System and method for handling a container with a vacuum panel in the container body

Information

  • Patent Grant
  • 8726616
  • Patent Number
    8,726,616
  • Date Filed
    Thursday, December 9, 2010
    13 years ago
  • Date Issued
    Tuesday, May 20, 2014
    10 years ago
Abstract
Systems and methods for vacuum compensation in hot-filled and cooled containers. Each container reduces, via one or more vacuum panels, a first portion of a vacuum created in the container. Each container also has a repositionable portion to reduce a second portion of the vacuum. During hot-filling, no portion of the repositionable portion extends below a standing or bearing surface of the container.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to a structure of a container base, and more particularly to a base of a container that is repositionable about a hinge in order to partially reduce vacuum pressure experienced by a container during a hot-fill process.


2. Related Art


Conventionally, manufacturers use a hot-fill process to add a product to a container at an elevated temperature, about 82° C., which can be near the glass transition temperature of the plastic material in the plastic container, and then cap the container. As the container and its contents cool, the contents tend to contract and this volumetric change creates a partial vacuum within the container. In the absence of some means for accommodating these internal volumetric and barometric changes, containers tend to deform and/or collapse. For example, a round container can undergo ovalization, or tend to distort and become out of round. Containers of other shapes can become similarly distorted. In addition to these changes that adversely affect the appearance of the container, distortion or deformation can cause the container to lean or become unstable when placed upon a flat surface.


To overcome the partial vacuum within the container created by the hot-fill process, manufacturers have resorted to various different methods to preserve the integrity of the container. In one known method, vertically oriented vacuum panels are formed on the sidewalls of the container. The vacuum panels are adapted to flex inward in response to an internal vacuum to reduce the volume within the container, which lowers the internal vacuum pressure. However, to significantly reduce the vacuum pressure caused by the hot-fill process, these types of vacuum panels are required over a significant portion of the container and are considered by some to be visually unappealing.


Another known method to compensate for internal vacuum pressure is by forming patterned structures on the container. A region of the container having patterned structure of multiple shapes, curves, and bends increases rigidity of the plastic at the region. However, adding these types of patterned structure is required over a significant portion of the container in order to preserve the structural integrity of the container caused by the volumetric changes in the hot-fill process. Patterned structures also add to the amount of plastic within the container, which adds to the weight, and ultimately to the cost.


What is needed is an improved container that overcomes shortcomings of conventional solutions.


BRIEF SUMMARY OF THE INVENTION

This invention differs from the prior art in modifications which were not previously known or suggested.


The present invention claims a base of a container, a container, and a method of compensating for vacuum pressure changes within a container.


A base of a container includes a bearing surface, a hinge, a first wall sloping in a first direction from the bearing surface to the hinge, and a second wall sloping in a second direction away from the hinge, wherein the second wall is adapted to be repositioned about the hinge with substantially no movement of the first wall.


A container including an upper portion having an opening into the container, a container body positioned below the upper portion and defining an interior of the container, and a base adjoining the container body at an end of the container opposite from the upper portion. The base includes a hinge, a first wall between the container body and the hinge, the first wall sloping toward the interior of the container, and a second wall adjoining the hinge, the second wall sloping away from the interior of the container and being adapted to be repositioned about the hinge.


A method of compensating for vacuum pressure changes within a container including hot filling the container with a product, sealing the container with a closure, cooling the hot filled container, repositioning a base wall adjoining a hinge of the base about the hinge from an outward extending position to an inward extending position, thereby reducing the internal pressure of the container, wherein prior to repositioning, the container is adapted to stand upright on a flat surface.


Further objectives and advantages, as well as the structure and function of preferred embodiments will become apparent from a consideration of the description, drawings, and examples.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the invention will be apparent from the following, more particular description of a preferred embodiment of the invention, as illustrated in the accompanying drawings wherein like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.



FIGS. 1A-1C depict an exemplary embodiment of a container having a base structure according to the present invention;



FIG. 2 illustrates a cross sectional view of an exemplary embodiment of a container according to the present invention;



FIGS. 3A-3G illustrate alternative exemplary embodiments for the structure of a base of a container according to the present invention; and



FIG. 4 is a flow chart of a method according to exemplary embodiments of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. While specific exemplary embodiments are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations can be used without parting from the spirit and scope of the invention.


The present invention generally relates to a base structure of a container that can be repositioned about a hinge to partially reduce an internal vacuum pressure within the container caused by cooling of a product after a hot fill process. FIGS. 1A-1C illustrate an exemplary embodiment of a container 100 having a base structure according to the present invention. Initially, the invention will be described referring to FIGS. 1A-1C.


According to an embodiment of the present invention, the container 100 includes an upper portion 102, a shoulder 104, a container body 106, and a base 108. The upper portion 102 of the container 100 generally is any structure having an opening into the interior of the container 100 and is adapted to receive a closure (not shown). The closure is any device used to create a substantially air tight seal for the hot-filled product within the container 100, thus substantially preventing air from entering the container 100 through the upper portion 102. In one embodiment, the upper portion 102 includes threads 112 that are adapted to couple with a closure that is a twist-on cap. The cap may be twisted onto the threads 112 of the upper portion 102 to create a seal with the container 100. In an alternative embodiment, a sealing plug may be placed in the upper portion 102 to seal the container 100. Other closures or seals may be used, as will be appreciated by those of skill in the art.


The shoulder 104 of the container 100 extends from the top of the container body 106 to the bottom of the upper portion 102. Generally, the shoulder 104 narrows as it progresses from the container body 106 to the bottom of the upper portion 102. The shoulder 104 may have any desired shape, or may be omitted from the container 100. The shoulder 104 may include patterns, shapes, and other known geometries, or alternatively, may be substantially smooth. In the depicted embodiment, the width of the bottom of the shoulder 104 corresponds to the width of the top of the container body 106, and narrows by curving inward as the shoulder 104 approaches the upper portion 102. The shoulder 104 curves outward before reaching the upper portion 102, and then curves inward as the shoulder 104 reaches the upper portion 102. The shoulder 104 may be other shapes and include other patterns, as will be appreciated by those of skill in the art.


The container body 106 of the container 100 extends from the base 108 to the shoulder 104 and defines an interior of the container 100. The container body 106 is positioned below the upper portion 102. In an alternative embodiment, if the shoulder 104 is omitted from the container 100, the container body 106 extends to the upper portion 102. The container body 106 may be any known asymmetrical or symmetrical shape, such as, for example, cylindrical, square, rectangular, or other geometries. Optionally, the container body 106 of the container 100 may include patterned support structure or vacuum panels. The patterned support structure and the vacuum panels help provide structural integrity for the container 100, as will be discussed later in detail.


In the depicted embodiment, the container body 106 is cylindrical and has ribs 114 and multiple vacuum panels 116. The ribs 114 may be a series of recessed sections followed by non-recessed sections on the container body 106. The vacuum panels 116 may be substantially flat recessed sections having a much larger recessed area than that of the ribs 114. Alternatively, vacuum panels may be configured to form a grip region. Other vacuum panel designs are known in the art. A container according to the invention may include different types of vacuum panels. The ribs 114 may include other types and shapes and both the ribs 114 and the vacuum panels 116 may be placed at alternate locations on the container body 106, as will be appreciated by those of skill in the art. The ribs 114 and the vacuum panels 116 may also be omitted from the container body 106, and may be placed at other locations on or omitted from the container 100.


As depicted in FIG. 1B, the base 108 includes a bearing surface 118, a first wall 120, a hinge 122, a second wall 124, and a section 126. The bearing surface 118 of the base 108 is the contact surface of the container 100 that may contact a flat surface when the base 108 is placed upright on the flat surface. The container 100 is upright on the flat surface when a substantial portion of the bearing surface 118 contacts the flat surface and the flat surface is underneath the container 100. The bearing surface 118 may be formed in other asymmetrical or symmetrical geometries, as will be appreciated by those of skill in the art.


The first wall 120 of the container 100 is located between the bottom of the container body 106 and the hinge 122. The first wall 120 slopes in a direction from the bearing surface 118 to the hinge 122 towards the interior of the container 100. The slope of the first wall 120 may be curved or linear, or a combination of curved and linear sections. The first wall 120 may include indented ribs 132 to add strength to the base 108, the first wall 120, and the container 100. Typically, when plastic is formed as ribs, as opposed to a flat or smooth surface, the rigidity of the plastic increases in the region around the ribs. Thus, ribs 132 improve the structural integrity of the base 108, and analogously, the ribs 114 strengthen the container body 106 for similar reasons.


In one embodiment, the first wall 120 includes support braces 130 between ribs 132. As depicted, the ribs 132 and the support braces 130 are adjoining. The support braces 130 extend substantially from the bearing surface 118 to the hinge 122. The ribs 132 also extend substantially from the bearing surface 118 to the hinge 122. However, in the depicted embodiment, the ribs 132 follow substantially a straight line between the bearing surface 118 and the hinge 122, whereas the support braces 130 are a two part revolved surface formed on the first wall 120. The support braces 130 are two substantially flat sections that intersect at an angle and extend outward from the straight line between the bearing surface 118 and the hinge 122.


The hinge 122 of the base 108 is located at the intersection of the first wall 120 and the second wall 124. The hinge 122 is the location about which the second wall 124 is repositioned after the container 100 is hot-filled and sealed, as will be discussed later in detail. The hinge 122 is depicted as a circular ring that is offset from the bearing surface 118. However, the hinge 122 may be other symmetrical or asymmetrical shapes, as will be appreciated by those of skill in the art.


Prior to repositioning, the second wall 124 slopes in a direction away from the hinge 122, which is also away from the interior of the container 100. The second wall 124 slopes in the direction of the section 126. The slope of the second wall 124 may be curved or linear, or a combination of curved and linear sections, as will be appreciated by those of skill in the art. In the depicted embodiment, the second wall 124 slopes substantially linearly from the hinge 122 to the section 126. The second wall 124 in the illustrated embodiment also includes creases 128 that facilitate the repositioning of the second wall 124 about the hinge 122. The creases 128 are adapted to flex during repositioning of the second wall 124.


The section 126 is centrally located within the second wall 124, and may be concave, convex, or flat relative to the interior of the container 100. The section 126 is adapted to receive a mechanical device that repositions the second wall 124 about the hinge 122. The mechanical device may apply a force on the section 126 to reposition the second wall 124.


The structure of the base 108 is adapted to partially reduce an internal vacuum pressure experienced by the container 100 during hot-fill processing. After the container 100 is hot-filled with a product and sealed with a closure, such as, for example, a cap, the product begins to cool within the container 100. Cooling of the product creates an internal vacuum pressure within the container 100 due to a reduction in product volume caused by the cooling and contraction of the product. The internal vacuum pressure within the container 100 tends to cause the container 100 to collapse inwardly.


To overcome a portion of the internal vacuum pressure within the container 100, the second wall 124 may be repositioned about the hinge 122. FIG. 1C illustrates an exemplary embodiment of the second wall 124 after repositioning about the hinge 122. During repositioning, the second wall 124 is moved from a position extending outward from the container 100 to a position extending inward into the interior of the container 100.


Inwardly repositioning the second wall 124 reduces the amount of volume within the interior of the container 100. This reduction in volume partially reduces the internal vacuum pressure within the container 100 caused by the volumetric shrinkage of the cooling product. The amount of volume reduced relates to the volume of the region within the base 108 of the container 100 bounded by the second wall 124 and the section 126. The volume reduced relates to the difference of internal volume between the container 100 shown in FIG. 1B with the second wall 124 extending outward, and the container 100 shown in FIG. 1C with the second wall 124 extending inward into the interior of the container 100.


The volume of the space bounded by the second wall 124 and the section 126 may be used to control the amount of volumetric pressure reduction within the container 100. The larger the volume of the space bounded by the second wall 124 and the section 126, the larger the reduction of internal pressure. This may be used to control the amount of ribs 114 on the remainder of the container 100, and also may be used to affect the size of the vacuum panel panels 116 required to meet the needs of customers and hot-filling processors. In particular, by partially accommodating the pressure changes by use of a base according to the invention, the number or size of ribs and/or vacuum panels can be reduced. Persons skilled in the art can thus calculate the amount of the volumetric change achievable by repositioning of the second wall, and adjust the container design accordingly.


Substantially no net movement or change in location of the first wall 120 during or after repositioning of the second wall 124 because of the rigidity of the first wall 120. In one embodiment, the strength of the first wall 120 prevents deformation of the base 108 during inversion. Applying a force to section 126 to invert the second wall 124 creates stress on the plastic material of the container 100. Deformation of the container 100 may cause folding of the bearing surface 118, buckling of the plastic in the base 108, or other deformations in the container 100. To prevent deformations, the structure of the base 108 including the ribs 132 and the support braces 130 provides the first wall 120 with sufficient strength to prevent deformation of the container 100 and the base 108 at, but not limited to, the bearing surface 118. This allows the container 100 and the first wall 120 to withstand the stresses created on the plastic during inversion and allows the container 100 to stably stand upright on a flat surface after inversion.


To compensate for the remainder of the vacuum not compensated for by repositioning the second wall 124, the container 100 also includes the vacuum panels 116 and the ribs 114. In response to internal vacuum pressure, the vacuum panels 116 flex inward to further reduce the volume of the container 100, and the strength of the ribs 114 is able to withstand the remaining vacuum pressure. Thus by using the vacuum panels 116 and the ribs 114 in combination with the repositionable second wall 124, the structural integrity of the container 100 is preserved while reducing the vacuum within the container 100. The repositionable second wall 124 allows for container manufacturers to incorporate fewer vacuum panels and ribs in their containers, while not sacrificing container shape or container integrity due to the internal vacuum pressure stresses caused by the hot-fill process. The repositionable second wall 124 also allows using less plastic material per container, which results in lower per container costs in the container itself, as well as in lower costs in transporting the lighter container.


In contrast with prior art solutions, the container 100 is able to stand stably upright on a flat surface prior to repositioning the second wall 124 without requiring a support mechanism for the container 100. FIG. 2 illustrates an exemplary embodiment of a cross sectional view of the container 100 prior to repositioning of the second wall 124 standing on a planar surface P according to the present invention. To allow the container 100 with a repositionable second wall 124 to stably stand upright on a flat surface, the section 126 and the second wall 124 do not extend outward from the container 100 beyond the bearing surface 118, thus allowing the bearing surface 118 of the container 100 to contact the flat surface. In one embodiment, at least a portion of the section 126 contacts the flat surface. The ability to stand stably on a flat surface is advantageous in that the bearing surface 118 is the area of the container 100 designed to bear the load of the container and of the hot-filled product. By not having the section 126 extending beyond the bearing surface 118, the container 100 can be transported in an upright position prior to and during processing without requiring a support mechanism to keep the container 100 from falling over, and results in cost savings by eliminating the support mechanism to hold the container upright. The base 108 of the container 100 provides the benefit of reduced internal vacuum pressure caused by the hot-fill process and allows the container to stably stand on a flat surface for transport between container processing machines.



FIGS. 3A-3G illustrate alternative exemplary embodiments for the structure of the base 108 according to the present invention. Each of bases 308A-G includes features similar to those in base 108 of FIGS. 1A-1C. Most notably, FIGS. 3A-3G differ in the structure of the support braces 330A-G and in the ribs 332A-G from the previously described base 108. FIG. 3A illustrates a first wall 320A of base 308A including alternating flat protruding support braces 330A and flat recessed ribs 332A. FIG. 3B illustrates first wall 320B of a base 308B including pyramidally shaped ribs 332B and trapeziodally shaped support braces 330B. FIG. 3C illustrates a first wall 320C of base 308C including multiple circularly shaped concentric ridges 340C. FIG. 3D illustrates a first wall 320D of a base 308D that bows inward toward the interior of the container from a bearing surface 318D to the hinge 322D without any ribs or support braces. FIG. 3E illustrates a first wall 320E of base 308E including ribs 332E and support braces 330E. The support braces 330E narrow at the bearing surface 318E and at the hinge 322E and flare out in the middle therebetween. The ribs 332E flare out at the bearing surface 318E and at the hinge 322E and narrow in the middle therebetween. FIG. 3F illustrates a first wall 320F including flat support braces 330F between ribs 332F each having three square concave indentations into the interior of the container. A base 308G as illustrated in FIG. 3G includes a bearing surface 318 and a first wall 320G having creases 328. The creases 328 in the first wall 320G are similar to the creases 128 of the second wall 124 in the embodiment depicted in FIG. 1B. It is noted that FIGS. 3A-3G are exemplary embodiments of base structures according to the present invention, and that other embodiments having symmetrical, asymmetrical, non-circular, or other shapes may be used as will be appreciated by those skilled in the art.


The container 100 may be formed of plastic materials known in the art. The container 100 may have, for example, a one-piece construction and can be prepared from a monolayer plastic material, such as a polyamide, for example, nylon; a polyolefin such as polyethylene, for example, low density polyethylene (LDPE) or high density polyethylene (HDPE), or polypropylene; a polyester, for example polyethylene terephthalate (PET), polyethylene naphtalate (PEN); or others, which can also include additives to vary the physical or chemical properties of the material. For example, some plastic resins can be modified to improve the oxygen permeability. Alternatively, the container 100 can be prepared from a multilayer plastic material. The layers can be any plastic material, including virgin, recycled and reground material, and can include plastics or other materials with additives to improve physical properties of the container. In addition to the above-mentioned materials, other materials often used in multilayer plastic containers include, for example, ethylvinyl alcohol (EVOH) and tie layers or binders to hold together materials that are subject to delamination when used in adjacent layers. A coating may be applied over the monolayer or multilayer material, for example to introduce oxygen barrier properties.


The container 100 may be formed by any plastic molding process. The container 100 may be formed by a stretch blow molding process where warm gas is used to stretch a plastic preform into a container mold. The preform may have a threaded top, or may use a continuous plastic tube. Blow molding the plastic tube may involve inserting a needle into the plastic tube, and forcing gas through the needle to expand the plastic tube to take the shape of a mold for a container. Additionally, other blow molding techniques may be used for forming the container 100, including injection blow molding, stretch blow molding, or extrusion blow molding, as will be appreciated by those of skill in the art.



FIG. 4 is a flow chart of a method 400 according to exemplary embodiments of the invention. The method can start at S402 and proceed to S404. At S404 hot filling of the container can take place. The container can be hot filled substantially as described above. The method may proceed to S406. At S406, the container can be capped or sealed substantially as described above, for example, with a cap. The method may proceed to S408. At S408 a vacuum may be created in the container, substantially as described above, such as by cooling. The method may proceed to S410. At S410 the container may be conveyed or transported, substantially as described above. The method may proceed to S412. At S412, a portion of the vacuum may be reduced or otherwise eliminated, substantially as described above. For example, a portion of the container may be repositioned or inverted to reduce a portion of the vacuum. As another example, a portion of the container may move to reduce a portion of the vacuum. The method may end at S414.


The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Relative terminology and directional words, such as upper, below, interior, etc., are used in the application as a means of describing the present invention, and not of limitation. Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non-limiting. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.

Claims
  • 1. A method of compensating for vacuum pressure changes within a container, the container including a neck portion, a body portion, and a base portion, the base portion forming a bearing surface for the container and having a bottom end thereof with a hinge and a base wall, the base wall being adapted to be repositioned about the hinge from a first position extending outwardly to a second position extending inwardly, the method comprising: hot filling the container with a product;sealing the container with a closure;cooling the hot filled container; andrepositioning the base wall about the hinge from the first position to the second position, thereby reducing the negative internal pressure of the container,wherein prior to said repositioning, the container is adapted to stand upright on a flat surface; andwherein the base wall includes a plurality of creases to facilitate repositioning thereof, the creases being adapted to flex during repositioning of the base wall.
  • 2. The method of claim 1, wherein in the first position no portion of the base wall extends to the bearing surface of the base portion of the container.
  • 3. The method of claim 1, wherein in the first position no portion of the base wall extends past the bearing surface of the base portion of the container.
  • 4. The method of claim 1, wherein said repositioning involves a mechanical device operable to apply a force to the base wall to reposition the base wall from the first position to the second position.
  • 5. The method of claim 1, wherein the second position of the base wall is arranged more toward the interior of container than the first position.
  • 6. The method of claim 1, wherein the first position extends to a position coplanar with the bearing surface but no lower.
  • 7. A system for handling filled containers, each said container including a neck portion, a body portion, and a base portion, the base portion forming a bearing surface for the container and having a bottom end thereof with a hinge element, a base wall having a first wall portion and a second wall portion, and a section circumscribed by the second wall portion, the second wall portion and the section being adapted to be repositioned about the hinge element from a first position extending outwardly to a second position extending inwardly with substantially no movement of the first wall portion during the repositioning, the system comprising: filling means for filling the containers with a product, the product being at an elevated temperature;sealing means for sealing the filled containers using a cap;vacuum creating means for creating a vacuum in each of the filled and sealed containers by cooling;conveying means for conveying the containers having vacuums created therein with the second wall portion and the section in a first position, the containers being conveyed such that their bearing surfaces stand on a flat surface, wherein, in the first position, no portion of the second wall portion and the section extend below the bearing surface of the base portion of the container; andrepositioning means for repositioning the second wall portion and the section of each container from the first position to a second position partially to reduce the vacuum, the repositioning being done after the containers are conveyed by said conveying means,wherein the second wall portion includes a plurality of creases to facilitate repositioning thereof, the creases being adapted to flex during repositioning of the second wall portion.
  • 8. The system of claim 7, wherein, in the first position, no portion of the second wall portion and the section extend to the bearing surface of the base portion of the container.
  • 9. The system of claim 7, wherein said repositioning means is a mechanical device operable to apply a force to the section to reposition the second wall portion and the section from the first position to the second position.
  • 10. The system of claim 7, wherein, the second position of the section is arranged more toward the interior of container than the first position.
  • 11. The system of claim 7, wherein, in the first position, a portion of the section is coplanar with the bearing surface.
  • 12. A method for handling a plastic container comprising: hot-filling the plastic container, the plastic container including a body and a base, the base forming a standing surface for the plastic container and including a bottom end with a moveable element, the moveable element being adapted to be inverted and including a plurality of creases to facilitate the inverting, the creases being adapted to flex during the inverting;capping the hot-filled plastic container;creating an internal vacuum in the hot-filled and capped plastic container by cooling;transporting the plastic container having an internal vacuum; andinverting the moveable element from a first position extending outwardly to a second position extending inwardly to reduce the internal vacuum.
  • 13. The method of claim 12, wherein during said hot filling, said capping, said creating a vacuum, said transporting, and said inverting, the moveable element is above the standing surface at all times.
  • 14. The method of claim 12, wherein during said hot filling, said capping, said creating a vacuum, said transporting, and said inverting, the moveable element does not extend below the standing surface.
  • 15. The method of claim 12, wherein the bottom end of the base further includes a non moveable element and a hinge element, the non-moveable element sloping in a direction from the standing surface to the moveable element toward the interior of the container and circumscribing the hinge element and the hinge element circumscribing the moveable element, said inverting including moving the moveable element from a first position to a second position, said moving being performed such that substantially no movement of the non-moveable element occurs, and such that the moveable element moves about the hinge element the non-moveable element sloping in a direction from the standing surface to the moveable element toward the interior of the container.
  • 16. The method of claim 15, wherein the moveable element includes radial ribs to increase rigidity.
  • 17. The method of claim 12, wherein said transporting includes the standing surface of the plastic container resting on a flat surface, with the moveable element at or above the standing surface.
  • 18. The method of claim 12, wherein the moveable element is inverted to a position coplanar with the bearing surface but no lower.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a division of application Ser. No. 11/249,342 filed Oct. 14, 2005, now U.S. Pat. No. 7,900,425, issued on Mar. 8, 2011, the entire content of which is hereby incorporated by reference into the present application.

US Referenced Citations (281)
Number Name Date Kind
1499239 Malmquist Jun 1924 A
2142257 Saeta Jan 1937 A
D110624 Mekeel, Jr. Jul 1938 S
2124959 Vogel Jul 1938 A
2378324 Ray et al. Jun 1945 A
2880902 Owsen Apr 1959 A
2960248 Kuhlman Nov 1960 A
2971671 Shakman Feb 1961 A
2982440 Harrison May 1961 A
3043461 Glassco Jul 1962 A
3081002 Tauschinski et al. Mar 1963 A
3090478 Stanley May 1963 A
3142371 Rice et al. Jul 1964 A
3174655 Hurschman Mar 1965 A
3198861 Marvel Aug 1965 A
3201111 Afton Aug 1965 A
3301293 Santelli Jan 1967 A
3325031 Singier Jun 1967 A
3397724 Bolen et al. Aug 1968 A
3409167 Blanchard Nov 1968 A
3417893 Lieberman Dec 1968 A
3426939 Young Feb 1969 A
3441982 Tsukahara et al. May 1969 A
3468443 Marcus Sep 1969 A
3483908 Donovan Dec 1969 A
3485355 Stewart Dec 1969 A
3693828 Kneusel et al. Sep 1972 A
3704140 Petit et al. Nov 1972 A
3727783 Carmichael Apr 1973 A
3819789 Parker Jun 1974 A
3904069 Toukmanian Sep 1975 A
3918920 Barber Nov 1975 A
3935955 Das Feb 1976 A
3941237 MacGregor, Jr. Mar 1976 A
3942673 Lyu et al. Mar 1976 A
3949033 Uhlig Apr 1976 A
3956441 Uhlig May 1976 A
4036926 Chang Jul 1977 A
4037752 Dulmaine et al. Jul 1977 A
4117062 Uhlig Sep 1978 A
4123217 Fischer et al. Oct 1978 A
4125632 Vosti et al. Nov 1978 A
4134510 Chang Jan 1979 A
4158624 Ford et al. Jun 1979 A
4170622 Uhlig Oct 1979 A
4174782 Obsomer Nov 1979 A
4219137 Hutchens Aug 1980 A
4231483 Dechenne et al. Nov 1980 A
4247012 Alberghini Jan 1981 A
4301933 Yoshino et al. Nov 1981 A
4318489 Snyder et al. Mar 1982 A
4318882 Agrawal et al. Mar 1982 A
4338765 Ohmori et al. Jul 1982 A
4355728 Ota et al. Oct 1982 A
4377191 Yamaguchi Mar 1983 A
4378328 Przytulla et al. Mar 1983 A
4381061 Cerny et al. Apr 1983 A
D269158 Gaunt et al. May 1983 S
4386701 Galer Jun 1983 A
4436216 Chang Mar 1984 A
4444308 MacEwen Apr 1984 A
4450878 Takada et al. May 1984 A
4465199 Aoki Aug 1984 A
4497621 Kudert et al. Feb 1985 A
4497855 Agrawal et al. Feb 1985 A
4525401 Pocock et al. Jun 1985 A
4542029 Caner et al. Sep 1985 A
4547333 Takada Oct 1985 A
4610366 Estes et al. Sep 1986 A
4628669 Herron et al. Dec 1986 A
4642968 McHenry et al. Feb 1987 A
4645078 Reyner Feb 1987 A
4667454 McHenry et al. May 1987 A
4684025 Copland et al. Aug 1987 A
4685273 Caner et al. Aug 1987 A
D292378 Brandt et al. Oct 1987 S
4701121 Jakobsen et al. Oct 1987 A
4723661 Hoppmann et al. Feb 1988 A
4724855 Jackson et al. Feb 1988 A
4747507 Fitzgerald et al. May 1988 A
4749092 Sugiura et al. Jun 1988 A
4769206 Reymann et al. Sep 1988 A
4773458 Touzani Sep 1988 A
4785949 Krishnakumar et al. Nov 1988 A
4785950 Miller et al. Nov 1988 A
4807424 Robinson et al. Feb 1989 A
4813556 Lawrence Mar 1989 A
4831050 Cassidy et al. May 1989 A
4836398 Leftault, Jr. et al. Jun 1989 A
4840289 Fait et al. Jun 1989 A
4850493 Howard, Jr. Jul 1989 A
4850494 Howard, Jr. Jul 1989 A
4865206 Behm et al. Sep 1989 A
4867323 Powers Sep 1989 A
4880129 McHenry et al. Nov 1989 A
4887730 Touzani Dec 1989 A
4892205 Powers et al. Jan 1990 A
4896205 Weber Jan 1990 A
4921147 Poirier May 1990 A
4962863 Wendling et al. Oct 1990 A
4967538 Leftault, Jr. et al. Nov 1990 A
4978015 Walker Dec 1990 A
4997692 Yoshino Mar 1991 A
5004109 Bartley et al. Apr 1991 A
5005716 Eberle Apr 1991 A
5014868 Wittig et al. May 1991 A
5024340 Alberghini et al. Jun 1991 A
5033254 Zenger Jul 1991 A
5060453 Alberghini et al. Oct 1991 A
5067622 Garver et al. Nov 1991 A
5090180 Sörensen Feb 1992 A
5092474 Leigner Mar 1992 A
5122327 Spina et al. Jun 1992 A
5133468 Brunson et al. Jul 1992 A
5141121 Brown et al. Aug 1992 A
5178290 Ota et al. Jan 1993 A
5199587 Ota et al. Apr 1993 A
5199588 Hayashi Apr 1993 A
5201438 Norwood Apr 1993 A
5217737 Gygax et al. Jun 1993 A
5234126 Jonas et al. Aug 1993 A
5244106 Takacs Sep 1993 A
5251424 Zenger et al. Oct 1993 A
5255889 Collette et al. Oct 1993 A
5261544 Weaver, Jr. Nov 1993 A
5279433 Krishnakumar et al. Jan 1994 A
5281387 Collette et al. Jan 1994 A
5310043 Alcorn May 1994 A
5333761 Davis et al. Aug 1994 A
5337909 Vailliencourt Aug 1994 A
5337924 Dickie Aug 1994 A
5341946 Vailliencourt et al. Aug 1994 A
5389332 Amari et al. Feb 1995 A
5392937 Prevot et al. Feb 1995 A
5407086 Ota et al. Apr 1995 A
5411699 Collette et al. May 1995 A
5454481 Hsu Oct 1995 A
5472105 Krishnakumar et al. Dec 1995 A
5472181 Lowell Dec 1995 A
RE35140 Powers, Jr. Jan 1996 E
5484052 Pawloski et al. Jan 1996 A
5492245 Kalkanis Feb 1996 A
5503283 Semersky Apr 1996 A
5543107 Malik et al. Aug 1996 A
5593063 Claydon et al. Jan 1997 A
5598941 Semersky et al. Feb 1997 A
5632397 Fandeux et al. May 1997 A
5642826 Melrose Jul 1997 A
5672730 Cottman Sep 1997 A
5687874 Omori et al. Nov 1997 A
5690244 Darr Nov 1997 A
5704504 Bueno Jan 1998 A
5713480 Petre et al. Feb 1998 A
5730314 Wiemann et al. Mar 1998 A
5730914 Ruppman, Sr. Mar 1998 A
5735420 Nakamaki et al. Apr 1998 A
5737827 Kuse et al. Apr 1998 A
5758802 Wallays Jun 1998 A
5762221 Tobias et al. Jun 1998 A
5780130 Hansen et al. Jul 1998 A
5785197 Slat Jul 1998 A
5819507 Kaneko et al. Oct 1998 A
5829614 Collette et al. Nov 1998 A
5860556 Robbins, III Jan 1999 A
5887739 Prevot et al. Mar 1999 A
5888598 Brewster et al. Mar 1999 A
5897090 Smith et al. Apr 1999 A
5906286 Matsuno et al. May 1999 A
5908128 Krishnakumar et al. Jun 1999 A
D415030 Searle et al. Oct 1999 S
5971184 Krishnakumar et al. Oct 1999 A
5976653 Collette et al. Nov 1999 A
RE36639 Okhai Apr 2000 E
6045001 Seul Apr 2000 A
6065624 Steinke May 2000 A
6068110 Kumakiri et al. May 2000 A
6074596 Jacquet Jun 2000 A
6077554 Wiemann et al. Jun 2000 A
6090334 Matsuno et al. Jul 2000 A
6105815 Mazda Aug 2000 A
6176382 Bazlur Rashid Jan 2001 B1
6213325 Cheng et al. Apr 2001 B1
6217818 Collette et al. Apr 2001 B1
6228317 Smith et al. May 2001 B1
6230912 Rashid May 2001 B1
6277321 Vailliencourt et al. Aug 2001 B1
6298638 Bettle Oct 2001 B1
6375025 Mooney Apr 2002 B1
6390316 Mooney May 2002 B1
6413466 Boyd et al. Jul 2002 B1
6439413 Prevot et al. Aug 2002 B1
6467639 Mooney Oct 2002 B2
6485669 Boyd et al. Nov 2002 B1
6502369 Andison et al. Jan 2003 B1
6514451 Boyd et al. Feb 2003 B1
6585124 Boyd et al. Jul 2003 B2
6595380 Silvers Jul 2003 B2
6612451 Tobias et al. Sep 2003 B2
6635217 Britton Oct 2003 B1
6662960 Hong et al. Dec 2003 B2
6749075 Bourque et al. Jun 2004 B2
6749780 Tobias Jun 2004 B2
6763968 Boyd et al. Jul 2004 B1
6769561 Futral et al. Aug 2004 B2
6779673 Melrose et al. Aug 2004 B2
6923334 Melrose et al. Aug 2005 B2
6942116 Lisch et al. Sep 2005 B2
6983858 Slat et al. Jan 2006 B2
7051073 Dutta May 2006 B1
7051889 Boukobza May 2006 B2
D522368 Darr et al. Jun 2006 S
7073675 Trude Jul 2006 B2
7077279 Melrose Jul 2006 B2
7137520 Melrose Nov 2006 B1
7140505 Roubal et al. Nov 2006 B2
7150372 Lisch et al. Dec 2006 B2
7159374 Abercrombie, III et al. Jan 2007 B2
D538168 Davis et al. Mar 2007 S
D547664 Davis et al. Jul 2007 S
7350657 Eaton et al. Apr 2008 B2
D572599 Melrose Jul 2008 S
7416089 Kraft et al. Aug 2008 B2
D576041 Melrose et al. Sep 2008 S
7451886 Lisch et al. Nov 2008 B2
7543713 Trude et al. Jun 2009 B2
7574846 Sheets et al. Aug 2009 B2
7735304 Kelley et al. Jun 2010 B2
7799264 Trude Sep 2010 B2
D641244 Bysick et al. Jul 2011 S
20010035391 Young et al. Nov 2001 A1
20020074336 Silvers Jun 2002 A1
20020096486 Bourque et al. Jul 2002 A1
20020153343 Tobias et al. Oct 2002 A1
20020158038 Heisel et al. Oct 2002 A1
20030015491 Melrose et al. Jan 2003 A1
20030186006 Schmidt et al. Oct 2003 A1
20030196926 Tobias et al. Oct 2003 A1
20030205550 Prevot et al. Nov 2003 A1
20030217947 Ishikawa et al. Nov 2003 A1
20040000533 Kamineni et al. Jan 2004 A1
20040016716 Melrose et al. Jan 2004 A1
20040074864 Melrose et al. Apr 2004 A1
20040129669 Kelley et al. Jul 2004 A1
20040149677 Slat et al. Aug 2004 A1
20040173565 Semersky et al. Sep 2004 A1
20040211746 Trude Oct 2004 A1
20040232103 Lisch et al. Nov 2004 A1
20050211662 Eaton et al. Sep 2005 A1
20050218108 Bangi et al. Oct 2005 A1
20060006133 Lisch et al. Jan 2006 A1
20060138074 Melrose Jun 2006 A1
20060151425 Kelley et al. Jul 2006 A1
20060231985 Kelley Oct 2006 A1
20060243698 Melrose Nov 2006 A1
20060255005 Melrose et al. Nov 2006 A1
20060261031 Melrose Nov 2006 A1
20070017892 Melrose Jan 2007 A1
20070045222 Denner et al. Mar 2007 A1
20070045312 Abercrombie, III et al. Mar 2007 A1
20070051073 Kelley et al. Mar 2007 A1
20070084821 Bysick et al. Apr 2007 A1
20070125742 Simpson, Jr. et al. Jun 2007 A1
20070125743 Pritchett, Jr. et al. Jun 2007 A1
20070131644 Melrose Jun 2007 A1
20070181403 Sheets et al. Aug 2007 A1
20070199915 Denner et al. Aug 2007 A1
20070199916 Denner et al. Aug 2007 A1
20070215571 Trude Sep 2007 A1
20070235905 Trude et al. Oct 2007 A1
20080047964 Denner et al. Feb 2008 A1
20080156847 Hawk et al. Jul 2008 A1
20080257856 Melrose et al. Oct 2008 A1
20090202766 Beuerle et al. Aug 2009 A1
20090293436 Miyazaki et al. Dec 2009 A1
20100116778 Melrose May 2010 A1
20100163513 Pedmo Jul 2010 A1
20100170199 Kelley et al. Jul 2010 A1
20100213204 Melrose Aug 2010 A1
20100237083 Trude et al. Sep 2010 A1
20110049083 Scott et al. Mar 2011 A1
20110094618 Melrose Apr 2011 A1
Foreign Referenced Citations (107)
Number Date Country
2002257159 Apr 2003 AU
2077717 Mar 1993 CA
1761753 Jan 1972 DE
P2102319.8 Aug 1972 DE
3215866 Nov 1983 DE
225 155 Jun 1987 EP
225155 Jun 1987 EP
346518 Dec 1989 EP
0 502 391 Sep 1992 EP
0 505 054 Sep 1992 EP
0521642 Jan 1993 EP
0 551 788 Jul 1993 EP
0666222 Feb 1994 EP
0 739 703 Oct 1996 EP
0 609 348 Feb 1997 EP
0916406 May 1999 EP
0957030 Nov 1999 EP
1 063 076 Dec 2000 EP
1571499 Jun 1969 FR
2607109 May 1988 FR
781103 Aug 1957 GB
1 113988 May 1968 GB
2050919 Jan 1981 GB
2372977 Sep 2002 GB
48-31050 Sep 1973 JP
49-28628 Jul 1974 JP
54-72181 Jun 1979 JP
35656830 May 1981 JP
S56-62911 May 1981 JP
56-72730 Jun 1981 JP
54-070185 Jan 1982 JP
57-210829 Jan 1982 JP
57-37827 Feb 1982 JP
57-37827 Feb 1982 JP
57-0177730 Feb 1982 JP
57-126310 Aug 1982 JP
58-055005 Apr 1983 JP
61-192539 Aug 1986 JP
63-189224 Aug 1988 JP
64-004662 Feb 1989 JP
3-43342 Feb 1991 JP
3-43342 Feb 1991 JP
03-076625 Apr 1991 JP
4-10012 Jan 1992 JP
5-193694 Aug 1993 JP
53-10239 Nov 1993 JP
06-270235 Sep 1994 JP
6-336238 Dec 1994 JP
07-300121 Nov 1995 JP
H08-048322 Feb 1996 JP
08-244747 Sep 1996 JP
8-253220 Oct 1996 JP
8-282633 Oct 1996 JP
09-039934 Feb 1997 JP
9-110045 Apr 1997 JP
09039934 Oct 1997 JP
10-167226 Jun 1998 JP
10181734 Jul 1998 JP
10-230919 Sep 1998 JP
3056271 Nov 1998 JP
11-218537 Aug 1999 JP
2000229615 Aug 2000 JP
2002-127237 May 2002 JP
2002-2160717 Jun 2002 JP
2002-326618 Nov 2002 JP
2003-095238 Apr 2003 JP
2004-026307 Jan 2004 JP
2006-501109 Jan 2006 JP
2007-216981 Aug 2007 JP
2008-189721 Aug 2008 JP
2009-001639 Jan 2009 JP
240448 Jun 1995 NZ
296014 Oct 1998 NZ
335565 Oct 1999 NZ
506684 Sep 2001 NZ
512423 Sep 2001 NZ
521694 Oct 2003 NZ
WO2004028910 Apr 2004 NZ
PCTGB9201977 May 1993 WO
WO 9309031 May 1993 WO
WO 9312975 Jul 1993 WO
WO 9405555 Mar 1994 WO
WO 9406617 Mar 1994 WO
WO 9703885 Feb 1997 WO
WO 9714617 Apr 1997 WO
WO 9734808 Sep 1997 WO
WO 9734808 Sep 1997 WO
WO 9921770 May 1999 WO
WO 0038902 Jul 2000 WO
WO 0051895 Sep 2000 WO
WO 0112531 Feb 2001 WO
WO 0140081 Jun 2001 WO
WO 0174689 Oct 2001 WO
WO 0202418 Jan 2002 WO
WO 0218213 Mar 2002 WO
WO 02085755 Oct 2002 WO
PCTNZ2003000220 Apr 2004 WO
WO 2004028910 Apr 2004 WO
WO 2004106176 Sep 2004 WO
WO 2004106175 Dec 2004 WO
WO 2005012091 Feb 2005 WO
WO 2005025999 Mar 2005 WO
WO 2005087628 Sep 2005 WO
WO 2006113428 Oct 2006 WO
WO 2007047574 Apr 2007 WO
WO 2007127337 Nov 2007 WO
WO 2010058098 May 2010 WO
Non-Patent Literature Citations (56)
Entry
International Search Report and Written Opinion dated Sep. 8, 2009 for PCT/US2009/051023.
Office Action dated Sep. 21, 2010, U.S. Appl. No. 11/249,342.
Final Office Action dated Jul. 7, 2010, U.S. Appl. No. 11/249,342.
Office Action dated Jan. 12, 2010, U.S. Appl. No. 11/249,342.
Office Action dated Jun. 10, 2009, U.S. Appl. No. 11/249,342.
Examiner's Report dated Feb. 15, 2011 for application No. AU 2006304383.
Office Action dated Oct. 31, 2011 in Australian Patent Application No. 2011203263.
Office Action dated Jul. 19, 2011 in Japanese Patent Application No. 2008-535769.
Office Action dated Dec. 6, 2011 in Japanese Patent Application No. 2008-535769.
A certified copy and contents of U.S. Appl. No. 60/220,326, filed Jul. 24, 2000 dated Oct. 29, 2008.
Final Office Action, Dated Jun. 12, 2008, U.S. Appl. No. 10/851,083, filed May 24, 2004.
Office Action, Dated Sep. 6, 2007, U.S. Appl. No. 10/851,083, filed May 24, 2004.
Office Action, Dated Oct. 27, 2008, U.S. Appl. No. 10/566,294, filed Sep. 5, 2006.
Final Office Action, Dated Sep. 9, 2008, U.S. Appl. No. 10/558,284, filed Oct. 20, 2006.
Office Action, Dated Jan. 25, 2008, U.S. Appl. No. 10/558,284, filed Oct. 20, 2006.
Manas Chanda & Salil K. Roy, Plastics Technology Handbook, Fourth Edition, 2007 CRC Press, Taylor & Francis Group, pp. 2-34-2-37.
Examination Report for New Zealand Application No. 550336 dated Mar. 26, 2009.
Examination Report for counterpart New Zealand Application No. 545528 dated Sep. 20, 2007.
Examination Report for counterpart New Zealand Application No. 569422 dated Sep. 29, 2009.
Office Action for U.S. Appl. No. 11/399,430 dated Sep. 4, 2009.
Office Action for Chinese Application No. 2006800380748 dated Jul. 10, 2009.
Examiner's Report for Australian Application No. 2006236674 dated Sep. 18, 2009.
Examiner's Report for Australian Application No. 2006236674 dated Nov. 6, 2009.
Office Action for Chinese Application No. 200680012360.7 dated Jul. 10, 2009.
Examination Report for New Zealand Application No. 563134 dated Aug. 3, 2009.
Office Action for U.S. Appl. No. 11/375,040 dated Dec. 1, 2009.
Office Action for European Application No. 07752979.0-2307 dated Aug. 21, 2009.
Final Office Action for U.S. Appl. No. 10/566,294 dated Sep. 10, 2009.
Office Action for U.S. Appl. No. 10/566,294 dated Apr. 21, 2009.
Final Office Action for U.S. Appl. No. 10/566,294 dated Feb. 13, 2009.
Official Notification for counterpart Japanese Application No. 2006-522084 dated May 19, 2009.
Examination Report for counterpart New Zealand Application No. 545528 dated Jul. 1, 2008.
Examination Report for counterpart New Zealand Application No. 569422 dated Jul. 1, 2008.
Office Action for U.S. Appl. No. 10/851,083 dated Nov. 28, 2008.
International Search Report for PCT/US2005/008374 dated Aug. 2, 2005.
IPRP (including Written Opinion) for PCT/US2005/008374 dated Sep. 13, 2006.
International Search Report for PCT/US2004/016405 dated Feb. 15, 2005.
IPRP (including Written Opinion) for PCT/US2004/016405 dated Nov. 25, 2005.
Office Action for Application No. EP 06 750 165.0-2307 dated Nov. 24, 2008.
IPRP (including Written Opinion) for PCT/US2006/040361 dated Apr. 16, 2008.
International Search Report for PCT/US2007/006318 dated Sep. 11, 2007.
IPRP (including Written Opinion) PCT/US2007/006318 dated Sep. 16, 2008.
International Search Report for PCT/US2006/014055 dated Dec. 7, 2006.
IPRP (including Written Opinion) PCT/US2006/014055 dated Oct. 16, 2007.
ISR for PCT/US2004/024581 dated Jul. 25, 2005.
IRPR (including Written Opinion) for PCT/US2004/024581 dated Jan. 30, 2006.
“Application and Development of PET Plastic Bottle,” Publication of Tsinghad Tongfang Optical Disc Co. Ltd., Issue 4, 2000, p. 41. (No English language translation available).
International Search Report for PCT/US06/40361 dated Feb. 26, 2007.
Isr and Written Opinion for PCT/US2010/020045 dated Mar. 15, 2010.
European Search Report for EPA 10185697.9 dated Mar. 21, 2011.
Office Action for Application No. AU 2006304383 dated Feb. 15, 2011.
Trial Decision dated Mar. 26, 2013 in japanese Patent Application No. 2008-535759.
Office Action dated Aug. 14, 2012 in Japanese Patent Application No. 2008-535769.
Nonfinal Office Action dated Sep. 24, 2012, in U.S. Appl. No. 12/184,368.
International Search Report and Written Opinion for PCT/US2012/050251 dated Nov. 16, 2012.
Final Rejection dated Nov. 14, 2012, in U.S. Appl. No. 12/916,528.
Related Publications (1)
Number Date Country
20110113731 A1 May 2011 US
Divisions (1)
Number Date Country
Parent 11249342 Oct 2005 US
Child 12964127 US