System and method for handling reel of pipe

Information

  • Patent Grant
  • 11767192
  • Patent Number
    11,767,192
  • Date Filed
    Tuesday, August 4, 2020
    4 years ago
  • Date Issued
    Tuesday, September 26, 2023
    a year ago
Abstract
A system includes a frame and a first pair of rollers coupled to a first side of the frame. The first pair of rollers is configured to support a first end of a pipe reel. The system also includes a first cradle disposed longitudinally between the first pair of rollers and a second pair of rollers coupled to a second side of the frame. The second pair of rollers is configured to support a second end of a pipe reel. The system also includes a second cradle disposed longitudinally between the second pair of rollers, a pipe guide coupled to a third side of the frame between the first and second sides, a pipe brake coupled to the frame, and a pipe re-spooler coupled to the frame.
Description
BACKGROUND

Flexible pipe is useful in a myriad of environments, including in the oil and gas industry. Flexible pipe may be durable and operational in harsh operating conditions and can accommodate high pressures and temperatures. Flexible pipe may be bundled and arranged into one or more coils to facilitate transporting and using the pipe.


Coils of pipe may be positioned in an “eye to the side” or “eye to the sky” orientation. When the flexible pipe is coiled and is disposed with its interior channel facing upwards, such that the coil is in a horizontal orientation, then the coils of pipe are referred to as being in an “eye to the sky” orientation. If, instead, the flexible pipe is coiled and disposed such that the interior channel is not facing upwards, such that the coil is in an upright or vertical orientation, then the coils of pipe are referred to as being in an “eye to the side” orientation.


The flexible pipe may be transported as coils to various sites for deployment (also referred to as uncoiling or unspooling). Different types of devices and vehicles are currently used for loading and transporting coils of pipe, but usually extra equipment and human manual labor is also involved in the process of loading or unloading such coils for transportation and/or deployment. Such coils of pipe are often quite large and heavy. Accordingly, there exists a need for an improved method and apparatus for loading and unloading coils of pipe.


SUMMARY

This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.


In one aspect, embodiments of the present disclosure relate to a system that includes a frame and a first pair of rollers coupled to a first side of the frame. The first pair of rollers is configured to support a first end of a pipe reel. The system also includes a first cradle disposed longitudinally between the first pair of rollers and a second pair of rollers coupled to a second side of the frame. The second pair of rollers is configured to support a second end of a pipe reel. The system also includes a second cradle disposed longitudinally between the second pair of rollers, a pipe guide coupled to a third side of the frame between the first and second sides, a pipe brake coupled to the frame, and a pipe re-spooler coupled to the frame.


In another aspect, embodiments of the present disclosure relate to a method that includes providing a pipe reel cradle. The pipe reel cradle includes a frame and a first pair of rollers coupled to a first side of the frame. The first pair of rollers is configured to support a first end of a pipe reel. The pipe reel cradle also includes a first cradle disposed longitudinally between the first pair of rollers and a second pair of rollers coupled to a second side of the frame. The second pair of rollers is configured to support a second end of a pipe reel. The pipe reel cradle also includes a second cradle disposed longitudinally between the second pair of rollers, a pipe guide coupled to a third side of the frame between the first and second sides, and a pipe brake coupled to the frame. The method also includes setting the pipe reel in the pipe reel cradle. A spoolable pipe is disposed about the pipe reel. The method also includes guiding the spoolable pipe through the pipe guide as spoolable pipe is removed from the pipe reel, rotating the pipe reel against the first and second pairs of rollers as spoolable pipe is removed from the pipe reel, and at least one of slowing or stopping rotation of the pipe reel by engaging the pipe brake against the pipe reel.


In another aspect, embodiments of the present disclosure relate to a method that includes providing a pipe reel cradle. The pipe reel cradle includes a frame and a first pair of rollers coupled to a first side of the frame. The first pair of rollers is configured to support a first end of a pipe reel. The pipe reel cradle also includes a first cradle disposed longitudinally between the first pair of rollers and a second pair of rollers coupled to a second side of the frame. The second pair of rollers is configured to support a second end of a pipe reel. The pipe reel cradle also includes a second cradle disposed longitudinally between the second pair of rollers, a pipe guide coupled to a third side of the frame between the first and second sides, and a pipe re-spooler coupled to the frame. The method also includes setting the pipe reel in the pipe reel cradle. A first portion of spoolable pipe is disposed about the pipe reel and a second portion of spoolable pipe extends away from the pipe reel. The method also includes engaging the pipe re-spooler against the pipe reel, rotating the pipe re-spooler to cause rotation of the pipe reel against the first and second pairs of rollers to re-spool the second portion onto the pipe reel, and guiding the second portion through the pipe guide as the section portion is re-spooled.


Other aspects and advantages of the claimed subject matter will be apparent from the following description and the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a pipe reel cradle according to embodiments of the present disclosure.



FIG. 2 is a perspective view of a reel of spoolable pipe according to embodiments of the present disclosure.



FIG. 3 is a perspective view of a pipe reel cradle according to embodiments of the present disclosure.



FIG. 4 is a perspective view of a pipe brake and pipe re-spooler of a pipe reel cradle according to embodiments of the present disclosure.



FIG. 5 is a perspective view of a pipe reel cradle being handled by a forklift according to embodiments of the present disclosure.



FIG. 6 is a perspective view of a rear side of a pipe reel cradle according to embodiments of the present disclosure.



FIG. 7 is a perspective view of a pipe reel cradle with a reel according to embodiments of the present disclosure.



FIG. 8 is a side perspective view of a pipe reel cradle with a pipe tension arm according to embodiments of the present disclosure.



FIG. 9 is a side perspective view of a pipe reel cradle with a retention shaft according to embodiments of the present disclosure.



FIG. 10 is a perspective view of a front side of a pipe reel cradle with a reel according to embodiments of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure relate generally to systems used for deploying reels of flexible pipe. Pipe reel cradles according to embodiments of the present disclosure may include a frame, rollers, cradles, a pipe guide, a pipe brake, and a pipe re-spooler.


Embodiments of the present disclosure will be described below with reference to the figures. In one aspect, embodiments disclosed herein relate to embodiments for deploying spoolable pipe using the pipe reel cradle.


As used herein, the term “coupled” or “coupled to” may indicate establishing either a direct or indirect connection, and is not limited to either unless expressly referenced as such. The term “set” may refer to one or more items. Wherever possible, like or identical reference numerals are used in the figures to identify common or the same elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale for purposes of clarification.



FIG. 1 illustrates a block diagram of an embodiment of a pipe reel cradle 10. As described in detail below, the pipe reel cradle 10 may be used to deploy spoolable pipe 12, which may refer to any type of flexible pipe or piping capable of being bent into a coil. The spoolable pipe 12 may be wound on a spool or reel 14. Such reels of spoolable pipe 12 may reduce the amount of space taken up by pipe during manufacturing, shipping, transportation, and deployment compared to rigid pipe that is not capable of being bent into a coil.


Pipe, as understood by those of ordinary skill, may be a tube to convey or transfer any water, gas, oil, or any type of fluid known to those skilled in the art. The spoolable pipe 12 may be made of any type of materials including without limitation plastics, metals, a combination thereof, composites (e.g., fiber reinforced composites), or other materials known in the art. One type of spoolable pipe 12 is flexible pipe, which is used frequently in many applications, including without limitation, both onshore and offshore oil and gas applications. Flexible pipe may include Bonded or Unbonded Flexible Pipe, Flexible Composite Pipe (FCP), Thermoplastic Composite Pipe (TCP), or Reinforced Thermoplastic Pipe (RTP). A FCP/RTP pipe may itself be generally composed of several layers. In one or more embodiments, a flexible pipe may include a high-density polyethylene (“HDPE”) liner having a reinforcement layer and an HDPE outer cover layer. Thus, flexible pipe may include different layers that may be made of a variety of materials and also may be treated for corrosion resistance. For example, in one or more embodiments, pipe used to make up a coil of pipe may have a corrosion protection shield layer that is disposed over another layer of steel reinforcement. In this steel-reinforced layer, helically wound steel strips may be placed over a liner made of thermoplastic pipe. Flexible pipe may be designed to handle a variety of pressures, temperatures, and conveyed fluids. Further, flexible pipe may offer unique features and benefits versus steel/carbon steel pipe lines in the area of corrosion resistance, flexibility, installation speed and re-usability. Another type of spoolable pipe is coiled tubing, which may be made of steel. Coiled tubing may also have a corrosion protection shield layer.


The pipe reel cradle 10 of FIG. 1 includes a frame 16 that provides a base for supporting components of the pipe reel cradle 10. For example, rollers 18 may be coupled to the frame 16 and be used to support the reel 14. Cradles 20 may also be coupled to the frame 16 and be disposed between the rollers 18. In addition, one or more pipe guides 22 may be coupled to the frame 16 and used to guide the spoolable pipe 12 during deployment from the reel 14. A pipe brake 24 may be coupled to the frame 16 and used to slow or stop rotation of the reel 14. Finally, a pipe re-spooler 26 may be coupled to the frame 16 and used to re-spool portions of spoolable pipe 12 back onto the reel 14. These components of the pipe reel cradle 10 are described in more detail below. In addition, although the rollers 18, pipe brake 24, and the pipe re-spooler 26 are described separately below, in certain embodiments, the rollers 18 may provide the functionality of one or both of the pipe brake 24 and the pipe re-spooler 26. In yet further embodiments, other optional equipment may be added to the pipe reel cradle 10 or coupled to the frame 16, such as a pipe re-rounder for re-rounding the spoolable pipe 12. In still further embodiments, one or more components may be omitted from the pipe reel cradle 10, such as the pipe brake 24 and/or the pipe re-spooler 26.



FIG. 2 illustrates a perspective view of an embodiment of the reel 14 of spoolable pipe 12. In many instances, a coil 40 of spoolable pipe 12 may be wound around the components of the reel 14. The coil 40 may be defined by an axial axis or direction 42, a radial axis or direction 44, and a circumferential axis or direction 46. The coil 40 may be wound around the reel 14 such that the interior channel of the coil 40 is concentric with a central bore of the reel 14. A reel, as understood by those of ordinary skill, may include a cylindrical drum, such as cylindrical drum 48, around which layers of pipe may be wrapped to form the coil 40. The reel 14 may include two substantially circular reel ends, namely a first reel end 50 and a second reel end 52 that are capable of turning about a shared axis. Accordingly, the first and second reel ends 50 and 52 may be attached to the cylindrical drum 48.


As shown in FIG. 2, a bore 54 is disposed in each of the first and second reel ends 50 and 52 at a substantially central position. In addition, the bores 54 for each of the first and second reel ends 50 and 52 are substantially aligned with each other (and may also be aligned with a central axis of cylindrical drum 48). Spoolable pipe 12 (e.g. flexible pipe) may be wound around the cylindrical drum 48 using any means known to those of ordinary skill in the art. In addition, the reel 14 may be defined by a reel width 56 and a reel diameter 58. In further embodiments, the reel ends 50 and 52 may be permanently or temporarily coupled to the cylindrical drum 48. In yet further embodiments, the pipe reel cradle 10 may be used with other spool-like devices similar to the reel 14, such as various embodiments of an expandable drum fitted with circular containment flanges.



FIG. 3 illustrates a perspective view of an embodiment of the pipe reel cradle 10, which may have a front side 70 and a rear side 72. In the illustrated embodiment, the frame 16 is made from several structural members 74 coupled to one another such that the pipe reel cradle 10 may support the other components of the pipe reel cradle 10, the weight of the reel 14, and the weight of the spoolable pipe 12, which the combined weight of all of these may exceed 22,000 pounds (9,979 kilograms). For example, the structural members 74 may be made from square or round steel tubing, steel I-beams, or composite structural members coupled to one another via various fastening techniques, such as, but not limited to, welding or threaded connections. The frame 16 may have a generally rectangular shape, but may have other shapes, such as circles, ovals, squares or other polygons.


The illustrated embodiment of the pipe reel cradle 10 includes a first pair of rollers 76 coupled to a first side 78 of the frame 16 and a second pair of rollers 80 coupled to a second side 82 of the frame 16. The first pair of rollers 76 may support the first reel end 50 and the second pair of rollers 80 may support the second reel end 52. Thus, widths 83 of the rollers 76 and 80 may be approximately equal to or greater than the widths of the first and second reel ends 50 and 52. For example, the widths 83 of the rollers 76 and 80 may be two, three, four or more times the nominal width of the first and second reel ends 50 and 52. The additional width 83 of the rollers 76 and 80 may be useful to accommodate reels 14 with first and second reel ends 50 and 52 that are not perpendicular to one another or to accommodate reels 14 of different reel widths 56. The first and second pairs of rollers 76 and 80 may be wheels configured to rotate against the first and second reel ends 50 and 52. For example, the first and second pairs of rollers 76 and 80 may rotate about axles 84 coupled to roller frames 86 that are coupled to the frame 16.


In certain embodiments, the first and second pairs of rollers 76 and 80 may be fixedly coupled to the frame 16 and in other embodiments, positions of the first and second pairs of rollers 76 and 80 may be adjustable. For example, the first and second pairs of rollers 76 and 80 may be moved radially 44 (e.g., up and down), which could be used to move the reel 14 radially 44, or the rollers 76 and 80 may be moved axially 42 (e.g., closer or farther apart from one another), which could be used to accommodate reels 14 of different reel widths 56. In certain embodiments, the rollers of each pair of rollers 76 and 80 may be adjusted closer or farther apart from one another, which could be used to accommodate reels 14 of different reel diameters 58. Adjustment of the first and second pairs of rollers 76 and 80 may be accomplished hydraulically or electrically. In further embodiments, the first and second pairs of rollers 76 and 80 may be shaped to match the first and second reel ends 50 and 52. In other words, the shape of the first and second pairs of rollers 76 and 80 may help prevent the reel 14 from moving axially 42. For example, the first and second pairs of rollers 76 and 80 may include a flange similar to a train wheel. In some embodiments, the rollers 76 and 80 may be shaped like hourglasses, which may also help to prevent the reel 14 from moving axially 42 in either direction. Rollers 76 and 80 with hourglass shapes may also provide for smoother rotation of the reel 14 with less possibility of binding. In certain embodiments, the roller frames 86 may help prevent the reel 14 from moving axially 42. For example, the roller frames 86 may include extensions 87 that extend away from the rollers 76 and 80 to help constrain movement of the first and second reel ends 50 and 52 between the extensions 87. In further embodiments, the extensions 87 may be flared outward from a centerline of the rollers 76 and 80 to provide a funnel shape to facilitate placement of the reel 14 onto the pipe reel cradle 10. In addition, the flared extensions 87 may constrain large movement of the first and second reel ends 50 and 52 without excessively contacting the first and second reel ends 50 and 52 during small axial 42 and/or radial 44 movement of the reel 14.


The illustrated embodiment of the pipe reel cradle 10 includes a first cradle 88 disposed longitudinally between the first pair of rollers 76 and a second cradle 90 disposed longitudinally between the second pair of rollers 80. The first and second cradles 88 and 90 may support the reel 14 if the reel 14 is not supported by the first and second pairs of rollers 76 and 80, such as if the first and second pairs of rollers 76 and 80 are lowered radially 44 or damaged or worn. Thus, the first and second cradles 88 and 90 have a curved or arcuate shape that generally corresponds to the shape of the first and second reel ends 50 and 52. In certain embodiments, the first and second cradles 88 and 90 may be manufactured with different radii of curvature to accommodate reels 14 of different reel diameters 58. In addition, widths 92 of the first and second cradles 88 and 90 may be approximately equal to or greater than the widths of the first and second reel ends 50 and 52. The first and second cradles 88 and 90 may be made from curved sheet metal or other suitable material coupled to the frame 16.


In the illustrated embodiment, the pipe reel cradle 10 includes four pipe guides 22, with two disposed at the front side 70 and two disposed at the rear side 72. In other embodiments, the pipe reel cradle 10 may include two pipe guides 22 at only the front side 70 or the rear side 72. During deployment, the spoolable pipe 12 is contained between the two pipe guides 22. In certain embodiments, the pipe guides 22 includes brackets 94 and rollers 96, with pairs of rollers 96 at the front side 70 or the rear side 72 facing each other. The rollers 96 help to reduce friction if the spoolable pipe 12 contacts the pipe guides 22 during deployment. In certain embodiments, the pipe guides 22 may be coupled to a pipe guide beam 98 of the frame 16 and the pipe guides 22 may be adjustable axially 42 along the pipe guide beam 98. For example, the pipe guides 22 may be moved closer to one another for narrower reels 14 or when additional containment of the spoolable pipe 12 between the pipe guides 22 is desired. In other embodiments, the pipe guides 22 may be fixed to the frame 16 or the pipe guide beam 98. In further embodiments, the pipe guides 22 may not include rollers 96. For example, the pipe guides 22 may be coated with a low-friction material or use other techniques for reducing friction, such as bearings.


As shown in FIG. 3, the pipe reel cradle 10 may also include two or more forklift tine pockets 100 coupled to the frame 16 to enable a forklift to be used to handle and move the pipe reel cradle 10. For example, two forklift tine pockets 100 may be located at the first side 78 and two forklift tine pockets 100 may be located at the second side 82. The forklift tine pockets 100 may be sized to accommodate tines of various sizes and also may be spaced apart from one another at an appropriate distance corresponding to commonly available forklifts. Additionally or alternatively, certain embodiments of the pipe reel cradle 10 may include one or more pad eyes 102 coupled to the frame 16 to enable the pipe reel cradle 10 to be lifted using a crane or similar equipment for handling and movement. The pad eyes 102 may be located at corners of the frame 16 to provide for even weight distribution during handling. In further embodiments, the pipe reel cradle 10 may include other anchors or attachment points for other applications. For example, the pipe reel cradle 10 may be removably coupled to a trailer bed, lowboy, or ship deck during transport or deployment. In addition, certain embodiments of the pipe reel cradle 10 may include various angle brackets or supports to enable multiple pipe reel cradles 10 to be stacked on top of one another during transport. The pipe brake 24 and pipe re-spooler 26 are described in more detail below.



FIG. 4 illustrates a perspective view of the pipe brake 24 and pipe re-spooler 26 of an embodiment of the pipe reel cradle 10. Both the pipe brake 24 and pipe re-spooler 26 are coupled to the frame 16. In the illustrated embodiment, two pipe brakes 24 are shown at the rear side 72 (as shown in FIG. 3). In other embodiments, different numbers of pipe brakes 24 may be used, such as 1, 3, or 4 pipe brakes 24, and the pipe brakes 24 may be disposed at other locations, such as the front side 70 or along one or both of the first and second cradles 88 and 90. For example, the first and second cradles 88 and 90 may have cut-outs through which the pipe brake 24 protrudes. As shown in FIG. 4, the pipe brake 24 includes a brake pad 120 coupled to a brake bracket 122 that is then coupled to a brake actuator 124. When braking (e.g., slowing or stopping) of the rotating reel 14 is desired, the pipe brake 24 may be actuated to bring the brake pad 120 in contact with the rotating first and second reel ends 50 and 52. Friction between the brake pad 120 and the first and second reel ends 50 and 52 then slows or stops rotation of the reel 14. The brake pad 120 may be made from various materials, such as, but not limited to, non-metallic materials, semi-metallic materials, fully metallic materials, or ceramic materials. The brake pad 120 may be detachably coupled to the brake bracket 122 to be easily replaced when worn. The brake actuator 124 may be an electric or hydraulic actuator or motor to enable movement of the brake pad 120 toward or away from the first and second reel ends 50 and 52. The brake actuator 124 also enables adjustment of the braking force against the reel 14. The brake bracket 122 may take different forms, but serves to support the brake pad 120 and the brake actuator 124. For example, the brake bracket 122 may be coupled to the roller frame 86 and the brake actuator 124 may be coupled to the frame 16. In certain embodiments, the pipe brakes 24 may be adjustable axially 42 to accommodate reels 14 of different reel widths 56. In further embodiments, the pipe brake 24 may be configured as a caliper brake with one or more calipers to engage the first and second reel ends 50 and 52. In yet further embodiments, the rollers 18 may include the functionality of the pipe brake 24. In other words, the rollers 18 may be powered or actuated such that slowing or stopping the rotation of the rollers 18 slows or stops rotation of the reel 14. In such embodiments, the surface of the rollers 18 may be made from a material similar to the brake pad 120 to provide sufficient friction between the rollers 18 and the first and second reel ends 50 and 52.


As shown in FIG. 4, the pipe re-spooler 26 includes a wheel 126 coupled to a re-spooler bracket 128 that is then coupled to a re-spooler actuator 130. In the illustrated embodiment, two pipe re-spoolers 26 are shown at the rear side 72 (as shown in FIG. 3). In other embodiments, different numbers of pipe re-spoolers 26 may be used, such as 1, 3, or 4 pipe re-spoolers 26, and the pipe re-spoolers 26 may be disposed at other locations, such as the front side 70 or along one or both of the first and second cradles 88 and 90. For example, the first and second cradles 88 and 90 may have cut-outs through which the wheel 126 protrudes. When re-spooling (e.g., placing spoolable pipe 12 that has been deployed back on the reel 14) is desired, the re-spooler actuator 130 may be actuated to cause the wheel 126 to rotate in an opposite direction from the desired direction of the reel 14. In certain embodiments, the re-spooler actuator 130 may also be used to bring the wheel 126 in contact with the first and second reel ends 50 and 52. Alternatively, the wheel 126 may be left in contact with the first and second reel ends 50 and 52 when not re-spooling, thereby allowing the wheel 126 to free spin (e.g., the re-spooler actuator 130 is not actuated). The re-spooler actuator 130 may also be used to adjust the speed of re-spooling (e.g., rotational speed of the reel 14).


The wheel 126 of the pipe re-spooler 26 may be made from various materials, such as, but not limited to, rubber, plastic, or metal. The material for the wheel 126 may be selected to provide sufficient friction or grip to be able to cause the reel 14 to rotate when the wheel 126 is rotated. In addition, the wheel 126 may have a flexible or compliant surface to accommodate variations in roundness of the first and second reel ends 50 and 52 and to provide additional contact surface area when the wheel 126 is pushed against the first and second reel ends 50 and 52. In one embodiment, the wheel 126 may be a pneumatic vehicle tire. In addition, the wheel 126 may be detachably coupled to the re-spooler bracket 128 to be easily replaced when worn. The re-spooler actuator 130 may be an electric or hydraulic actuator or motor to enable movement of the wheel 126 toward or away from the first and second reel ends 50 and 52. The re-spooler bracket 128 may take different forms, but serves to support the wheel 126 and the re-spooler actuator 130. For example, the re-spooler bracket 128 may be coupled to the frame 16. In certain embodiments, the pipe re-spoolers 26 may be adjustable axially 42 to accommodate reels 14 of different reel widths 56. In further embodiments, the rollers 18 may include the functionality of the pipe re-spooler 26. In other words, the rollers 18 may be powered or actuated such that rotation of the rollers 18 in a first direction causes rotation of the reel 14 in a second direction opposite from the first direction. In such embodiments, the surface of the rollers 18 may be made from a material similar to the wheel 126 to provide sufficient friction between the rollers 18 and the first and second reel ends 50 and 52.



FIG. 5 illustrates a perspective view of an embodiment of the pipe reel cradle 10 being handled by a forklift 140. As shown in FIG. 5, tines 142 of the forklift 140 are inserted into the forklift tine pockets 100. Thus, the pipe reel cradle 10 may be lifted from one surface by the forklift 140, moved away, and set down on another surface by the forklift 140. In certain embodiments, the tines 142 of the forklift 140 may be moved apart from one another to lock the pipe reel cradle 10 in place or another fastening or securing technique may be used to secure the pipe reel cradle 10 to the forklift 140.



FIG. 6 illustrates a perspective view of the rear side 72 of an embodiment of the pipe reel cradle 10. In the illustrated embodiment, the rollers 96 of the pipe guides 22 may be shaped as two conical frustums joined together at their narrow ends. Thus, the shape of the rollers 96 helps to maintain the deploying spoolable pipe 12 toward the middle of the rollers 96. In certain embodiments, one or more electrical cords 160 may be electrically connected to the electrical components of the pipe reel cradle, such as the brake actuator 124 or the re-spooler actuator 130. When components of the pipe reel cradle 10 are hydraulically-powered, one or more hydraulic hoses may be coupled to the pipe reel cradle 10. In some embodiments, certain functions of the pipe reel cradle 10 may be accomplished remotely via a wired or wireless remote control. In addition, FIG. 6 illustrates two pipe tension arms 162 that may be used with the pipe reel cradle 10, as described in detail below.



FIG. 7 illustrates a side perspective view of an embodiment of the pipe reel cradle 10 with the reel 14. As shown in FIG. 7, the first and second reel ends 50 and 52 rest on the rollers 18 (only first reel end 50 is visible). Thus, the rollers 18 enable the reel 14 to rotate as the spoolable pipe 12 is deployed from the reel 14. In contrast to other deployment methods, there is no rod that extends into the bore 54 to support the weight of the reel 14 and spoolable pipe 12. Instead, the rollers 18 of the pipe reel cradle 10 support the weight of the reel 14 and spoolable pipe 12. In addition, the wheel 126 of the pipe re-spooler 26 is shown in contact with the first and second reel ends 50 and 52. Further, a gap 164 is shown between the first and second reel ends 50 and 52 and the cradles 20. As discussed above, the reel 14 may not normally be in contact with the cradle 20 during deployment of the spoolable pipe 12. Instead, the cradles 20 may help support the reel 14 if the rollers 18 are intentionally or non-intentionally lowered radially 44 (e.g., if the rollers 18 are damaged or worn).



FIG. 8 illustrates a side perspective view of an embodiment of the pipe reel cradle 10 with the pipe tension arm 162. Although only one pipe tension arm 162 is shown in FIG. 8, a second pipe tension arm 162 may be used on the opposite side of the pipe reel cradle 10 in certain embodiments. As shown in FIG. 8, the pipe tension arm 162 has a first end 180 that removably couples to the frame 16 and a second end 182 that removably couples to the bore 54 of the reel 14. The pipe tension arm 162 may help maintain contact of the reel 14 against the rollers 18 or the pipe re-spooler 26 (not shown in FIG. 8). For example, the combined weight of the reel 14 and spoolable pipe 12 decreases as the spoolable pipe 12 is deployed, which may cause the reel 14 to lose contact with one or more of the rollers 18 or the pipe re-spooler 26. Thus, the pipe tension arm 162 may counteract any movement of the reel 14 away from the rollers 18 or the pipe re-spooler 26 by providing a fixed distance between the bore 54 and the frame 16. In certain embodiments, the frame 16 may include a plurality of arm holes 184 located at different locations for the first end 180 to be inserted into. Thus, the plurality of arm holes 184 enables pipe tension arms 162 with a fixed length to be used with reels 14 of different reel diameters 58.



FIG. 9 illustrates a perspective view of an embodiment of the pipe reel cradle 10 with a retention shaft 200. As shown in FIG. 9, the retention shaft 200 may be used to secure the reel 14 to the pipe reel cradle 10 instead of or in addition to the pipe tension arm 162. The retention shaft 200 may be a cylindrical rod or shaft that is inserted into the bores 54 of the reel 14. In certain embodiments, the retention shaft 200 may include bearings or similar devices to enable the reel 14 to easily rotate about the retention shaft 200. A chain 202 may be coupled to one end of the retention shaft 200 and to the pipe reel cradle 10, such as to a pad eye 102 of the pipe reel cradle 10 or similar attachment point. Together the retention shaft 200 and chain 202 may help prevent the reel 14 from coming out of the pipe reel cradle 10 for any reason. In other words, the retention shaft 200 and chain 202 help keep the reel 14 within the pipe reel cradle 10. A cotter pin 204 or similar device may be used to secure the chain 202 to the retention shaft 200. In certain embodiments, a come-a-long or similar device may be used to tighten the chain 202. In further embodiments, other devices may be used for the chain 202, such as wire or rope. Although only one side of the reel 14 is shown in FIG. 9, the retention shaft 200 may be secured in a similar manner as described on both sides of the reel 14. In some embodiments, more than one chain 202 may be used on a side of the reel 14, such as two, three, or more chains 202. In these embodiments, the chains 202 may be secured to the same location of the pipe reel cradle 10 or to different locations. For example, if two chains 202 are used, they may be arranged like an inverted letter V with the tip representing the bore 54 and the legs representing the two chains 202. In certain embodiments, if the pipe tension arm 162, retention shaft 200, and/or chain 202 were to fail, the extensions 87, including flared versions of the extensions 87, may help retain the reel 14 within the pipe reel cradle 10.



FIG. 10 illustrates a perspective view of the front side 70 of an embodiment of the pipe reel cradle 10 with the reel 14. As shown in FIG. 10, the extensions 87 of the roller frames 86 may extend radially 44 away from the rollers 18 to help prevent axial 42 movement of the first and second reel ends 50 and 52 outside of the rollers 18. Thus, undesired movement or tilting of the reel 14 may be avoided. In other embodiments, the pipe reel cradle 10 may include a containment system to at least partially support the reel 14 if the reel 14 is not supported by the rollers 18. For example, the containment system may include posts, beams, walls, or similar objects extending radially 44 away from the frame 16. Thus, if the reel 14 moves away from one or more of the rollers 18, the containment system may block further movement of the reel 14 outside the boundaries of the pipe reel cradle 10. Such a containment system may be useful when the pipe reel cradle 10 is not placed on a level surface or when the pipe reel cradle 10 is located on a moving surface, such as the deck of a ship.


When deploying spoolable pipe 12 using the pipe reel cradle 10, the pipe reel cradle 10 may be moved to a desired location using the forklift tine pockets 100 and/or pad eyes 102. Then the reel 14 may be set in the pipe reel cradle 10 using a crane or similar equipment. An end of the spoolable pipe 12 may be pulled away from the stationary reel 14 and pipe reel cradle 10, thereby causing the reel 14 to rotate against the rollers 18 as the spoolable pipe 12 is removed from the reel 14. Alternatively, the pipe reel cradle 10 may be placed on a trailer or similar equipment. The end of the spoolable pipe 12 may be removed from the reel 14 and secured. Then the pipe reel cradle 10 may be moved away from the stationary end causing additional spoolable pipe 12 to be deployed as the reel 14 rotates against the rollers 18. In either deployment method, the spoolable pipe 12 may be guided through the pipe guide 22 as the spoolable pipe 12 is deployed. When a desired amount of spoolable pipe 12 has been deployed or it is desired to pause or stop deployment for any reason, the pipe brake 24 may be engaged to slow or stop rotation of the reel 14. Deployment may be resumed after disengaging the pipe brake 24.


In some situations, it may be desired to re-spool deployed spoolable pipe 12. For example, the reel 14 may be in the pipe reel cradle 10 with a first portion of spoolable pipe 12 disposed about the reel 14 and a second portion of spoolable pipe 12 extending away from the reel 14. The pipe re-spooler 26 may then be engaged with the reel 14 and the pipe re-spooler 26 rotated to cause rotation of the reel 14 against the rollers 18 in a direction to cause the second portion to be re-spooled onto the reel 14. The spoolable pipe 12 may be guided through the pipe guide 22 during re-spooling. After re-spooling, the pipe re-spooler 26 may be disengaged from the reel 14 and the reel 14 may be removed from the pipe reel cradle 10 to be transported to another location.


While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.

Claims
  • 1. A pipe reel cradle, comprising: a base frame;a first roller frame coupled to a side of the base frame such that the first roller frame extends up from the base frame;a first roller rotatably secured to the first roller frame, wherein the first roller is configured to support a reel end of a pipe reel and the first roller frame extends above the first roller to facilitate blocking the reel end of the pipe reel from inadvertently moving axially off of the first roller;a second roller frame coupled to the side of the base frame such that the second roller frame extends up from the base frame; anda second roller rotatably secured to the second roller frame, wherein the second roller is configured to support the reel end of the pipe reel and the second roller frame extends above the second roller to facilitate blocking the reel end of the pipe reel from inadvertently moving axially off of the second roller.
  • 2. The pipe reel cradle of claim 1, comprising: a re-spooler bracket coupled to the base frame;a wheel rotatably secured to the re-spooler bracket, wherein the wheel has a flexible surface that is configured to rotationally engage the reel end of the pipe reel; anda re-spooler actuator coupled to the re-spooler bracket, wherein the re-spooler actuator is configured to rotate the wheel to facilitate driving rotation of the pipe reel on the pipe reel cradle.
  • 3. The pipe reel cradle of claim 1, comprising: a first bracket coupled to an adjacent side of the base frame;a first vertical roller rotatably secured to the first bracket, wherein the first roller comprises a first horizontal roller and the second roller comprises a second horizontal roller;a second bracket coupled to the adjacent side of the base frame; anda second vertical roller rotatably secured to the second bracket such that the second vertical roller opposes the first vertical roller, wherein the first vertical roller and the second vertical roller are configured to guide spoolable pipe deployed from the pipe reel off of the pipe reel cradle.
  • 4. The pipe reel cradle of claim 1, comprising: a brake bracket pivotably secured to the first roller frame or the base frame;a brake pad secured on the brake bracket; anda brake actuator coupled between the brake bracket and the base frame, wherein the brake actuator is configured to selectively: extend such that the brake bracket pivots away from the base frame to facilitate engaging the brake pad with the reel end of the pipe reel; andretract such that the brake bracket pivots toward the base frame to facilitate disengaging the brake pad from the reel end of the pipe reel.
  • 5. The pipe reel cradle of claim 1, comprising a pipe tension arm, wherein the pipe tension arm comprises: a first end configured to be secured to the base frame; anda second end configured to be secured within a bore of the pipe reel to facilitate retaining the pipe reel on the first roller and the second roller.
  • 6. The pipe reel cradle of claim 1, comprising: a retention shaft configured to be inserted into a bore of the pipe reel; anda chain, wherein the chain comprises: a first end configured to be secured to the retention shaft; anda second end configured to be secured to the base frame to facilitate retaining the pipe reel on the first roller and the second roller.
  • 7. The pipe reel cradle of claim 1, comprising: a third roller frame coupled to an opposite side of the base frame such that the third roller frame extends up from the base frame;a third roller rotatably secured to the third roller frame, wherein the third roller is configured to support an opposite reel end of the pipe reel and the third roller frame extends above the third roller to facilitate blocking the opposite reel end of the pipe reel from inadvertently moving axially off of the third roller;a fourth roller frame coupled to the opposite side of the base frame such that the fourth roller frame extends up from the base frame; anda fourth roller rotatably secured to the fourth roller frame, wherein the fourth roller is configured to support the opposite reel end of the pipe reel and the fourth roller frame extends above the fourth roller to facilitate blocking the opposite reel end of the pipe reel from inadvertently moving axially off of the fourth roller.
  • 8. The pipe reel cradle of claim 7, comprising: a first curved cradle coupled to the side of the base frame between the first roller frame and the second roller frame; anda second curved cradle coupled to the opposite side of the base frame between the third roller frame and the fourth roller frame.
  • 9. The pipe reel cradle of claim 1, wherein the base frame comprises forklift tine pockets configured to accommodate forklift tines of a forklift to facilitate handling the pipe reel cradle using the forklift.
  • 10. A method, comprising: providing a pipe reel cradle, wherein the pipe reel cradle comprises: a base frame;a first roller frame coupled to a side of the base frame such that first roller frame extends up from the base frame;a first roller rotatably secured to the first roller frame such that the first roller frame extends above the first roller;a second roller frame coupled to the side of the base frame such that the second roller frame extends up from the base frame; anda second roller rotatably secured to the second roller frame such that the second roller frame extends above the second roller;disposing a pipe reel on the pipe reel cradle at least in part by: disposing a reel end of the pipe reel on the first roller such that the first roller frame that extends above the first roller blocks the reel end from inadvertently moving axially off of the first roller; anddisposing the reel end of the pipe reel on the second roller such that the second roller frame that extends above the second roller blocks the reel end from inadvertently moving axially off of the second roller; anddeploying spoolable pipe from the pipe reel at least in part by rotating the pipe reel on the pipe reel cradle.
  • 11. The method of claim 10, wherein deploying the spoolable pipe from the pipe reel comprises; pulling an axial end of the spoolable pipe away from the pipe reel cradle;moving the pipe reel cradle away from the axial end of the spoolable pipe, or both.
  • 12. The method of claim 10, wherein: the pipe reel cradle comprises: a third roller frame coupled to an opposite side of the base frame such that the third roller frame extends up from the base frame;a third roller rotatably secured to the third roller frame such that the third roller frame extends above the third roller;a fourth roller frame coupled to the opposite side of the base frame such that the fourth roller frame extends up frame the base frame; anda fourth roller rotatably secured to the fourth roller frame such that the fourth roller frame extends above the fourth roller; anddisposing the pipe reel on the pipe reel comprises: disposing an opposite reel end of the pipe reel on the third roller such that the third roller frame that extends above the third roller blocks the opposite reel end from inadvertently moving axially off of the third roller; anddisposing the opposite reel end of the pipe reel on the fourth roller such that the fourth roller frame that extends above the fourth roller blocks the opposite reel end from inadvertently moving axially off of the fourth roller.
  • 13. The method of claim 10, wherein: the pipe reel cradle comprises a curved cradle coupled to the side of the base frame between the first roller frame and the second roller frame; anddisposing the pipe reel on the pipe reel cradle comprises disposing the reel end of the pipe reel over the curved cradle such that a gap is present between the reel end and the curved cradle.
  • 14. The method of claim 10, wherein: the pipe reel cradle comprises: a brake bracket pivotably secured to the first roller frame or the base frame;a brake pad secured on the brake bracket; anda brake actuator coupled between the base frame and the brake bracket; anddeploying the spoolable pipe from the pipe reel comprises selectively: extending the brake actuator such that the brake bracket pivots away from the base frame to facilitate engaging the brake pad with the reel end of the pipe reel; andretracting the brake actuator such that the brake bracket pivots toward the base frame to facilitate disengaging the brake pad from the reel end of the pipe reel.
  • 15. A method of manufacturing a pipe reel cradle, comprising: forming a base frame;coupling a first roller frame to a side of the base frame such that the first roller frame extends up from the base frame;rotatably securing a first roller to be used to support a reel end of a pipe reel to the first roller frame such that the first roller frame extends above the first roller to facilitate blocking the reel end of the pipe reel from inadvertently moving axially off of the first roller;coupling a second roller frame to the side of the base frame such that the second roller frame extends up from the base frame; androtatably securing a second roller to be used to support the reel end of the pipe reel to the second roller frame such that the second roller frame extends above the second roller to facilitate blocking the reel end of the pipe reel from inadvertently moving axially off of the second roller.
  • 16. The method of claim 15, comprising: coupling a re-spooler bracket to the base frame;rotatably securing a wheel to the re-spooler bracket, wherein the wheel has a flexible surface that is to be used to rotationally engage the reel end of the pipe reel; andcoupling a re-spooler actuator to the re-spooler bracket to enable the re-spooler actuator to rotate the wheel to drive rotation of the pipe reel on the pipe reel cradle.
  • 17. The method of claim 15, comprising: coupling a first bracket to the base frame;rotatably securing a third roller to the first bracket vertically, wherein rotatably securing the first roller to the first roller frame comprises rotatably securing the first roller to the first roller frame horizontally and rotatably securing the second roller to the second roller frame comprises rotatably securing the second roller to the second roller frame horizontally;coupling a second bracket to the base frame; androtatably securing a fourth roller to the second bracket vertically such that the third roller and the fourth roller oppose one another to enable the third roller and the fourth roller to guide spoolable pipe deployed from the pipe reel off of the pipe reel cradle.
  • 18. The method of claim 15, comprising: pivotably securing a brake bracket to the first roller frame or the base frame;securing a brake pad on the brake bracket; andcoupling a brake actuator between the brake bracket and the base frame to enable the brake actuator to: extend such that the brake bracket pivots away from the base frame to facilitate engaging the brake pad with the reel end of the pipe reel; andretract such that the brake bracket pivots toward the base frame to facilitate disengaging the brake pad from the reel end of the pipe reel.
  • 19. The method of claim 15, comprising: coupling a third roller frame to an opposite side of the base frame such that the third roller frame extends up from the base frame;rotatably securing a third roller to be used to support an opposite reel end of the pipe reel to the third roller frame such that the third roller frame extends above the third roller to facilitate blocking the opposite reel end of the pipe reel from inadvertently moving axially off of the third roller;coupling a fourth roller frame to the opposite side of the base frame such that the fourth roller frame extends up from the base frame; androtatably securing a fourth roller to be used to support the opposite reel end of the pipe reel to the fourth roller frame such that the fourth roller frame extends above the fourth roller to facilitate blocking the opposite reel end of the pipe reel from inadvertently moving axially off of the fourth roller.
  • 20. The method of claim 19, comprising: coupling a first curved cradle to the side of the base frame between the first roller frame and the second roller frame; andcoupling a second curved cradle to the opposite side of the base frame between the third roller frame and the fourth roller frame.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Non-Provisional application Ser. No. 16/423,495 filed on May 28, 2019, now U.S. Pat. No. 10,730,719, which is a continuation of U.S. Non-Provisional application Ser. No. 16/176,086 filed on Oct. 31, 2018, now U.S. Pat. No. 10,301,149, which claims the priority benefit, of U.S. Provisional Application 62/579,980 filed Nov. 1, 2017, the contents of each of which are incorporated by reference herein in their entirety.

US Referenced Citations (88)
Number Name Date Kind
425011 Talbert Apr 1890 A
2207663 Glasner Jul 1940 A
2512324 Hall Jun 1950 A
2660381 Friedl Nov 1953 A
2679987 Saliba Jun 1954 A
2834558 Halpin May 1958 A
2904273 Turner, Jr. Sep 1959 A
2958478 Petersen Nov 1960 A
3103322 Garner Sep 1963 A
3743205 Misrach Jul 1973 A
3995355 Sneed et al. Dec 1976 A
4085904 McElroy Apr 1978 A
4176801 Douglas Dec 1979 A
4260287 Uyeda et al. Apr 1981 A
4454999 Woodruff Jun 1984 A
4594871 de Boer Jun 1986 A
4781335 Compagnon Nov 1988 A
4804152 Masuda Feb 1989 A
4945938 Ponsford Aug 1990 A
5332166 Kepes Jul 1994 A
5687928 Skalleberg Nov 1997 A
5956990 Ginzburg Sep 1999 A
6059220 Lassiter May 2000 A
6347761 Larson Feb 2002 B1
6419424 Null et al. Jul 2002 B1
8398013 Skalleberg Mar 2013 B2
8814075 Turner et al. Aug 2014 B1
8931724 Jordan Jan 2015 B2
10017352 Braack Jul 2018 B2
10150402 White et al. Dec 2018 B2
10190722 Espinasse et al. Jan 2019 B2
10197198 Glejbol Feb 2019 B2
10226823 Showcor Mar 2019 B2
10226892 Kremers Mar 2019 B2
10234068 Varagnolo et al. Mar 2019 B2
10281065 Secher et al. May 2019 B2
10285223 Hatton et al. May 2019 B2
10288207 Littlestar et al. May 2019 B2
10301149 Franklin-Hensler May 2019 B2
10378682 Cloos et al. Aug 2019 B2
10408795 Nicolas et al. Sep 2019 B2
10415731 Boche et al. Sep 2019 B2
10429267 Grimsley Oct 2019 B2
10436667 Littlestar et al. Oct 2019 B2
10442925 Rong et al. Oct 2019 B2
10451206 Espinasse et al. Oct 2019 B2
10471661 Boczkowski et al. Nov 2019 B2
10480054 Valdez et al. Nov 2019 B2
10487965 Bouey et al. Nov 2019 B2
10494519 Wilson et al. Dec 2019 B2
10513896 Gudme et al. Dec 2019 B2
10527198 Nicolson et al. Jan 2020 B2
10544889 Bouey et al. Jan 2020 B2
10544892 Holst Jan 2020 B2
10730719 Franklin-Hensler Aug 2020 B2
20070120003 Grant May 2007 A1
20090196723 Smith et al. Aug 2009 A1
20100243787 Skalleberg Sep 2010 A1
20110120896 Houen May 2011 A1
20120061504 Powell Mar 2012 A1
20120223179 Galindo Sep 2012 A1
20150158692 Reynolds et al. Jun 2015 A1
20160362950 Broussard Dec 2016 A1
20170197536 Mayer et al. Jul 2017 A1
20180186269 Brnett et al. Jul 2018 A1
20190003921 Nicholas Jan 2019 A1
20190023520 Robertson et al. Jan 2019 A1
20190024830 Glejbol Jan 2019 A1
20190094101 Spiegel et al. Mar 2019 A1
20190101233 Hatton et al. Apr 2019 A1
20190126567 Bornemann et al. May 2019 A1
20190127176 Franklin-Hensler May 2019 A1
20190154186 Shawcor May 2019 A1
20190162334 Westhoff et al. May 2019 A1
20190162335 Yu et al. May 2019 A1
20190162336 Andersen et al. May 2019 A1
20190186656 Kozak et al. Jun 2019 A1
20190194440 Rong et al. Jun 2019 A1
20190217337 Gujare et al. Jul 2019 A1
20190219473 Littlestar et al. Jul 2019 A1
20190242501 Bereczkne et al. Aug 2019 A1
20190257448 Chalmers et al. Aug 2019 A1
20190285199 Nicolson et al. Sep 2019 A1
20190309582 Procida Oct 2019 A1
20190338868 Hjorth Nov 2019 A1
20190368967 Dura-Line Dec 2019 A1
20190391097 Nicolas et al. Dec 2019 A1
20200011467 Holst Jan 2020 A1
Foreign Referenced Citations (149)
Number Date Country
2014299014 Jan 2019 AU
2014363465 Jan 2019 AU
2017302735 Jan 2019 AU
2014310509 Mar 2019 AU
2017319390 Mar 2019 AU
2017347152 May 2019 AU
2017365730 Jun 2019 AU
2018211384 Aug 2019 AU
2018222217 Aug 2019 AU
2015335367 Oct 2019 AU
2015345613 Oct 2019 AU
2018288000 Jan 2020 AU
2019279941 Jan 2020 AU
112014017998 Jan 2019 BR
112018013586 Jan 2019 BR
PI0810573 Jan 2019 BR
PI0819542 Jan 2019 BR
112019001414 Feb 2019 BR
112018075840 Mar 2019 BR
112019004048 Mar 2019 BR
PI0517181 Mar 2019 BR
112019000076 Apr 2019 BR
112019007789 Apr 2019 BR
PI0914836 Apr 2019 BR
112019003669 May 2019 BR
112019005154 Jun 2019 BR
112013032388 Jul 2019 BR
112019013850 Jul 2019 BR
PI0720487 Aug 2019 BR
112012015257 Sep 2019 BR
112013017957 Sep 2019 BR
112015027495 Sep 2019 BR
112016001932 Sep 2019 BR
PI0909348 Sep 2019 BR
12019020051 Oct 2019 BR
112015002088 Oct 2019 BR
112012020776 Nov 2019 BR
112019012614 Nov 2019 BR
P10808956 Nov 2019 BR
112013028806 Dec 2019 BR
112013000428 Jan 2020 BR
112019013850 Jan 2020 BR
P10924891 Jan 2020 BR
2859433 Mar 2019 CA
2823056 Apr 2019 CA
2765294 Jun 2019 CA
2854955 Jun 2019 CA
2835008 Aug 2019 CA
3012146 Jan 2020 CA
102403675 Apr 2012 CN
104891257 Sep 2015 CN
109153196 Jan 2019 CN
109153229 Jan 2019 CN
109958827 Jul 2019 CN
110177969 Aug 2019 CN
106985493 Nov 2019 CN
108291686 Nov 2019 CN
110461586 Nov 2019 CN
110462273 Nov 2019 CN
107250643 Dec 2019 CN
108291670 Jan 2020 CN
102018214615 Jun 2019 DE
3224393 Jan 2019 DK
2820083 Feb 2019 DK
2959199 Feb 2019 DK
3228639 Feb 2019 DK
2780159 Apr 2019 DK
3196523 Apr 2019 DK
2516534 Jul 2019 DK
2901062 Aug 2019 DK
3286474 Sep 2019 DK
2360406 Jan 2019 EP
2780159 Jan 2019 EP
3069063 Jan 2019 EP
3433523 Jan 2019 EP
3089846 Feb 2019 EP
3334969 Feb 2019 EP
3334970 Feb 2019 EP
3439871 Feb 2019 EP
2386894 Mar 2019 EP
2516534 Mar 2019 EP
2737238 Mar 2019 EP
2859173 Mar 2019 EP
3371502 Mar 2019 EP
3455059 Mar 2019 EP
3455536 Mar 2019 EP
3458531 Mar 2019 EP
2862700 Apr 2019 EP
3105484 Apr 2019 EP
3258155 Apr 2019 EP
3334965 Apr 2019 EP
3334967 Apr 2019 EP
3463849 Apr 2019 EP
3468725 Apr 2019 EP
3314155 May 2019 EP
3488135 May 2019 EP
2519764 Jun 2019 EP
2572134 Jul 2019 EP
2661578 Jul 2019 EP
3507535 Jul 2019 EP
3513108 Jul 2019 EP
2576333 Aug 2019 EP
3014157 Aug 2019 EP
3059481 Aug 2019 EP
3526437 Aug 2019 EP
2588787 Sep 2019 EP
2870397 Sep 2019 EP
3093546 Oct 2019 EP
3548280 Oct 2019 EP
3350498 Dec 2019 EP
3482112 Dec 2019 EP
3583344 Dec 2019 EP
2468302 May 1981 FR
3068104 Jul 2019 FR
3077997 Aug 2019 FR
3074251 Dec 2019 FR
3076337 Jan 2020 FR
2503880 Mar 2019 GB
2562674 Mar 2019 GB
2557571 Sep 2019 GB
2572120 Sep 2019 GB
2520756 Oct 2019 GB
2535925 Dec 2019 GB
2574296 Dec 2019 GB
E045956 Jan 2020 HU
330637 Jan 2020 IN
S58-162466 Sep 1983 JP
20110101751 Sep 2016 KR
20180109388 Oct 2018 KR
2678216 Feb 2019 PL
2379299 May 2019 PL
2018113428 Oct 2019 RU
02095182 May 1981 WO
98015763 Jul 2002 WO
2019016554 Jan 2019 WO
2019016558 Jan 2019 WO
2019073047 Apr 2019 WO
2019022599 May 2019 WO
2019089747 May 2019 WO
2019099219 May 2019 WO
2019105926 Jun 2019 WO
2019112431 Jun 2019 WO
2019120677 Jun 2019 WO
2019141326 Jul 2019 WO
2019165562 Sep 2019 WO
2019197538 Oct 2019 WO
2019207031 Oct 2019 WO
2019238456 Dec 2019 WO
2020016325 Jan 2020 WO
Non-Patent Literature Citations (9)
Entry
Argentina Patent Office; Office Action, issued in connection to application No. P180103186; dated Aug. 19, 2021; 5 pages; Argentina.
Intellectual Property Office of Singapore; Written Opinion, issued in connection to application No. 11202003964S; dated Aug. 26, 2021; 8 pages; Singapore.
Ministry for Productive Development and Plural Economy; Office Action, issued in connection to application No. SP222-2018; dated Nov. 24, 2021; 5 pages; Bolivia.
The Eurasian Patent Organization, The Eurasian Patent Office; Office Action, issued in connection to application No. 202091085; dated Mar. 16, 2021; 4 pages; Russia.
European Patent Office; Extended European Search Report, issued in connection to application No. EP18873507.0; dated Jun. 21, 2021; 9 pages; Europe.
Ministry for Productive Development and Plural Economy; Office Action, issued in connection to application No. SP222-2018; dated Dec. 14, 2020; 8 pages; Bolivia.
United States Patent and Trademark Office; PCT International Search Report and Written Opinion, issued in connection to PCT/US18/58441; dated Jan. 18, 2019; 21 pages; U.S.
Pakistan Patent Office; Examination Report, issued in connection to application No. 744/2018; 1 page, Pakistan.
Republic of Yemen, Ministry of Industry and Trade; Registrar Decision Regarding the Request of Patent Acquisition, issued in connection to application No. 961; dated Jan. 26, 2020; 2 pages; Yemen.
Related Publications (1)
Number Date Country
20200361744 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62579980 Nov 2017 US
Continuations (2)
Number Date Country
Parent 16423495 May 2019 US
Child 16985126 US
Parent 16176086 Oct 2018 US
Child 16423495 US