Embodiments relate to harvesting energy, more particularly, electrical energy via a spacer-less magnet configuration.
Energy harvesting systems, such as but not limited to U.S. Pat. No. 9,887,610, which is hereby incorporated by reference, may be configured to convert mechanical energy into electrical energy.
One embodiment of the present application provides an energy harvesting system including a channel, a first coil having a clockwise rotation around the channel, a second coil having a counter clockwise rotation around the channel, and magnetic train. The magnetic train is configured to move through the channel, the magnetic train including a plurality of oppositely-alternating magnets.
Another embodiment discloses a method for generating energy. The method including applying a force, via a piston, to a fluid to cause movement within a channel. The channel has a first coil having a clockwise rotation around the channel and a second coil having a counter clockwise rotation around the channel. The method further including causing movement, via the fluid, of a magnet train situated within the channel. The magnet train includes a plurality of oppositely-alternating magnets. The method further includes generating, via the magnet train, a voltage in at least one selected from a group consisting of the first coil and the second coil.
Other aspects of the application will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the application are explained in detail, it is to be understood that the application is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The application is capable of other embodiments and of being practiced or of being carried out in various ways.
In some embodiments, the first coil 110 is wrapped in a clockwise manner, while the second coil 115 is wrapped in a counter-clockwise manner. In other embodiments, the first coil 110 may be wrapped in a counter-clockwise manner, while the second coil is wrapped in a clockwise manner. As illustrated, in some embodiments, the system 100 includes more than one first coil 110 and/or more than one second coil 115.
A magnetic train 120 may be disposed within the channel 105. The magnetic train 120 may be configured to move through the channel 105 such that the magnetic train 120 moves through the first coil 110 and the second coil 115.
In the illustrated embodiments, the magnets 200 are positioned in an oppositely-alternating manner. For example, magnet 200a may be in a first position (a NS position) having a first north polarity 205a and a first south polarity 210a, while magnet 200b may be in a second position (a SN position) having a second north polarity 205b and a second south polarity 210b. As illustrated, when in an oppositely-alternating manner, the first south polarity 210a of the first magnet 200a is proximate the second south polarity 210b of the second magnet 200b. Although illustrated as including five magnets 200, in other embodiments, the magnetic train 120 may include more or less magnets.
In some embodiments, the magnetic train 120 is a spacer-less magnetic train. For example, the plurality of magnets 200 may be directly coupled to each other, such that there is no spacers (for example, non-magnetic components) placed between the plurality of magnets 200.
In operation, the magnetic train 120 travels through the channel 105, and thus the interiors of the first coil 110 and the second coil 115. As the magnetic train 120 travels through the first and second coils 110, 115, a voltage ecoil is induced in the coils 110, 115. As illustrated in
The system 100 may include a fluid 415. Although illustrated as being within the first chamber 405, the fluid 415 may be within the first chamber 405, the second chamber 410, and/or a channel 105 (including, but not limited to, channels 105a, 105b, and/or 105c of
The fluid 415 may promote movement of the magnetic train 120 through the one or more channels 105, the first chamber 405, and/or the second chamber 410. For example, the fluid 415 may provide separation between the magnetic train 120 and an interior wall of the one or more channels 105, the first chamber 405, and/or the second chamber 410. Additionally, the fluid 415 may reduce friction between the magnetic train 120 and an interior wall of the one or more channels 105, the first chamber 405, and/or the second chamber 410. Furthermore, the fluid 415 may transmit mechanical energy, received by the system 100, to movement of the magnetic train 120 through the one or more channels 105, the first chamber 405, and/or the second chamber 410. Such transmission of mechanical energy may occur through direct pressure applied by the fluid 415 and/or the friction or viscosity of the fluid 415 as it passes the magnetic train 120.
In some embodiments, the one or more channels 105 may having an internal diameter of approximately 1 mm to approximately 2 mm; approximately 1.5 mm to approximately 3 mm; approximately 2 mm to approximately 5 mm; and/or approximately 4 mm to approximately 10 mm. The magnetic train 120 may have a comparable diameter to those discussed above such that the magnetic train 120 is allowed to move within the one or more channels 105.
In some embodiments, the first chamber 405 includes a first piston 420, while the second chamber 410 includes a second piston 425. The first and second pistons 420, 425 may be configured to move within the respective first and second chambers 405, 410. In some embodiments, the first and second pistons 420, 425 may be membranes. For example, the first and second pistons 420, 425 may be flexible membranes, which can stretch and deform and then return to their respective undeformed shapes and sizes. In some embodiments, the chambers 405, 410 are formed of a flexible material. In such an embodiment, the pistons 420, 425 may remain stationary with respect to the walls of the respective chambers 405, 410, and as the pistons 420, 425 move, the respective chambers 405, 410 can deform, in order to pressurize the fluid 415.
A first force F1 may be applied to the fluid 415 (for example, via movement of piston 420 and/or movement of chamber 405). The first force F1 may result in the fluid 415 being pressurized and forced to flow toward the second chamber 410 (via one or more channels 105). As discussed above, as the fluid 415 flows through the one or more channels 105, the magnetic train 120 moves through the channels 105, and thus the coils 110, 115, resulting in voltage ecoil being induced in the coils 110, 115.
As the fluid 415 enters the second chamber 410, a counteractive second force F2 may be applied to the fluid 415 (for example, via movement of piston 425 and/or movement of the chamber 410). The second force F2 may result in the fluid 415 being pressurized and forced to flow back to the first chamber 405 (via one or more channels 105). Once again, as the fluid 415 flows through the one or more channels 105, the magnetic train 120 moves through the channels 105, and thus the coils 110, 115, resulting in voltage ecoil being induced in the coils 110, 115. Movement of the fluid 415 may continuously alternate between the first chamber 405 and the second chamber 410, thus continuously moving the magnetic train 120 through the channels 105, and thus the coils 110, 115.
In the illustrated embodiment, the third chamber 455 is in fluid communication with the first chamber 405 via one or more channels 105. However, in other embodiments, the third chamber 455 may be in fluid communication with the second chamber 410 (for example, via one or more channels 105).
Device 715 may be an electrical device configured to receive electric power. In some embodiments, device 715 is a heating device (for example, an electric heating device, such as but not limited to, a resistive heating device). In other embodiments, the device 715 may include one or more sensors, one or more lights (for example, light-emitting diodes (LEDS)),
Although some embodiments disclose system 100 being incorporated into a shoe, system 100 may be configured to be incorporated into various other devices and/or systems (for example, articles of clothing, vehicles, roads, sidewalks, etc.).
Thus, the application provides, among other things, an energy harvesting system. Various features and advantages of the application are set forth in the following claims.
This application claims priority to U.S. Provisional Application No. 62/753,568, filed on Oct. 31, 2018, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62753568 | Oct 2018 | US |