Y. Cheng et al., “Templated Self-Assembly of Block Copolymers: Effect of Substrate Topology,” Adv. Mater. 15(19), p. 1599 (2003). While such techniques may be scaled to smaller dimensions using advanced lithography techniques such as electron-beam lithography, they cannot easily reach the ultimate control of a single nanoparticle or even a single row of nanoparticles in a catalyst, which could be very useful for various applications. An undesirably dense population of nanoparticles may be present in even a patterned catalyst layer, thus resulting in many nanotubes growing from the patterned catalyst layer. Thus, there is a need for a method for providing finer control of nanoparticle catalysts for CNT growth.
Embodiments of the present invention provide systems and methods for limiting the growth of nanostructures, such as nanotubes, from a catalyst layer. More particularly, systems and methods are provided for growing nanostructures from a periphery of a catalyst thin film. The concepts provided herein are not limited in application to growth of nanotubes, but may likewise be utilized for controlling the growth of other nanostructures (particularly those having high aspect ratios), such as nanofibers, nanoribbons, nanothreads, nanowires, nanorods, nanobelts, nanosheets, and nanorings, as examples.
In certain embodiments, a catalyst layer is located on a substrate. For instance, a thin film catalyst layer may be spun onto a substrate. Such catalyst layer includes any catalyst now known or later developed for growing nanostructures, including, as examples, an iron/molybdenum/alumina film, iron nanoparticles formed with ferritin, a nickel/alumina film, a cobalt-based catalyst film, and a self-assembled array of nanoparticle catalysts formed using diblock copolymers. The catalyst layer is covered with a covering layer. Thus, the catalyst layer is sandwiched between the substrate and the covering layer, resulting in a sandwich structure. The resulting structure then undergoes a nanostructure growth process, such as a CVD or PECVD process. Because the catalyst layer is sandwiched between the substrate and the covering layer, growth of nanostructures is limited to growth from nanoparticles located on the periphery of the catalyst layer. Thus, growth of nanostructures does not result from nanoparticles located in an interior region of the catalyst layer.
It should be understood that as used herein, except where otherwise qualified with accompanying language, the term “periphery” broadly refers to at least some portion of an outward region of the catalyst layer, as opposed to an internal region of the catalyst layer. The periphery need not refer to the entire perimeter about the catalyst layer, but may instead be the outward region on only one or more sides of the catalyst layer's perimeter. Further, the outward region of the catalyst layer is not limited to the exact edge (or “outer boundary”) of the catalyst layer, but is instead intended to encompass a region of the catalyst layer adjacent the catalyst layer's outer edge that is sufficiently exposed to the environment to enable growth of nanostructures from nanoparticles contained in such region during a growth process, such as CVD or PECVD.
As a relatively simple example for illustrative purposes, a catalyst layer may be a rectangular thin film that contains nanoparticles distributed throughout, wherein certain nanoparticles reside in an internal region of the rectangular thin film and certain nanoparticles reside about the periphery of the rectangle. The rectangular thin film is sandwiched between a substrate and a covering layer such that only the periphery of the thin film is exposed during a nanostructure growth process, such as CVD or PECVD. As such, nanostructures grow only from those nanoparticles residing about the periphery of the thin film. Nanostructures do not result from the nanoparticles residing in the internal region of the thin film (e.g., the center of the rectangle), as those nanoparticles are shielded from the nanostructure growth process by the substrate and covering layer.
Of course, in certain implementations, the nanostructures may not grow about the full periphery (i.e., the entire perimeter) of the thin film. For instance, continuing with the above example, in certain implementations one or more sides of the rectangular thin film are shielded. For example, the covering layer may surround one or more sides of the rectangular thin film such that the covering layer engages the substrate on one or more sides of the rectangular thin film. Thus, in this instance, nanostructures will grow from the exposed portions of the catalyst layer's periphery, i.e., those sides of the rectangular thin film that are not surrounded by the covering layer.
According to one embodiment of the present invention, a thin film catalyst layer is deposited on a substrate, e.g., a wafer, and then a covering layer is deposited on the thin film catalyst layer. The covering layer and thin film catalyst layer are then patterned, e.g., using known lithographic etching and/or lift-off techniques, to form a desired shape of the catalyst layer and covering layer, such as the above-described rectangular thin film catalyst layer, that is located at a desired location on the substrate. As such, only the periphery of the thin film catalyst layer is exposed between the covering layer and the substrate. The nanostructure growth process, e.g., CVD or PECVD, is then performed on this structure, which results in nanostructures growing from the nanoparticles located at the exposed periphery of the thin film catalyst layer. Thus, the population of nanostructures growing from the catalyst layer is limited.
Further, in certain embodiments, the thin film catalyst layer is patterned to further limit the density of the nanostructures that are grown therefrom. For instance, according to one embodiment, a thin film catalyst layer is deposited on a substrate, e.g., a wafer, and then such thin film catalyst layer is patterned to remove nanoparticles therefrom. For example, the thin film catalyst layer may be patterned to remove one or more rows and/or columns of nanoparticles therefrom, thus resulting in a less dense population of nanoparticles at the catalyst layer's periphery. The patterning may result in an increase in spacing between the nanoparticles remaining about the catalyst layer's periphery. A covering layer is then deposited on the thin film catalyst layer, and such covering layer may be patterned such that it resides on the top of the thin film catalyst layer but does not surround the outer edges of the thin film catalyst layer. It should be noted that this occurs naturally when one patterns the covering layer and catalyst layer together. As such, only the periphery of the thin film catalyst layer is exposed between the covering layer and the substrate. The nanostructure growth process (e.g., CVD or PECVD) is then performed on this structure, which results in nanostructures growing from the nanoparticles located at the exposed periphery of the thin film catalyst layer. Thus, the population of nanostructures growing from the catalyst layer is further limited, and such nanostructures are spaced about the catalyst layer's periphery in a desired manner.
Turning to
Exemplary apparatus 100 of
While relatively few nanoparticles are shown as included in catalyst layer 102 for ease of illustration in
The exemplary embodiment of
In certain embodiments, the catalyst layer 102 may be patterned before deposition of covering layer 103 in order to further limit the number of nanostructures to be grown therefrom and/or to control relative spacing of the nanostructures to be grown from the catalyst layer.
As shown in
As shown in
Then, catalyst layer 102 and covering layer 103 are patterned (e.g., etched) into a desired size/shape that is located at a desired location on the surface of substrate 101, which results in the exemplary structure shown in
The periphery of catalyst layer 102 is not shielded from exposure to a nanostructure growth process, such as CVD or PECVD, while the interior region of catalyst layer 102 is shielded by covering layer 103 from exposure to the nanostructure growth process. In this example, the patterning has resulted in three nanoparticles (labeled 10A, 10B, and 10C in
While the exemplary process of
Accordingly, the overall number of nanostructures that are grown from catalyst layer 102 are limited (i.e., to growth from nanoparticles 10 about the periphery of such catalyst layer) and the spacing of the nanoparticles from which nanostructures are grown are controlled by patterning of catalyst layer 102. For instance,
In the above examples of
While exemplary sandwich structures 105 are shown in
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/612,042 entitled “Carbon Nanotube Catalyst Patterning and Carbon Nanotube Growth from the Edge of a Patterned Thin Film”, filed Sep. 21, 2004, the disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60612042 | Sep 2004 | US |